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Certain fractional quantum Hall states, including the experimentally observed v = 5/2
state, and, possibly, the v = 12/5 state, may have a sufficiently rich form of topological
order (i.e. they may be nonabelian) to be useful for quantum information processing.
For example, in some cases they may be used for topological quantum computation, an
intrinsically fault tolerant form of quantum computation which is carried out by braiding
the world lines of quasiparticle excitations in 241 dimensional space time. Here we briefly
review the relevant properties of nonabelian quantum Hall states and discuss some of
the methods we have found for finding specific braiding patterns which can be used to
carry out universal quantum computation using them. Recent work on one-dimensional
chains of interacting quasiparticles in nonabelian states is also reviewed.
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1. Introduction

Fractional quantum Hall states are examples of states possessing “topological” or-
der.! Such states are not characterized by local order parameters but rather by
global properties, notably ground state degeneracies on topologically nontrivial
surfaces and fractionalized quasiparticle excitations with exotic quantum statis-
tics. A particularly rich form of topological order, which may be realized in certain
experimentally observed fractional quantum Hall states, is so-called “nonabelian”
order.? In states with nonabelian order, when N fractionalized quasiparticles are
present, and their coordinates fixed in space, there is a degeneracy which grows
exponentially with N. If these quasiparticles are well separated (on a scale set by
the magnetic length) these states cannot be distinguished by local measurements,
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making this Hilbert space an ideal place to store quantum information if one wants
to protect it from decoherence due to coupling to the environment. If the quasi-
particles are then adiabatically dragged around one another, unitary operations
are carried out on this Hilbert space and, if the quasiparticles are kept sufficiently
far apart, the resulting unitary transformation is expected to depend only on the
topology of the space-time “braid” used to carry out the exchange. This built in
fault tolerance, together with the topological protection from decoherence, makes
nonabelian fractional quantum Hall matter a potentially useful “raw material” for
one day building quantum computers.>*

In this proceedings, we review some of our work on topological quantum com-
putation, focusing on the problem of finding specific braiding patterns which can be
used to carry out universal quantum computation using nonabelian quasiparticles.
We also discuss recent work on models of interacting nonabelian quasiparticles. For
more details the reader is referred to the original papers, Refs. 5-7, although we
note that the work on bidirectional search discussed in Sec. 3 is presented here for
the first time.

2. Read-Rezayi States and Topological Hilbert Space

The first proposed nonabelian fractional quantum Hall state was the Moore-Read
state? — an incompressible state with Landau level filling fraction v = 1/2. There
is compelling evidence® that the experimentally observed v = 5/2 (= 2 + 1/2)
fractional quantum Hall state is described by this state. The Moore-Read state is
now understood to be the first in an infinite sequence of nonabelian quantum Hall
states introduced by Read and Rezayi.” This sequence is labeled by an integer index
k with the kth state being the exact ground states of a k + 1-body Hamiltonian
with filling fraction v = k/(k + 2). There is some numerical evidence suggesting
that the v = 12/5 = 3 — 3/5 state is described by a k = 3 Read-Rezayi state.%10
There are also reasons to believe that the bosonic analogs of the Read-Rezayi states
(with filling fractions v = k/2) may be realizable in rotating Bose gases.'! All this
is to suggest that nonabelian states are a very real (albeit rare) part of the natural
world.

The quasiparticles in the Read-Rezayi state with index k are described (up to
details which are irrelevant for our discussion here) by SU(2); Chern-Simons the-
ory,'? and we will refer to them as SU(2);, particles. The mathematical description
of SU(2)j, particles is similar to that of particles with ordinary spin. This analogy
is seen most clearly using the language of quantum groups.'? In this language, each
quasiparticle has a topological charge S which can take any half-integer value from
between 0 and k/2. The so-called “fusion rules” for this topological charge then
take the form

S1® Sz =1[S1 — Sa| @ - - -min(Sy + Sa;k — (S1 + S2)), (1)

which, in the limit & — oo becomes the usual triangle rule for adding spin. As a
particular example, provided k > 2, for two particles with topological charge 1/2
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Fig. 1. Bratteli diagrams for SU(2), particles with topological charge 1/2. The case k — oo

corresponds to ordinary spin-1/2 particles. The case k = 3 corresponds to quasiparticles in the
k = 3 Read-Rezayi state.

this rule implies that
Lol 01 2
;@5 =005 (2)
which indicates that these particles can be in states with total topological charge
0 or 1 or be in any quantum superposition of the two.

