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Anisotropic Spin Exchange in Pulsed Quantum Gates

N.E. Bonesteel and D. Stepanenko
Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310

D.P. DiVincenzo

IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598
(Received 2 July 2001; published 30 October 2001)

We show how to eliminate the first-order effects of the spin-orbit interaction in the performance of a
two-qubit quantum gate. Our procedure involves tailoring the time dependence of the coupling between
neighboring spins. We derive an effective Hamiltonian which permits a systematic analysis of this
tailoring. Time-symmetric pulsing of the coupling automatically eliminates several undesirable terms in
this Hamiltonian. Well chosen pulse shapes can produce an effectively isotropic exchange gate, which
can be used in universal quantum computation with appropriate coding.
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The exchange interaction between spins is a promis-
ing physical resource for constructing two-qubit quantum
gates in quantum computers [1-5]. In the idealized case of
vanishing spin-orbit coupling, this interaction is isotropic,
and any Hamiltonian describing time-dependent exchange
between two spin-1/2 qubits, Hy(¢) = J(£)S; - S5, com-
mutes with itself at different times. Thus, the resulting
quantum gate depends on J(z) only through its time in-
tegral —a convenient simplification, particularly because,
when carrying out quantum gates, the exchange interac-
tion should be pulsed adiabatically on time scales longer
than /i/AE, where AE is a typical level spacing associated
with the internal degrees of freedom of the qubits [3]. In
addition, isotropic exchange alone has been shown to be
sufficient for universal quantum computation, provided the
logical qubits of the computer are properly encoded [6,7].

Given the potential advantages of isotropic exchange for
quantum gates, it is important to understand the effect of
the inevitable anisotropic corrections due to spin-orbit cou-
pling. When these corrections are included, the Hamilto-
nian describing time-dependent exchange is

H(t) = J@)[S1 - S2 + A(1)], (1)
where
A@)=B@1) - (S1 X S) + 8 -'(1) - S,. (2

Here B(t) is the Dzyaloshinski-Moriya vector, which is
first order in spin-orbit coupling, and W'(¢) is a symmet-
ric tensor which is second order in spin-orbit coupling
[8]. Although these corrections may be small, they will,
in general, not be zero unless forbidden by symmetry.
For example, Kavokin has recently estimated that B(r)
could be on the order of 0.01 for coupled quantum dots in
GaAs [9].

In this Letter, we construct the quantum gates produced
by pulsing H(z). This is nontrivial because H(z) typi-
cally does not commute with itself at different times. We
represent the resulting gates using an effective Hamilto-
nian H (), which we derive perturbatively in powers of the
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spin-orbit coupling. H (¢) is simple to work with because it
does commute with itself at different times. As an applica-
tion of this effective Hamiltonian, we use it to tailor pulse
forms that effectively eliminate any first-order anisotropic
corrections.

The quantum gate obtained by pulsing a particular H(¢)
is found by solving the time-dependent Schrédinger equa-
tion i%l‘l’(z‘)) = H(t)|¥(¢)), where |W(z)) is the state
vector describing the two spin-1/2 qubits (here, and in
what follows, i = 1). In general this problem cannot be
solved analytically. However, since we expect spin-orbit
coupling to be small, it is natural to attempt a perturbative
solution in powers of B(r) and II'(¢). To do this, it is first
necessary to solve the unperturbed [A(7) = 0] problem
exactly. This corresponds to pulsing the isotropic exchange
interaction, for which the unitary time evolution operator
at time ¢ is

Up(t) = Texp<—i f_; J(t)S: - S, dt’)
= exp[—ix(1)S1 - S2], 3)
where
x(t) = f:o J(¢')dr'. 4)

Here T is the usual Dyson time ordering, and the sec-
ond equality in (3) follows from the fact that isotropic
exchange commutes with itself at different times. The un-
perturbed quantum gate produced by a full pulse is then
Up(t — ) = exp(—iAS; - S,), where A = [~ J(r)dt
is the pulse strength. This is a well studied class of quan-
tum gates [1]. For A = 7 the result is a simple swap, and
for A = /2 it is a “square root of swap” which, in con-
junction with single-qubit rotations, can be used to con-
struct a controlled-not gate [1].

