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A generalized version of the valence-bond Monte Carlo method is used to study ground state properties of
the 1 + 1 dimensional quantum Q-state Potts models. For appropriate values of Q these models can be
used to describe interacting chains of non-Abelian anyons — quasiparticle excitations of certain exotic
fractional quantum Hall states.
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1. Introduction

The notion of a valence bond, a simple singlet state formed by
two localized spin-1/2 particles, captures much of the physics of
how pairs of electrons are correlated in the real world. This is cer-
tainly true when describing chemical bonds in molecules, where a
local picture of electron correlations is clearly appropriate; how-
ever, the language of valence bonds has also proven useful for
describing a variety of possible singlet ground states of quantum
spin systems in the thermodynamic limit, including resonating va-
lence-bond states and valence-bond solids.

Valence bonds can also be used for Monte Carlo simulations, as
first shown in the context of variational Monte Carlo by Liang,
Douçot and Anderson in 1988 [1]. More recently, Sandvik [2] has
introduced a projector Monte Carlo method known as valence-
bond Monte Carlo (VBMC) which can be used to efficiently sample
ground states of quantum spin systems directly from the valence-
bond basis.

In this proceedings we describe some details of the methods
used in our recent work on VBMC simulations of both uniform
and random spin-1/2 antiferromagnetic Heisenberg chains and
the closely related 1 + 1 dimensional quantum Q-state Potts mod-
els [3]. One motivation for this work is that for certain values of Q
these models describe interacting chains of non-Abelian anyons
[4], exotic quasiparticle excitations which are thought to arise in
certain fractional quantum Hall states [5]. The results presented
here are all for the case of uniform models (i.e., with no disorder)
for which a number of exact results are known which can be used
to benchmark the method.
B.V.
2. Hilbert space and models

We begin by describing the valence-bond basis for a chain of N
spin-1/2 particles. This basis is made up of valence-bond states—
states in which all N particles are paired up to form N=2 valence
bonds. Fig. 1a shows two (normalized) valence-bond states jai
and jbi. Both these states are examples of non-crossing valence-
bond states, meaning that no two valence-bonds cross each other,
or, equivalently, that the total spin of all the particles between any
two particles connected by a valence bond must be 0.

For ordinary spin-1/2 particles the set of non-crossing valence-
bond states forms a complete and linearly independent basis span-
ning the space of all total spin 0 states [6]. The number of these
non-crossing states, and hence the dimensionality of the total spin
0 Hilbert space, grows asymptotically as 2N for large N, as one
would naturally expect for N spin-1/2 particles.

One price to be paid for doing numerical calculations with the
valence-bond basis is that it is a nonorthogonal basis. The rule
for determining the overlap of any two valence-bond states is
shown in Fig. 1b—one simply overlays the two valence-bond con-
figurations and counts the number of loops formed, Nloops. The
overlap is then hajbi ¼ dNloops�N=2, where for spin-1/2 particles, d = 2.

When d – 2 the Hilbert space spanned by non-crossing valence-
bond states is still perfectly well defined provided d P 1,
although it no longer describes a system of ordinary spin-1/2 par-
ticles. For certain values of d, specifically when d ¼ 2 cos p

kþ2, where
k is a positive integer, this Hilbert space can be interpreted physi-
cally as describing the ‘topological charge 0’ sector of a system of N
non-Abelian anyons described by suð2Þk Chern–Simons–Witten
theory [5]. For these special values of d, the non-crossing va-
lence-bond states are no longer linearly independent and the
dimensionality of the Hilbert space for N particles can be shown
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Fig. 1. (a) Two normalized non-crossing valence-bond states jai and jbi in which
pairs of particles (solid circles) are connected by valence bonds (solid lines). (b) To
determine the overlap of these states one overlays the two valence-bond config-
urations and counts the number of closed loops, Nloops . The overlap is then
hajbi ¼ dNloops�N=2, where d = 2 for the case of spin-1/2 particles.
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to grow asymptotically not as 2N but as dN . The quantity d is known
as the quantum dimension of the particles [7].

Such suð2Þk anyons are thought to arise physically in certain
experimentally observed fractional quantum Hall states, notably
the state with Landau-level filling fraction m ¼ 5=2 (corresponding
to k = 2) and, possibly, the m ¼ 12=5 state (corresponding to k = 3)
[5].

Having defined the relevant Hilbert spaces we now turn to
the model Hamiltonians studied here. To define these models
we first describe the action of a nearest-neighbor singlet projec-
tion operator in the valence-bond basis. Let P0

i denote the sin-
glet projection operator acting on sites i and iþ 1. Fig. 2a
shows a useful diagrammatic representation of this operator.
Fig. 2b uses this representation to illustrate the two distinct
cases which can occur when acting on a valence-bond state with
P0

i . Either one applies the projection operator to two sites which
are connected by a valence bond, in which case the projection
operator has no effect on the state, or one acts on two sites
which are each connected to different sites by valence bonds,
in which case the projection operator forms a singlet between
the two particles it acts on, as well as the two particles con-
nected to them, and gives an overall factor of 1=d.

