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A generalized stochastic method for projecting out the ground state of the
quantum many-body Schrödinger equation on curved manifolds is introduced.
This random-walk method is of wide applicability to any second order differen-
tial equation (first order in time), in any spatial dimension. The technique
reduces to determining the proper ‘‘quantum corrections’’ for the Euclidean
short-time propagator that is used to build up their path-integral Monte Carlo
solutions. For particles with Fermi statistics the ‘‘Fixed-Phase’’ constraint
(which amounts to fixing the phase of the many-body state) allows one to
obtain stable, albeit approximate, solutions with a variational property. We
illustrate the method by applying it to the problem of an electron moving on the
surface of a sphere in the presence of a Dirac magnetic monopole.

KEY WORDS: Stochastic or statistical methods; quantum Monte Carlo;
fermion methods; generalized diffusion equation; quantum hell physics.

I. INTRODUCTION

The correlated motion of interacting quantum particles gives rise to a wide
variety of physical phenomena at different length and time scales, spanning
disciplines like chemistry, condensed matter, nuclear, and high energy
physics. Novel complex structures can emerge as a consequence of the
competing multiple-length scales in the problem. Nonetheless, only a
reduced set of interacting problems admits exact closed form solutions (1)

and the use of numerical techniques becomes essential if one is looking for
accurate solutions not subjected to uncontrolled approximations. Among
those techniques, the statistical methods (2) offer the potential to study



systems with large number of degrees of freedom, reducing the computa-
tional complexity from exponential to polynomial growth. Unfortunately,
for fermions (i.e., quantum particles obeying Fermi statistics) the sign
problem plagues all useful stochastic algorithms and causes the variance of
computed results to increase exponentially with increasing number of fer-
mions. (3)

The growing interest in physical systems whose state functions are
defined on a general metric space makes the quantum mechanics of
interacting particles in curved manifolds no longer a mere intellectual
exercise, but one with very practical consequences. Perhaps the most well-
known examples can be found in cosmology (e.g., matter in strong gravi-
tational fields, atomic spectroscopy as probe of space-time curvature (4)),
but the subject is certainly not exclusive to this field. In condensed matter a
very elementary case is provided by a deformed crystal. Less well-known
ones are mesoscopic graphitic microtubules and fullerenes. All these physi-
cal systems are ubiquitous in nature and the crucial role the curvature of
the manifold plays has been confirmed by experimental observations (e.g.
spectrum of collective excitations (5)). Therefore, the development of stable
quantum methods with polynomial complexity in Riemannian manifolds
represents a real challenge for many-body theorists.

The present manuscript deals with the (non-relativistic) many-particle
Schrödinger equation (SE) in a general metric space and its solution using
stochastic techniques. The projector (zero temperature) method we will
introduce uses random-walks (6) to solve this general multidimensional
partial differential equation, second order in space coordinates and first
order in time. The method is not limited to systems on curved manifolds. (7)

Indeed, it can be applied to a wide variety of inhomogeneous systems (e.g.,
inhomogeneous semiconductors with a position dependent effective mass).
The reason for this, as discussed in Section III, is that the quantum correc-
tions to the Green’s function (GF) can be interpreted as being due to those
terms which appear in the generalized diffusion equation describing the
system once each of the derivatives in that equation have been commuted
all the way to the left of each term. This definition of quantum corrections
is quite general and can be applied to any differential equation which is
second order in space and first order in time, regardless of the number of
dimensions or any spatial inhomogeneity in the system.

In Section II we present the formulation of the general problem of
fermions in curved manifolds. For illustration purposes we develop the
formalism for spin-12 particles in the presence of an external electromagnetic
potential. Then, we show how to project out the lowest energy state of a
given symmetry in a manifold with curvature, and discuss the resulting
Fokker–Planck equations for various distribution functions. In Section III
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we derived the relevant propagator and give an interpretation of the
emergent ‘‘quantum corrections’’ in the Euclidean action. The path-integral
solutions are evaluated using Monte Carlo techniques in Section IV. There,
we provide a practical algorithm which emphasizes the changes (with
respect to the standard Diffusion Monte Carlo (DMC) technique) due to
the metric of the manifold. In Section V we apply such computational
implementation to the problem of an electron moving on the surface of a
sphere in the presence of a Dirac monopole. Finally, Section VI sum-
marizes the main findings.