We now consider the effect of the anisotropic cor-
rections A(t). Given the evolution operator for the
unperturbed system, it is possible to recast the problem
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in the interaction plcture by introducing the state
vector | (7)) = UO (1) I\I’(t)> which satisfies the
Schrédinger  equation ld,|‘I’1(t)> =JO) A1) |V, (1)),
where A,(t) = Ug(t)ﬂ(t)Uo(t). A formal expression
for the unitary operator describing a full pulse in this
picture is then

U, = Texp(—i[_i](t)ﬂ,(t) dt).

Expanding the exponential in (5) generates the standard
time-dependent perturbation theory expansion for U; in
powers of A,(z). Returning to the Schrodinger picture,
the unitary operator describing the full quantum gate is
U = exp(—iAS; - Sy)Uy.

Rather than simply carrying out the perturbation expan-
sion for Uy, it is useful to parametrize the resulting quan-
tum gate in terms of an effective Hamiltonian of the form

H() = J(@)(S) - S2 + A), (6)

where the time dependence of J(¢) is the same as in H(z),
and A is independent of time. Unlike H(z), the effective
Hamiltonian H(¢) commutes with itself at different times.
Thus, after a full pulse, H(¢) yields the quantum gate U =
exp[—iA(S; - S» + A)]. Our goal is then to find the
operator A for which U is equal to the quantum gate
produced by a full pulse of H(z).

Because H () is traceless at all times 7, the correspond-
ing unitary time evolution operator has determinant 1, i.e.,
U € SU[4]. Requiring that our effective Hamiltonian pro-
duces the same quantum gate then implies that A must
also be a traceless Hermitian operator. The most general
such operator acting on the Hilbert space of two qubits can
be written

&)

:ﬁ'(81XSZ)+Sl'T'Sz

S =S)+ =S +S), (D

NIQI

where I’ " is a symmetric tensor. This can be seen by not-
ing that A is indeed traceless and Hermitian, and has 15
independent real valued parameters, the number of degrees
of freedom for a 4 X 4 traceless Hermitian matrix.
__ Before proceeding it is instructive to classify the terms in
A according to their symmetry properties under inversion
(S1 < S) and time reversal (S; — —S;). Under inversion
B and @ change sign, while I' and & do not. Since e B(1)
also changes sign under inversion this implies that 8 and
@ are first order in spin-orbit coupling, while I" and 7z are
second order. Under time reversal @ and g change sign,
while 8 and II' are unaffected. We therefore expect that
for time-reversal symmetric pulses, i.e., pulses for which
H(ty — t) = H(t) (where 1y is the center of the pulse), @
and g will vanish.

To determine A for a given pulse, we note that the
requirement that U = U implies

T exp(—i [_O; J(t) A (1) dt)

=T exp(—i [_O:o J() A1) dt) , (8

where A,(1) = Ug(t)ﬁUo(t). Expanding both sides of
(8) to a given order in spin-orbit coupling and equating
matrix elements yields a set of 15 independent equations.
These equations can then be solved for the parameters in
A in terms of J(¢), B(¢), and I'' ().

We have carried out this calculation to obtain the follow-
ing expressions valid to second order in spin-orbit coupling
[i.e., second order in B(¢) and first order in I'(2)]:

1 N : A
m[_wﬁ(t)mn(x(t) - 5)](1‘) dt, (9)

a =

B = Tem /\/2)[ B(1) c0s<x(t) — —>J(t)dt (10)

7= ﬁ J(t1)dn f_l J(12) dio{[ B(11) X B(t2)]cos[x(r1) — x(12)] + 2(@ X B)sin[x(r1)) — x(2)]},  (11)
and
T = [ Ta@i@d+ 3 [ swan [~ e deta.mysilx@ - @), a2
where
Lp(t1,1) = 2[B(1) - B(1) — B — @18ap — [Balt1)Bi(12) + But2)B(11) — 2B, By — 2@a@s].  (13)

The criterion for the validity of these expressions is
that |AB],]A@| < 1, where the factor of A is included
because it is the product AA that enters the unitary op-
erator U. It is then apparent that, for any finite B(r)
and (), our expansion breaks down when A — 27 n for
n = *1,%2 ..., because sin(A/2) — 0 at these points.