The Hamiltonians we consider here all have the form

H ¼ �
X

i

P0
i : ð1Þ

For ordinary spin-1/2 particles with d = 2, the singlet projection
operator can be expressed as P0

i ¼ 1
4� Si � Siþ1 and (1) corresponds

to an antiferromagnetic nearest-neighbor Heisenberg chain. More
generally, for arbitrary d, one can readily check that the operators
Ui ¼ dP0

i satisfy the so-called Temperley–Lieb algebra [8],

U2
i ¼ dUi;

UiUi�1Ui ¼ Ui;

½Ui;Uj� ¼ 0; ji� jj > 1: ð2Þ
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Fig. 2. (a) Diagrammatic representation of a singlet projection operator and (b)
action of two projection operators on a given valence-bond state. In the first case
(top), the loop formed introduces a factor of d leading to an overall factor of
1
d� d ¼ 1. In the second case (bottom), no loop is formed and the overall factor is 1

d.
This algebra appears in the study of the 2-dimensional Q-state
Potts model with Q ¼ d2, and as a consequence it can be shown
that the models (1) are equivalent to the 1 + 1 dimensional quan-
tum Q-state Potts models [9]. Furthermore, for the special values
d ¼ 2 cos p

kþ2 these models correspond to a sequence of conformally
invariant Andrews–Baxter–Forrester [10] models with central
charges ck ¼ 1� 6=ðkþ 1Þðkþ 2Þ [11]. As stated above, these mod-
els can be thought of as describing chains of interacting non-Abe-
lian anyons [4].
3. Valence-bond Monte Carlo

The basic idea behind VBMC is to act on a particular valence-
bond state jSi repeatedly with �H in order to project out the
ground state. The results of this projection after n iterations can
be expressed as follows:

ð�HÞn Sj i ¼
X

i1 ;...;in

P0
i1
� � �P0

in

�����S
+
: ð3Þ

Since acting on a non-crossing valence-bond state yields an-
other non-crossing valence-bond state (see Fig. 2b), it follows that:

P0
i1
� � �P0

in jSi ¼ ki1 ;...;in jai; ð4Þ

where jai is a non-crossing valence-bond state with the same norm
as jSi and ki1 ;...;in ¼ d�m, where m is the number of time a projection
operator acts on two sites which are not connected by a valence
bond in the process of projecting jSi onto the state jai. Fig. 3 shows
diagrammatic representations for two different terms of the form
(4) with N = 12 and n = 6 (in our simulations we study system sizes
up to N = 1024 and take n = 20N).

In the end the projection (3) leads to an expression for the
ground state jwi of the form

jwi ¼
X

a
wðaÞjai: ð5Þ

In VBMC one samples the valence-bond states jai contributing
to jwi with probability wðaÞ=

P
bwðbÞ by updating the sequence of

projection operators P0
i1
; . . . ;P0

in using the usual Metropolis meth-
od. One such Monte Carlo update is shown in Fig. 3.

Given any observable O with expectation values OðaÞ ¼ hajOjai
in the non-crossing valence-bond states jai, VBMC can be used to
compute the average hOi ¼

P
awðaÞOðaÞ

�P
awðaÞ for any state jwi

of the form (5), provided wðaÞP 0 (which is the case here). In what
follows, angle brackets will always denote this average, though it
should be noted that hOi will in general not be equal to the true
expectation value hwjOjwi=hwjwi, both because the valence-bond
states are nonorthogonal and because the weight factors wðaÞ are
amplitudes and not probabilities. Of course the true quantum
expectation value of any operator can be computed by VBMC if
one carries out the projection on both the bra state and the ket
state [2]. However, here we focus on those quantities which can
be calculated efficiently using the ‘‘one-sided” VBMC described
above.
4. Results

4.1. Ground state energy

One quantity which is easily computed using one-sided VBMC
is the ground state energy E0. The procedure given in [2] for calcu-
lating E0 for spin-1/2 systems can be trivially generalized for arbi-
trary d and leads to the following expression:
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Fig. 3. Diagrammatic representations of the action of two sequences of singlet projection operators on a given starting valence-bond state. In each diagram the resulting
valence-bond state jai is determined by the open loops which terminate at the top of the diagram and the amplitude ki1 ;...;i6 is the product of the factors listed on the right of
the diagram. Each of these factors is either 1 or 1=d, depending on whether the corresponding projection operator, listed on the left of the diagram, forms a closed loop or not.
The two diagrams shown can be viewed as ‘before’ and ‘after’ pictures for a single Monte Carlo update in VBMC in which the third projection operator from the bottom is
shifted from P0

4 to P0
9 and the update is accepted or rejected according to the usual Metropolis rule. The quantity nL which is used to compute the valence-bond entanglement

entropy (see text) is defined to be the total number of bond leaving a given block of L sites (red rectangle). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Here, wi is equal to 1 if sites i and iþ 1 are connected by a valence
bond and 1=d if they are not for a given valence-bond state jai, and,
as described above, the angle brackets denote an average over these
valence-bond states weighted by the amplitudes wðaÞ.