II. FERMIONS ON RIEMANNIAN MANIFOLDS

Notation. Consider a differentiable manifold M of dimension d
(e.g., for the two-sphere S2, d=2) with coordinates ri=(x1

i , ..., xd
i ) defined

on it. If M is a Riemannian manifold, then it is a metric space, with metric
tensor gmn(ri)=gmn(i) (m, n=1, ..., d), such that the distance ds between
two points in M is ds2=gmn(i) dxmi dxni in the usual way. (9) The metric
tensor is positive definite and symmetric gmn=gnm (as we will see, this con-
dition is important to define a probability density distribution), and is a
function of the coordinates ri with the property gmcgcn=d

n
m. Let us consider

the coordinate transformation h: xmi =hm(xŒ1i , ..., xŒdi ). Then, a generic
second order contravariant (Tmn) and covariant tensor (Tmn) transform as

Tmn=
“xmi
“x −ai

“xni
“x −bi

TŒab, Tmn=
“x −ai
“xmi

“x −bi
“xni

T −ab, (1)

respectively. Throughout the paper Einstein’s summation convention is
assumed.

Formulation of the problem. In this article we will be concerned
with finite interacting fermion systems in the presence of an external elec-
tromagnetic potential am(ri)=am(i)=(A(i), f(i)=0) (B=NNA represents
a uniform field, A and f are the vector and scalar potentials, respectively)
whose quantum Hamiltonian (10) for motion on the manifold, in the coor-
dinate representation, is given by H3=H3 0+V1({ri}, {si}) with

H3 0= − DD+i
e(

2m*c
C
N

i=1
[2am(i) “m+g −1/2(i) “m(g1/2(i) am(i))]

+
e2

2m*c2 C
N

i=1
am(i) am(i), (2)

“m=“/“x
m
i , D=;N

i=1 D(i), where D=g −1/2
“m(gmng1/2

“n) is the covariant
Laplace–Beltrami operator and V1 is a potential energy operator. Notice
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that we use the conventional notation where the transformation between
different forms of a given tensor is achieved by using the metric tensor
(e.g., am=gmnan, am=gmnan), and g1/2=`det gmn. This Hamiltonian
characterizes the dynamics of N non-relativistic indistinguishable particles
of mass m*, charge e and spin si=

1
2 in a curved space with metric tensor

gmn, and D=(2/2m*. We have assumed that H3 in curved space has the
same form as in flat space (this amounts to a particular operator ordering
prescription.)

Given the previous ordering, one can rewrite the Hamiltonian above
in terms of the generalized (hermitian) canonical momentum pm=
− i((“m+

1
2 “m(ln g1/2))

H3=
1

2m*
C
N

i=1
g −1/4(i) Pmg1/2(i) gmn(i) Png −1/4(i)+V1({ri}, {si}), (3)

where the kinetic momentum Pm=pm − e
c am. The first term in Eq. 3 repre-

sents the kinetic energy of the system and is the non-relativistic approxi-
mation to the Dirac operator. V1 includes the sum of one and two-body
local interaction terms (and background potential in the case of a charge
neutral system) and Zeeman contribution. The potentials are assumed to be
finite almost everywhere and can only be singular at coincident points
(ri=rj, -i ] j)

We are interested in the stationary solutions of the resulting multidi-
mensional SE

i( “t |YP=H3 |YP, (4)

and will restrict ourselves to Hamiltonians which are time-translation
invariant. In the usual space-spin formalism the N-fermion states charac-
terizing the system, OX | YP=Y(X), and all its first derivatives belong to
the Hilbert space of antisymmetric (with respect to identical particle (ri, si)-
exchanges) square-integrable functionsHN=L2(MN) é C2N, defined as