The structure of the Hilbert space of a collection of SU(2) particles which each
have topological charge 1/2 can be visualized using what are known as Bratteli di-
agrams. Figure 1 shows Bratteli diagrams for the & — oo case (corresponding to
ordinary spin-1/2 particles) and for the k = 3 case (corresponding to quasiparti-
cles in the k = 3 Read-Rezayi state). In these diagrams N is the total number
of particles and S their total topological charge. For the ordinary spin case, the
branching structure of the diagram reflects the fact that every time one adds a
spin-1/2 particle to a collection of particles the total spin of the particles either
increases or decreases by 1/2, subject to the constraint that it cannot be less than
0. The numbers labeling the vertices give the number of paths in the diagram from
the origin to that vertex and therefore indicate the dimensionality of the Hilbert
space of a given number of particles with a given total spin. (Note that we ignore
the 25+ 1-fold degeneracy associated with the total S, quantum number, a degen-
eracy which is not present in the nonabelian case.) For the k = 3 case, the only
difference is that, in addition to the constraint that the total topological charge
cannot be less than 0, there is an additional constraint that it cannot be larger
than k/2 = 3/2. This truncation changes the path counting, as shown in the figure,
with the consequence that the Hilbert space degeneracy grows as the Fibonacci
sequence (1,1,2,3,58,13,--+). For large N, this means that for k& = 3 the Hilbert
space dimensionality grows as ~ ¢ where ¢ = (v/5+1)/2 is the golden mean. For
general k, the Hilbert space dimensionality of N SU(2); particles grows asymp-
totically as d where d = 2cos(n/(k+2)) is the so-called quantum dimension of
the topological charge 1/2 particles. (For excellent reviews of the mathematics of
nonabelian particles, see Refs. 14, 15.)

The nonabelian statistics of these particles manifests itself when they are adia-
batically moved around one another, causing their world lines to form braids in 2+1
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Fig. 2. Encoded qubit space and braids corresponding to a single qubit operation (here the gate
U, approximates o) and a two-qubit controlled-NOT gate.

dimensional space time. Each braid is associated with a precise unitary operation
acting on the topological Hilbert space, with the important property that this uni-
tary transformation is exactly the same for any two braids which are topologically
equivalent (provided the particles are kept sufficiently far apart during the braid-
ing). This implies a built-in fault tolerance which, as noted above, makes the idea
of quantum computing by braiding nonabelian quasiparticles particularly appeal-
ing. It has been shown that the braid group representations of SU(2);, particles are
sufficiently rich to carry out arbitrary quantum computation provided k& > 2 and
k # 4.13 This includes the case k = 3 which, as described above, may be relevant
to the experimentally observed v = 12/5 state.

3. Qubit Encoding and Bidirectional Search for Quantum Gates

The topological Hilbert space described in Sec. 2 does not have the familiar tensor
product structure of a collection of independent qubits. To carry out “conventional”
quantum computation in this Hilbert space it is therefore necessary to encode qubits
in a subspace of this Hilbert space. Fig. 2 shows one such encoding scheme in which
qubits are encoded using quadruplets of quasiparticles. The effective qubit Hilbert
space corresponds to those states whose paths in the Bratteli diagram are indicated
by extra thick lines. In this encoding one can see that, starting from the origin, every
four particles has total topological charge 0, and has two internal states, which we
take to be our qubit states.