207901-2

However, for A — 0, while @ and E may diverge, Aa
and AB will always remain finite, and so, provided SB(r)
and I'(¢) are small, our expansion remains valid in this
limit [10].

As expected from symmetry considerations, we find that
B and @ are first order in spin-orbit coupling, while I'
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and u are second order. It is also readily verified that for a
time-reversal symmetric pulse the integrals (9) and (11) for
«a and m vanish. Thus, these non-time-reversal symmetric
terms are generated only by pulses that are themselves not
time-reversal symmetric.

Given the possibility of using the exchange interaction
alone to perform universal quantum computation [6,7],
which depends crucially on the interaction being as close to
isotropic as possible, a natural questions arises: Is it pos-
sible to ameliorate the effect of spin-orbit induced
anisotropy on exchange-based quantum gates? We show
below that the answer is yes—by carefully shaping
pulses, it is possible to effectively eliminate the first-order
anisotropy terms leaving only a residual second-order
anisotropy.

There are two first-order terms in H(¢), @ and 8. We
have already seen how to eliminate @. By choosing a
time-reversal symmetric pulse both @ and m will vanish
from H(t). Although B cannot similarly be eliminated, for
appropriate pulse forms it can be effectively eliminated by
performing a local rotation in spin space.

Let S, = IR - S, where IR is a rotation matrix con-
structed to eliminate B from H(z) so that

H(t)=J(@)(S; - Sy, +8; - M-8, (14)

where II'' is a symmetric > tensor. The precise form of this
rotation depends on both 8 and II' and cannot be expressed
simply. However, up to second order in 3, it is given by

Ry, = 8ap+ D €areBE — (B 8ap — BoBy)/2+ O(B).
‘ (15)

and this is sufficient for our purpose of eliminating first-
order anisotropy. Using (15) one finds the residual
anisotropy in (14) is, up to second order in S,

— BuBy»)/2+ 0BY. (6

Thus, in this rotated coordinate system the first-order
anisotropy vanishes and all corrections to the isotropic ex-
change interaction are second order in spin-orbit coupling.

The ability to eliminate 8 from H(t) by simply rotating
one qubit with respect to the other indicates a procedure
for eliminating the first-order effects of spin-orbit coupling
in any quantum computer that uses tunable exchange for
quantum gates. Suppose that symmetric pulses are used,
so that @ = 0, and pulse forms are chosen so that B is
the same for all pulse strengths A. Then, if the qubits in
the computer form a linear array, or any arrangement for
which there are no closed loops of qubits connected by
two-qubit gates, it will be possible to define a local spin-
space coordinate system in which the effective interaction
between any two neighboring qubits has the form (14).
While this procedure does not completely eliminate the
anisotropy, it does reduce it from an effect that is first order
in spin-orbit coupling to one that is second order.

T, =T, + (3251119
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To demonstrate how (10) can be used to tailor pulse
shapes that lead to the same B for all pulse strengths A,
consider the family of pulses,

J(1; X)) = Jo(A)sech?[2¢/7(A)], (17)

where Jo(A) and 7(A) are, respectively, the pulse height
and width, and the pulse strength is A = [~ J(1;A) =
Jo(A)7(X). To evaluate (10) it is also necessary to know
the time dependence of B(r). Determining the precise
form of this dependence will require a detailed microscopic
study of the specific realization of the exchange interaction
being considered. Here we take, as the simplest possible
illustrative model, a linear dependence on J(z; A),

B(1) = B1J(1:A), (18)
for which the integral (10) can be performed analytically,
with the result
4Jo(A)

A2

B =B [2 — Acot(A/2)]. (19)
Also, because these pulses are time-reversal symmetric, (9)
gives & = 0.