HN={Y | P1ijY= −Y, and ||Y||=`OY | YP <.}, (5)

where X=(R, S) (R=(r1, ..., rN) and S=(s1, ..., sN) are discrete spin
variables) and P1ij represents the permutation of the pairs (ri, si) and
(rj, sj). (11)

Since the system Hamiltonian can be written as H3=H3R(R)+H3 S(S),
the last term representing the Zeeman coupling, the many-body wave
function Y(R, S) can be expressed as a tensor product of a coordinate and
a spin function (or a linear combination of such products), Y(R, S)=
F(R) é X(S). We want to construct N-fermion eigenstates of H3 , Y, that

452 Melik-Alaverdian et al.



are also eigenfunctions of the total spin S2 (S2 Y(X)=(2 s(s+1) Y(X),
such that S=;N

i=1si), and this is always possible since [H3 , S2] = 0. Thus,
the configuration part F(R) must have the right symmetry in order to
account for the Pauli principle. It turns out that a coordinate state
F(r1, ..., rk, rk+1, ..., rN) which is symmetrized according to the Young
scheme (12) and has total spin s=N

2 − k will be antisymmetric in the variables
r1, ..., rk, and antisymmetric in the variables rk+1, ..., rN.

Quantum Projection on Curved Manifolds. For a given total spin
s we are thus left with the task of solving the stationary many-body SE,
H3RF(R)=EF(R), where F(R)=OR | FP satisfies the symmetry con-
straint discussed above. In particular, we are interested in the zero temper-
ature properties of this quantum system, i.e., its ground state (GS) proper-
ties. To this end, we study the Euclidean time evolution of the state F, i.e.,
we analytically continue Eq. 4 to imaginary time (Wick rotation, t Q − it()

−“tF=[H3R − ET] F, (6)

whose formal solution F(t)=U1 (t) FT=exp[ − t(H3R − ET)] FT is used to
determine the limiting distribution

F0 3 lim
tQ.
F(t), (7)

which is the largest eigenvalue solution of the evolution operator U1 (t)
compatible with the condition OF0 | FTP ] 0, where FT is a parent state
and ET is a suitable (constant) energy that shifts the zero of the spectrum
of H3R.

We would like to solve the multidimensional differential equation
Eq. 6 using initial value random walks. In this way, starting with an initial
population of walkers (whose state space is MN) distributed according to
p(R, t=0)=FT (FT must be positive semi-definite), the ensemble is
evolved by successive applications of the short (imaginary) time propagator
U1 (y) (y=t/M, and M is the number of time slices) to obtain the limiting
distribution F0. Then, we can introduce a ‘‘pseudo partition function’’

Z=OFT | U1 (t) FTP (8)

in terms of which we can determine the GS energy E0 as

E0 − ET=lim
tQ.

−
1
t
lnZ. (9)

Similarly, other GS expectation values, e.g., OF0 | O1F0P, can be obtained as
derivatives (with respect to a coupling constant J) of a modified pseudo
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partition function ZJ whose evolution operator has a modified Hamilto-
nian, H3R+JO1.

In order to reduce statistical fluctuations in the measured quantities
(i.e., observables) one can guide the random walk with an approximate
wave function, FG, which contains as much of the essential physics as pos-
sible (including cusp conditions at possible singularities of the potential V1).
Then, instead of sampling the wave function F(t) one samples the distri-
bution f̃(R, t)=F(t) FG (properly normalized) with the initial time condi-
tion f̃(R, t=0)=FTFG. Expectation values of operators O1 (observables)
that commute with the Hamiltonian have a particularly simple form for
guided walkers. For instance,

lim
tQ.

OFT | O1U1 (t) FTP

OFT | U1 (t) FTP
=OF −1

G O1FTPf̃(tQ.), (10)

where the average OAPf̃ stands for

OAPf̃=
>MN wf̃(R, t Q.) A(R)

>MN wf̃(R, t Q.)
, (11)

f̃(R, t Q.) is the long-time stationary probability of the system, and the
(invariant) volume element w is given by the dN-form (13)

w=5D
N

i=1
g1/2(i)6 dx1

1N · · ·dxd
1N · · ·dxd

N. (12)

It is important to stress that FT and the guiding function FG can, in prin-
ciple, be different functions, although most of the practical calculations use
the same function. It turns out that this importance sampling procedure is
decisive to get sensible results when the potential V1 presents some sin-
gularities.