In fact, the ground state energies of the models (1) can be found
exactly. This can be seen by noting that for any d the Temperley–Lieb
operators can be represented using spin-1/2 operators as

Ui ¼ 2 Sx
i Sx

iþ1 þ Sy
i Sy

iþ1

� �
þ d 1=4� Sz

i Sz
iþ1

� �
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

=4
q

Sz
iþ1 � Sz

i

� �
[9].

For the case of open boundary conditions the models (1) can then
be mapped onto spin-1/2 XXZ chains with external (non-Hermitian)
fields applied to the two ends (the staggered field term in the
expression for Ui cancels in the ‘‘bulk” of the chain). In the thermo-
dynamic limit, the ground state energies will not depend on bound-
ary conditions, and the values of E0 for the models (1) with periodic
boundary conditions should be the same as that for the correspond-
ing XXZ models. Using the expression for the ground state energies
of the XXZ models found using Bethe ansatz by Yang and Yang
[12] it is straightforward to obtain the following expression for the
ground energies of the models (1):

E0

N
¼ d2 � 4

4d

Z 1

�1
dx
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Fig. 4. Ground state energy per site E0=N as a function of quantum dimension d. The
solid red line is the exact Bethe ansatz result, and the blue squares are the results of
our VBMC simulations (error bars are smaller than symbol size). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 4 shows the ground state energies we obtained by evaluat-
ing the expression (6) by VBMC for d ¼ 2 cos p

kþ2 with k = 2, 3, 4, 5, 6
and 1. The red line is the exact energy (7) as a function of d. The
fact that our numerical results clearly agree with the exact Bethe
ansatz results should be seen as evidence that VBMC can indeed
be used to simulate the models (1) with arbitrary d.

4.2. Bond length distribution and valence-bond entanglement

Another quantity which is natural to compute using one-sided
VBMC is the so-called valence-bond entanglement entropy
[13,14]. If nL is defined to be the total number of bonds leaving a
contiguous block of L sites in a given valence-bond state jai (see
Fig. 3) then the valence-bond entanglement entropy is defined to
be SðLÞ ¼ hnLi. While this quantity was originally only defined for
spin-1/2 systems, the definition clearly generalizes to the models
considered here for arbitrary values of d, as first noted by Jacobsen
and Saleur [15]. In this same paper, Jacobsen and Saleur also ob-
tained analytic results for the L� 1 scaling of S(L). For all d 6 2
they found that S(L) scales logarithmically with L with a d depen-
dent coefficient. It should be noted that this exact result was based
on a mapping to a long-wavelength field theoretic description of
the models, and so it is worthwhile testing this prediction
numerically.

Before describing our results for S(L), we note that this quantity
is closely related to the bond-length distribution, P(l), for valence
bonds. This distribution is defined to be PðlÞ ¼ hbli=ðN=2Þ, where
bl is the number of valence bonds of length l in a given valence-
bond state jai. It is readily shown [16] that P(l) is related to S(L) by,

SðLÞ ¼ 2
XN

l¼1

PðlÞminðl; LÞ: ð8Þ

(Note that PðlÞ ¼ 0 for even l.) This expression, together with the
result of [15] that S(L) scales logarithmically with L for d 6 2 im-
plies that, for these values of d, P(l) should follow an inverse-square
power law for l� 1.

Fig. 5 shows our VBMC results for S(L) and P(l) for the cases
d ¼

ffiffiffi
2
p

(corresponding to the critical one-dimensional transverse
field Ising model) and d = 2 (corresponding to the spin-1/2 antifer-
romagnetic Heisenberg chain). The log–log plots of P(l) vs. l clearly
demonstrate the predicted inverse-square power law dependence
for the bond-length distribution. The semi-log plots of S(L) also
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obtained in [15]. Results are for chains with N = 1024 sites and the parameter n is taken to be 20N.
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show the expected logarithmic scaling of the valence-bond entan-
glement entropy, for L� 1.

5. Conclusions

To summarize, we have shown that the VBMC method of
Sandvik [2] can be straightforwardly generalized to study the
1 + 1 dimensional quantum Qð¼ d2Þ-state Potts models. For
d ¼ 2 cos p

kþ2 these models describe chains of interacting non-Abe-
lian anyons, exotic quasiparticle excitations believed to exist in
certain experimentally observed fractional quantum Hall states
[4,5]. The ground state energies, bond-length distributions and
valence-bond entanglement entropies of these models were com-
puted using VBMC and compared to various known exact results.
This work sets the stage for our recent VBMC study of the effect
of disorder on these models [3].
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