Equation (19) can be used to exploit the freedom to
choose Jy(A) and 7(A), while keeping Jo(A)7(A) = A, to
shape pulses that keep B fixed for different pulse strengths.
For example, if the pulse parameters for A = 7 (swap) are
fixed to be Jo(77) and 7(r), then, for general A, one should
take

FT Y O 20

o) = Jo(m) 72 2 — Acot(A/2)° (20)
and

r(A) = 7(7) %[2 — Acot(A/2)]. @1

These pulse forms are shown in Fig. 1 for various val-
ues of pulse strength A. Note that, as A increases, the
pulse height decreases. This is because B becomes in-
creasingly sensitive to B(r) with increasing A until, in the
limit A — 277, the pulse height must go to zero if B is to be
kept constant. Although our perturbation expansion for ‘A
breaks down as A — 277, for this example the pulse heights
are chosen so that the parameters in A remain small, and
we are always within the perturbative regime. The pulse
forms defined by (20) and (21) are therefore valid, even
in this singular limit. Of course, in practice, pulses near
A = 27 will be problematic because of the diverging pulse
length.

Once the first-order corrections to H(¢) are eliminated,
the residual second-order anisotropy can be found by first
evaluating (12) and then performing the local rotation to
eliminate 8. As a specific example, consider the special
case for which the form of the pulsed Hamiltonian is

H(t) = J(1)S; - IR(z) - S, (22)
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FIG. 1. Pulse forms tailored to produce the same S for dif-
ferent pulse strengths A for the example described in the text.
Of the pulses shown, the narrowest with the highest peak is for
A = /4. A then increases in increments of /4 as the peak
height decreases until, for the widest pulse with the lowest peak,
A =Tm/4. As A — 27 the pulse height goes to zero.

where IR(¢) is a time-dependent rotation matrix. Such ro-
tated exchange is, in fact, precisely the form of anisotropy
found microscopically when spin-orbit corrections are in-
cluded in the usual Hubbard model treatment of superex-
change [11,12]. It has also been suggested that this form is
appropriate for localized electrons in semiconductors [9].
In the present context, (22) is of interest because, if the
rotation matrix IR(7) were independent of time, our local
rotation scheme would eliminate anisotropy to all orders,
rather than just to first order in spin-orbit coupling. It is
therefore natural to ask to what degree the fact that IR(z)
depends on time spoils this hidden symmetry.

For the particular form of anisotropic exchange in (22),
the symmetric anisotropy term is, to second order in B(r),

Lo (t) = =[B(1)*8us — Ba(t)Br(D)]/2 + O[B(1)*].
(23)

For this W'(z), if we continue to take the pulse form
(17) and B(r) from (18) then the expression (12) can be
evaluated analytically. After performing the local rotation
to eliminate E we find, using (16), that the residual
anisotropy in H(t) is

2
T, = 8130%[)\2 + 6Acot(A/2) — 12]
X (B8a — BiaBiv) + O(BY). (24)

207901-4

Thus even for the rotated exchange (22), if the rotation
depends on time we are still left with residual second-order
anisotropy after a pulse.

In summary, we have studied the effects of anisotropic
corrections due to spin-orbit coupling on quantum gates
produced by pulsing the exchange interaction between two
spin-1/2 qubits. These quantum gates are parametrized
by an effective Hamiltonian that commutes with itself at
different times and produces the same quantum gate as
a given pulse. Expressions for the various parameters in
this effective Hamiltonian are obtained perturbatively in
powers of spin-orbit coupling and used to shape pulses
that effectively eliminate first-order spin-orbit corrections
to quantum gates. The ability to reduce spin-orbit ef-
fects from first order to second order should be useful for
any quantum computing scheme which relies on isotropic
exchange.
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