Notice, however, that the quantum Hamiltonian H3 breaks explicitly
time-reversal symmetry, meaning that in general F will be a complex-
valued function. Even if F were real-valued, because it represents a fermion
wave function it can acquire positive and negative values (the case where
X(S) is totally antisymmetric being the exception). Then, it is clear that we
cannot in principle interpret F or f̃ as a probability density.

For reasons that will become clear later (14) we will be interested in
sampling the probability density f̄(R, t)=|f̃(R, t)|. The generalized diffu-
sion equation in curved space for the importance-sampled function f̄ can
be derived directly from Eq. 6 with the result

“tf̄=D C
N

i=1
[g −1/2(i) “m(gmn(i) g1/2(i)(“nf̄ − f̄Fn))] − (EL − ET) f̄, (13)
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where the drift velocity Fn(R)=“n ln F
2
G, and the ‘‘local energy’’ of the

effective (‘‘Fixed-Phase’’) Hamiltonian ĤFP is EL(R)=F −1
G ĤFPFG with

ĤFP= − DD+D C
N

i=1

5 (“mq(R) −
e
(c

am(i))(“mq(R) −
e
(c

am(i))6+V1(R), (14)

where q(R) is the phase of the many-body state F, i.e., F=|F| exp[iq]. (15)

The differential equation satisfied by the distribution function f̄ is formally
equivalent to the one describing Brownian motion on a general manifold
(including generation and recombination processes), and corresponds to a
Kramers-Moyal expansion with exactly two terms. In fact, we can rewrite
the equation above as a Fokker–Planck equation for dN continuous
stochastic variables {ri}i=1, · · · , N

“tf̄={LaFP − (ĒL − ET)} f̄, (15)

where the (time-independent) Fokker–Planck operatorLaFP is given by

LaFP•=C
N

i=1
[“m“n(D̄mn(i) •) −“m(D̄m(R) •)]. (16)

The diffusion matrix (contravariant tensor) D̄mn and drift D̄m (which does
not transform as a contravariant vector) are given by

D̄mn=Dgmn (17)

D̄m=D̄mnFn+“nD̄mn− D̄mnCsns, (18)

where Csmn is the Christoffel symbol of the second kind

Csmn=
1
2 gsr(“mgnr+“ngmr −“rgmn) (19)

Csns=
1
2 “n ln g, (20)

and the modified local energy

ĒL=EL+D̄mnCsmsFn+“m(D̄mnCsns). (21)

Notice, however, that singularities in the ‘‘quantum corrections’’ (16) to the
local energy EL due to the metric, can induce very large fluctuations in ĒL.
Moreover, the probability density f̄ does not transform as a scalar func-
tion (f̄(R, t) w̄=f̄(RŒ, t) w̄Œ, where the primes represent the transformed
coordinates and w̄=dx1

1N · · ·dxd
1N · · ·dxd

N is a volume element in MN).
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Therefore, it is more convenient to work with a probability density that is a
scalar

f(R, t)=5D
N

i=1
g1/2(i)6 f̄(R, t). (22)

The differential equation f satisfies is of the form Eq. 15 with bar quanti-
ties replaced by unbar ones (e.g. LaFP QLFP). It turns out that Dmn=D̄mn

and the drift (which is not a tensor)

Dm=DmnFn+“nDmn+DmnCsns. (23)

Note that in this case the quantum correction to the local energy vanishes.
Furthermore, if the metric is diagonal, i.e., gmn=g1/2dmn, then the correction
to the flat space drift also vanishes, i.e., “nDmn+DmnCsns=0, and Dm=
Dg −1/2Fm. This last remark is quite important, specially for d=2 where it
is always possible to choose a coordinate system (ri=(t1i , t

2
i)) where the

metric tensor is diagonal (conformal gauge (17)), and use the conformal
parameterization (zi=t

1
i+it2i , z̄i=t

1
i − it2i ) which greatly simplifies the

resulting expressions (see Section V).