In a topological quantum computer, quantum gates (the quantum analogs of
classical Boolean logic gates) are carried out by “braiding” the worldlines of non-
abelian quasiparticles.®* While there are well defined and easy to implement rules
for determining the unitary operation which corresponds to a given braid, it is
a much harder problem to find braids which approximate a desired unitary op-
eration. In practice, to find such braids it is necessary to carry out brute force
searches over braids up to some given length, looking for those braids which yield
unitary operations which are closest to the desired operation. In earlier work on
this topic®F it was found that straightforward brute force search could be used to
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Fig. 3. An “injection” braid (see Ref. 5 for definition) obtained through bidirectional search with
an accuracy of a few parts in 10° and a plot of |Ine€| vs. L, where € is the accuracy of the braid
and L is the braid length (defined to be the number of elementary interchanges in the braid). In
the plot, round dots indicate braids obtained by a straightforward “one-way” brute force search,
and diamonds indicate results of a deeper load-balanced “bi-directional” search. The full injection
braid is obtained by sewing together the right side of the top segment (obtained through one-way
brute force search) with the left side of the bottom segment (obtained through a fast, but memory
intensive, database search).

produce braids which approximate desired gates to roughly 1 part in 103. A set of
quantum gates with roughly this accuracy, obtained by carrying out just such brute
force searches,®® are shown in Fig. 2. This set includes a sample single qubit oper-
ation, which involves braiding the quasiparticles within a given encoded qubit, and
a two-qubit controlled-NOT gate, which involves braiding quasiparticles from two
encoded qubits. (The set of all single qubit operations together with a controlled-
NOT gate form a universal set of quantum gates which can be used to carry out
any quantum algorithm).

While these braids can be improved using “standard” quantum computing ideas,
e.g. the Solovay-Kitaev construction,® they are still less than ideal. As a reasonable
benchmark, it is desirable to have braids which approximate a given target gate
to a degree of accuracy below the so-called fault tolerant threshold!'6 of 1 part in
~10°.

Recently we have significantly improved our brute force search algorithm by
implementing a so-called bidirectional search. What this means is that, when car-
rying out a brute force search over braids, we don’t just search from the start of
the braid working forward toward a desired target gate, but we also search back-
ward from the desired target gate. By “load balancing” the algorithm, so that the
forward search is time intensive (straightforward exhaustive brute force), while the
backward search is memory intensive (database based) we have achieved signifi-
cantly deeper searches. Figure 3 shows the results of a bidirectional search for a
braid we have previously shown is extremely useful for quantum computation —
an “injection” braid (a braid which permutes particle positions while carrying out
the identity operation on the topological Hilbert space, see Refs. 5, 17 for more
details). This braid is accurate to a few parts in 10°, as can be seen from the plot,
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also shown in Fig. 3, of the log of the error e (the deviation of the unitary operation
produced by the braid from the desired target gate, measured using operator norm)
vs. braid length L. The linear behavior of this plot shows that the braid accuracy
improves exponentially with L (reflecting the fact that the number of braids grows
exponentially with L) and that it is, indeed, possible to “compile” braids to an
accuracy close to the fault tolerant threshold by brute force search. We note that
similar bidirectional searches have recently been carried out by Xu and Wan'® for
a related gate construction.

4. Chains of Interacting Nonabelian Quasiparticles

As described in Sec. 2, the key difference between abelian and nonabelian quan-
tum Hall states is the appearance in the latter of an exponentially large Hilbert
space of low energy states when localized quasiparticle excitations are present. In
the limit that these quasiparticles are well separated these states become energet-
ically degenerate and cannot be distinguished by local measurements. But if the
quasiparticles come close enough together (within a few magnetic lengths) this de-
generacy is lifted. This lifting of the degeneracy gives the topological Hilbert space
dynamics which can be described by a Hamiltonian acting on the degrees of freedom
associated with the different possible fusion channels of the quasiparticles.

In any realistic fractional quantum Hall experiment there will always be a fi-
nite density of localized quasiparticles present. Given this fact, it seems clear that
understanding the dynamics of interacting nonabelian quasiparticles will likely be
relevant for understanding future experiments on nonabelian states. One can also
optimistically hope that learning more about the possible states of interacting non-
abelian particles will lead to predictions for experimental signatures of nonabelian
order.

As described in Sec. 2, for k > 2 the fusion rule (1) for SU(2);, particles implies
% ® % = 0 @ 1. This means that, just as for ordinary spin-1/2 particles, when
combining two particles with topological charge 1/2 the resulting state can either
have topological charge 0 or 1. For ordinary spin-1/2 particles the former would be
referred to as a singlet and the latter as a triplet. The same terminology will be
used here for SU(2) particles, though it should be noted that here there is no S,
degeneracy, i.e. there is only one “triplet” state.