III. DERIVATION OF GREEN’S FUNCTION

The generalized Fokker–Planck Eq. 15 describes the time evolution of
a distribution function f which is completely determined by the distribu-
tion function at t=t0=0. In this sense it describes a continuous stochastic
process that is Markovian. Because it represents a Markov process, the
conditional probability that if the system configuration is R at time t=0 it
will jump to RŒ in time t (importance-sampled GF) G(RQRŒ; t) contains
all information about the process, and the probability densities f(R, t+y)
and f(R, t) are connected by

f(RŒ, t+y)=F
M

N
wG(RQRŒ; y) f(R, t), (24)

where the transition probability G(RQRŒ; y) is formally given by

G(RQRŒ; y)=F2G(RŒ)ORŒ| exp[ − y(ĤFP − ET)] |RP F2 −1
G (R), (25)

with

F2G(R)=5D
N

i=1
g1/2(ri)6 FG(R), (26)

and boundary condition G(RQRŒ; 0)=[<N
i=1 g −1/2(i)] d(R−RŒ).
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Iteration of (24) allows one to express the evolution of f(RŒ, t) from
the initial distribution f(R, t=0) in terms of the short-time GF as

f(RŒ, t)=F
M

N
wM−1 · · ·F

M
N
w0G(RM−1 QRM; y) · · · G(R0 QR1; y)f(R0, 0),

(27)

where t=My; R0=R and RM=RŒ. To use (27) as the basis of a numeri-
cal simulation we require an expression for the short-time GF which, to
O(y2), is given by

G(RQR −; y)=Gb(RQR −; y) D
N

i=1
G0

i(RQR −; y) (28)

where

Gb(RQR −; y)=exp 5 − y 1[EL(R)+EL(R −)]
2

− ET
26, (29)

is the short-time GF associated with the local energy term in (15) and
G0

i(RQR −; y) is the GF for the ith particle associated with the generalized
drift and diffusion terms. The form of this GF can be obtained by solving
the following differential equation corresponding to the diffusion of a
single particle

“m“n(Dmn(r) G0(r, y)) −“m(Dm(r) G0(r, y))=“yG0(r, y), (30)

subject to the boundary condition G0(r, y=0)=g −1/2(r) dd(r) indicating
that, for what follows, the prepoint is the origin 0.

It is, of course, possible to treat (30) as a generalized diffusion equa-
tion on a flat space in which the diffusion ‘constant’ Dmn(r) and the drift
velocity Dm(r) depend on position. One can then introduce the usual flat-
space Fourier transform of the GF

G̃0(k, y)=F ddr G0(r, y) e ik · r, (31)

which satisfies the equation

1
(2p)d F ddk −( − kmknD̃mn(k −)+ikmD̃m(k −)) G̃0(k−k −, y)=“yG̃0(k, y) (32)
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with boundary condition G̃0(k, y=0)=g −1/2(0), (all Fourier transformed
functions are indicated by tildes). Because G̃0(k, y) is independent of k at
y=0, for short times y

G̃0(k −, y)=G̃0(k, y)+O(y). (33)

Substituting (33) into (32) and performing the k − integration then gives

( − kmknDmn(0)+ikmDm(0)) G̃0(k, y)+O(y)=“yG̃0(k, y), (34)

which, upon Fourier transforming back to real space, yields

Dmn(0) “m“nG0(r, y) − Dm(0) “mG0(r, y)+O(y)=“yG0(r, y). (35)

The space dependent quantities Dmn and Dm are now constants, evaluated at
the origin, i.e., the prepoint. The price for this simplification is that the left
hand side of (35) is now only accurate to O(y). However, because of the
time derivative on the right hand side of (35), this is sufficient to obtain G0

to the required accuracy of order O(y2).
Equation (35) now has the form of a standard ‘drift and diffusion’

equation and the GF can be obtained by the usual methods. Using the fact
that Dmn=Dgmn we thus obtain the following expression for G0

i(RQR −; y),

G0
i(RQR −; y)=1 1

4pDy
2d/2

× exp 5 − (xŒmi − xmi − yDm(R)) gmn(ri)(xŒni − xni − yDn(R))
4Dy

6, (36)

that is, a Gaussian distribution with variance matrix 2Dmn(R) and mean
xmi +yD

m(R).
The form of the GF given in (36) is precisely that which is required for

performing a numerical simulation of (15). This is because the diffusion
and drift velocity are evaluated explicitly at the prepoint. While one might
naively think that these quantities could, to sufficient accuracy, just as well
be evaluated at the postpoint, x −i, this is not the case – replacing R with R −

in either the diffusion or drift velocity leads to unacceptable O(y) correc-
tions to the short-time GF (this GF is not symmetric in the exchange of the
arguments R and R − since it is not the GF of an Hermitian operator).
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IV. COMPUTATIONAL IMPLEMENTATION

In this Section we present an algorithm for computing the GS proper-
ties of quantum many-body systems defined on a curved manifold with
general metric gmn. Since most parts of the algorithm follow closely the
standard DMC method, described for instance in ref. 18, we will simply
emphasize their main differences. Figure 1 shows a schematic flow diagram
of the algorithm described in this Section.

As mentioned in the Introduction GS expectation values are obtained
by averaging over a large number of particle configurations generated
according to a certain limiting probability distribution p(R, t Q.). There
is some freedom in the choice of this distribution p(R, t), however, to
reduce statistical fluctuations in the observables to be computed it is more
efficient to use the so-called importance-sampled distribution f̄(R, t), which
is the product of the absolute value of the solution of the time-dependent
SE, F(R, t), and some positive function FG(R) that is the best available

Fig. 1. A schematic of the Fixed-Phase method for curved manifolds with general metric gmn.
See the text for notation.
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approximation to the modulus of the GS eigenfunction. In a curved mani-
fold, on the other hand, it is more convenient to work with the modified
importance-sampled distribution f(R, t), defined as a product of the con-
ventional importance-sampled distribution f̄(R, t) and the metric (see
Eq. 22).

The propagation of particle configurations in time y is determined by
the conditional probability G(RQR −; y), whose separation into a diffusion
(plus drift) and branching parts (see Eq. 28) makes it very simple to
simulate numerically. The Gaussian term represents propagation according
to the equation xŒmi =xmi +yD

m(R)+`y g , where g is a Gaussian random
variable with zero mean and a variance of 2Dmn=2Dgmn. The effect of the
term yDm(R) is to superimpose a drift velocity on the random diffusion
process so that particle configurations are directed towards regions of con-
figuration space where FG(R) is large. The move from R to R − is then
accepted with probability A(RQR −; y) —min(1, W(R, R −; y)), where

W(R, R −; y) — 5D
N

i=1

g(r −i)
g(ri)
6: FG(R −)
FG(R)
:2 G(R −QR; y)

G(RQR −; y)
. (37)

The branching term Gb(RQR −; y) in Eq. 29, determines the creation and
annihilation of configurations (walkers) at the point R − after a move. If the
size of the ensemble of walkers at any time t is defined as P(t)=
>MN w̄f(R, t) then, its rate of change is given by

“tP(t)= −F
M

N
w̄[EL(R) − ET] f(R, t). (38)

Therefore, if the local energy EL(R) is a smooth function of R, and the
trial energy ET is suitably adjusted, the size of the ensemble of walkers will
remain approximately constant as the configurations propagate. In partic-
ular, if the local energy is constant and equal to ET then the fluctuations in
the ensemble size will vanish. To ease notation, in the rest of the paper we
will only consider the standard situation FT=FG. In such a case, GS
expectation values of a generic observable O1 will be computed as

lim
tQ.

OFG | O1U1 (t) FGP

OFG | U1 (t) FGP
=OF −1

G O1FGPf(tQ.)