Now counsider a one-dimensional chain of SU(2);, particles. A particularly useful
basis for describing the total topological charge 0 sector of the Hilbert space of
these particles is the set of non-crossing valence bond states. Examples of these
states are the states |«) and |3) shown in Fig. 4(a).

For ordinary spin-1/2 particles, the bonds in Fig. 4(a) would represent ordinary
singlet bonds. For SU(2), particles the interpretation is slightly different. In this
case these bonds connect particles that, if brought together, would fuse to trivial
topological charge 0. The fact that these states are non-crossing (meaning none of
the singlet bonds cross each other) implies that the total topological charge of all
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Fig. 4. Two non-crossing valence bond states and their overlap (a); and the action of singlet
projection operators on representative valence-bond states (b).

the particles between any two particles connected by a bond is 0. This fact is crucial
for generalizing valence-bond states to nonabelian particles — it guarantees that
two particles connected by a bond can always be brought together without leading
to any “braiding” induced transitions.

Figure 4(a) also illustrates the rule for calculating the overlap of two valence
bond states |«) and |3). This rule is a simple modification of the well known rule
for calculating such overlaps for ordinary spin-1/2 particles. One simply overlays
the two valence bond configuration and counts the number of closed loops Nigops-
For N ordinary spin-1/2 particles the overlap would be (a|g) = 2MNeors=N/2_ For
SU(2)y particles the 2 in this expression is replaced by the quantum dimension d
(defined in Sec. 2), as shown in Fig. 4(a).

Now consider chains of SU(2); quasiparticles in which neighboring pairs of
particles are assumed to be close enough together to split the degeneracy of the
singlet (topological charge 0) and triplet (topological charge 1) states. If we assume
that that the singlet lies lowest, then the Hamiltonian for this system can be written,

H=-Y JI; J;>0. (3)

Here J; is the singlet-triplet splitting for particles i and i+ 1, and I1Y is a projection
operator which projects onto the singlet sector of these two particles. The action
of the projection operator IIY on the valence-bond basis is easily worked out and
shown, for two representative cases, in Fig. 4(b).

For the uniform SU(2); chain, (3) with J; = J > 0, a great deal is known.
In Ref. 19 it was shown that the projection operators I19 satisfy a Temperley-Lieb
algebra.?0 Using this fact it is possible to map these 141 dimensional quantum
models onto the extreme anisotropic limit of the two-dimensional classical Andrews-
Baxter-Forrester “restricted solid on solid” (RSOS) models.?! The RSOS models
are an infinite class of exactly solvable models whose critical properties are known
to correspond to the so-called minimal sequence of two-dimensional conformal field
theories.?? Using this mapping Feiguin et al.'® were able to deduce that the ground
states of all the uniform SU(2); chains were critical, and conformally invariant
(i.e. with dynamical exponent z = 1) with central charge ¢ = 1—6/((k+2)(k+3)).
Numerical results for the case k = 3, the so-called “golden chain”, confirmed that,
indeed, the ground state was conformally invariant with central charge ¢ = 7/10.19
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In Ref. 7, random chains of the form (3), i.e. chains in which the J;’s are ran-
domly distributed, were studied using the real-space renormalization group (RG)
method pioneered by Ma and DasGupta?3 and applied with great success by Fisher
to random Heisenberg spin chains?* and the random transverse field Ising model.2?
In this approach the following steps are iterated: i) search for the bond with the
largest J;; ii) assume that the particles connected by J; form a singlet, i.e. fuse to
0; iii) remove (or decimate) this bond, leaving behind only an effective interaction
(determined using second order perturbation theory) between the two particles on
either side of the bond. Once all the particles have been decimated the resulting
state will be a particular non-crossing valence bond state known as a random singlet
state.2

The main result of this analysis was the observation that all the SU(2)) random
chains with antiferromagnetic bonds flow to random singlet states for which the
bond strength distribution is the same as that for ordinary spin-1/2 random singlet
phases (corresponding to the k — oo limit).