=F
M

N
w̄

f(R, t Q.)
P(t Q.)

[F −1
G O1FG](R). (39)

460 Melik-Alaverdian et al.



V. EXAMPLE: ELECTRON-MONOPOLE IN S2

As an example application of the method we have developed in the
previous Sections, consider the problem of a single particle of charge e,
mass m* and vector position r=(x1, x2, x3) in R3 confined to the surface of
a sphere of radius R centered at the origin (M=S2, N=1) moving in the
presence of the vector potential of a Dirac monopole at the origin. This
problem can be solved in closed form and so constitutes an ideal model
system for testing the accuracy of the stochastic solutions we can obtain
using the formalism developed in previous Sections.

The Pauli Hamiltonian for a spinless particle in S2 is

H3R=
|r̂N ( − i(N− (e/c) A)|2

2m*
=

|L|2 −(2S2

2m*R2 , (40)

where r̂=r/R, and A is the monopole vector potential (NNA=Br̂, B being
the strength of the radial field). Therefore, the total number of flux quanta
2S piercing the surface of the sphere is given by 2S=4pR2B/f0, where
f0=hc/|e| is the elementary flux quantum. Following Wu and Yang (20) the
angular momentum operators are defined as L=rN ( − i(N− (e/c)A)+
(Sr̂. If we choose a gauge where the vector potential is A= − BR cot hĵ,
then the Hamiltonian, Eq. 40, can be written as

H3R=
D
R2
5 −“2h−

1
sin2h

“
2
j− cot h“h+2iS

cot h
sin h

“j+S2 cot2 h6, (41)

in terms of the usual spherical angles h and j ( 0 [ h [ p, 0 [ j < 2p, see
Fig. 2.) The eigenstates of this Hamiltonian are monopole harmonics
(normalized to 1) (20)

YS, n, m=NSnm( − 1)S+n−m exp[ − iSj] uS+mvS−mF(|u|, |v|),

F(|u|, |v|)= C
n

k=0
( − 1)k 1n

k
21 2S+n

S+n − m − k
2 (vv̄)n−k (uū)k,

NSnm=12S+2n+1
4p

(S+n − m)!(S+n+m)!
n!(2S+n)!

21/2, (42)

where u=cos(h/2) exp[ij/2] and v=sin(h/2) exp[ − ij/2] are spinor
coordinates, n is the Landau level quantum number, and m=
−S− n, −S− n+1,..., S+n is the (Lx3) angular momentum quantum
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Fig. 2. Spherical and stereographic projection coordinates. R is the radius of the two-sphere
S2. Notice that points on the sphere are projected onto the complex plane (z ¥ C) from the
southern pole.

number which labels degenerate states within the n th level. In the sum
above the binomial coefficient (ab) vanishes when b > a or b < 0. The
energy of a state with Landau level quantum number n is given by

En=12n+1+
n(n+1)

S
2 (wc

2
, (43)

where wc is the cyclotron frequency (wc=|e| B/m*c).
The electron-monopole problem can be reformulated in a way consis-

tent with the notations introduced in the previous Sections. First, instead of
the spherical angles h and j we introduce new coordinates z and z̄, where
z=tan(h/2) exp[ − ij], and z̄ is its complex conjugate. Geometrically, this
transformation can be viewed as a stereographic projection of the sphere
onto the plane, as illustrated in Fig. 2. The Hamiltonian can then be
rewritten as

H3R=
i

m*
g −1/4(pz −Ā(z))(pz̄ −A(z)) g1/4+

DS

R2 , (44)

in terms of the (non-hermitian) canonical momenta pz and pz̄, and

A(z)= − i
(S

2
z 1 1 − |z|2

|z|2(1+|z|2)
2 , (45)
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with metric tensor

gmn(z, z̄)=R 0
(1+zz̄)2

2R2

(1+zz̄)2

2R2 0

S . (46)

Notice that the metric tensor is diagonal when written in terms of (t1, t2),
such that z=t1+it2, i.e., gmn(t1, t2)=(1+|z|2)2