5. Entanglement Scaling

In Ref. 7 the scaling of entanglement entropy in random SU(2)) chains was also
studied, motivated by work of Refael and Moore?® who studied entanglement in
ordinary random spin chains and showed that it had universal properties similar to
those of conformally invariant quantum critical points.

The entanglement entropy is defined by considering a subsystem (denoted A)
of the entire chain consisting of a contiguous segment of L particles. If, starting
with the ground state wave function for the entire chain, we trace out the degrees
of freedom that are not in region A then we obtain a reduced density matrix p4.
The entanglement entropy of region A is then defined to be the Von Neumann en-
tropy of this reduced density matrix p4: S(L) = —Tr pa log, pa. Roughly speaking,
this quantity tells us how much information we would learn about region A if we
measured the state of all the particles outside of region A.

In Ref. 26 it was shown that the entanglement entropy of certain random one-
dimensional models at their critical points scales logarithmically, with a universal
coefficient. Such logarithmic scaling is known to occur for critical points with confor-
mal symmetry, in which case the universal coefficient is proportional to the central
charge of the corresponding conformal field theory.?”2® Due to this similarity, Re-
fael and Moore proposed using entanglement scaling to generalize the notion of
central charge to random 1+1 dimensional quantum critical points which do not
have conformal symmetry (i.e. for which the dynamic exponent z is not 1, but rather
00, as it is in the case of the random singlet phase). Furthermore, they made the
interesting hypothesis that this effective central charge might satisfy a generalized
29 meaning that it would always decrease along RG flows. As supporting
evidence Refael and Moore showed that this is indeed the case for the RG flow from

c-theorem

the uniform Heisenberg spin chain and critical transverse field Ising model to the
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Fig. 5. A random singlet state. By counting the number of bonds leaving the box of length L
and multiplying by the entanglement per bond one can determine the entanglement entropy S(L)
of the region enclosed by the box.

corresponding random chains. It should, however, be noted that shortly after their
work, it was shown by Santachiara3® that this “theorem” is violated for certain
models (to be precise the Z,, parafermionic Potts model for n > 42). Nonetheless,
it is still of interest to investigate cases where this generalized c-theorem might
hold. One motivation is that, while the straightforward entanglement scaling may
not provide a generalized “central charge” which satisfies a c-theorem, there may
exist a closely related quantity which does.

As described in Sec. 4, the bond strength distributions of the infinite randomness
fixed points of the random SU(2)y chains are all identical to that of the random
singlet phase for ordinary spin-1/2 particles originally studied by Fisher.?* It follows
that the entanglement entropy of a region of size L in the random SU(2); chains
can be computed following the procedure of Refael and Moore?® which we now
outline.

Figure 5 shows a particular random singlet state with a box around a region of
size L. The entanglement entropy of this region is simply equal to the number of
bonds leaving the box multiplied by the entanglement associated with each bond.
To calculate the entanglement entropy for a random chain one simply averages the
resulting entropy over realizations of disorder. As shown by Refael and Moore?® the
average number of bonds leaving a region of size L in a random singlet phase scales
as %ln L. Since this scaling depends entirely on the bond strength distribution it
should also hold for the random SU (2); models. The only thing that is different for
these models is the entanglement per bond. It was shown in Ref. 7 that for SU(2)
particles the entanglement per bond is log, d where d is the quantum dimension
of the particles. This result can be understood as a simple consequence of the fact
that the Hilbert space dimensionality of N SU(2); particles scales as dV for large
N, as described in Sec. 2.

The end result for the entanglement scaling in the random SU(2)) chains is
then”

S(L) ~ % log, L. (4)
From this one can extract an “effective central charge” for these models of ¢ = Ind.
The cases k = 2 and k — oo correspond to the transverse field Ising and random
spin chain limits studied by Refael and Moore,? respectively, and in both cases
(4) agrees with their results. All the other k values then correspond to an infinite
class of new infinite randomness fixed points. It is interesting to note that, just as
for the models studied by Refael and Moore, these new models obey a generalized
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c-theorem: for each k the effective central charge of the random model, Ind, is less
than the central charge of the uniform model ¢ =1 —6/(k + 1)(k + 2).
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