4R2 d
mn (i.e, it corresponds to the

conformal gauge). The drift is then simply Dm=DFm.
It is evident that one cannot make a probability density out of a

complex and/or antisymmetric wave function. This is the reason why we
decided to write down Fokker–Planck equations for the distribution f (or
f̄) and not f̃. Nevertheless, the phase factor associated with the original
complex distribution must show up in the evaluation of the expectation
values. It is well-known that this causes the variance of the computed
results to increase exponentially with increasing number of degrees of
freedom. This problem is known as the fermion-phase (21) catastrophe. To
obtain stable, albeit approximate, path-integral solutions whose stochastic
determination has a polynomial, instead of exponential, complexity we will
use the Fixed-Phase (FP) method. (15)

The stochastic method mentioned above allows one to obtain the exact
energy eigenvalues of the electron-monopole problem in S2 iff we know the
exact phase of the eigenfunctions. In other words, if the trial state is chosen
such that it has the exact GS phase, then independently of its modulus our
stochastic approach will lead to the exact GS energy. Similarly, if the trial
state has a phase corresponding to an excited state eigenfunction then we
will obtain the exact excited state energy eigenvalue. Below we construct
simple trial states for the ground and first excited states of the one particle
problem. Their modulus are then used as guiding functions FG. Using these
trial states we will apply our technique and illustrate the main ideas of our
method.

Ground State (n=0). The 2S+1 degenerate GSs of the electron-
monopole system are labeled by their Lx3 angular momentum quantum
numbers m= −S, · · · , S. Here we consider the m=S GS for which the
exact (unnormalized) wave function is

kgs=1
|z|

z(1+|z|2)
2S — |kgs | e ijgs. (47)
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Now consider the following two trial states

kT1=1 |z|
z(1+|z|2)
2S 1

1+l|z|2
, kT2=1 |z|

z(1+|z|2)
2S 1 |z|

z
2a (48)

where l and a are real valued constants. For l=0 and a=0 these states
are both equal to the exact GS, kgs. For l ] 0, the modulus of kT1 is no
longer equal to that of the exact GS, but the phase is exact, while for a ] 0,
the modulus of kT2 is exact, but the phase is approximate. If kT1 is used as
a trial state in a FP DMC simulation the resulting energy should therefore
be the exact GS energy E0=(wc/2, while if kT2 is used the simulation will
not lead to the exact GS energy, but instead yield a variational upper
bound.

The trial state used in a FP DMC simulation should be constructed to
be the best available approximation to the exact eigenstate. For example,
since the modulus of kT2 is exact, the drift velocity F will also be exact and,
in the absence of the branching term, will lead to the exact density distri-
bution. It is straightforward to show that Fm=“tmln|kT2 |2 is given by

F1= −
4St1

1+|z|2
, F2= −

4St2

1+|z|2
, (49)

indicating that walkers are guided away from regions where the wave
function is small. It follows that the particle tends to spend most of its time
near the top of the sphere (h=0) which leads to a potential problem when
we consider the local energy,

EL=|kT2 | −1ĤFP |kT2 |=
(wc

2
51+

(1+|z|2)2

S
(
aS

1+|z|2
+
a2

4 |z|2
26 (50)

which is not exact due to the approximate phase of the trial state. In par-
ticular, EL diverges as |z| Q 0, and because the drift pushes the particle
towards z=0, there will be large fluctuations in the local energy which can
lead to huge fluctuations in the population size. Thus, in this particular
example, small values for a (a° 1) must be taken in order to assure fast
convergence and good statistical accuracy.

Figure 3 shows the results of FP DMC simulations, using the
algorithm developed in this paper, for the difference between computed
and exact GS energies using trial state kT1(l=1) (circles) and trial state
kT2(a=0.001) (squares) for different values of the time step y. The yQ 0
extrapolated values are also shown. (22) As expected, when kT1 is used the
extrapolated energy agrees within statistical accuracy with the exact result,
but when trial state kT2 is used we obtain a variational upper bound for the
exact GS energy.
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Fig. 3. The difference between computed and exact ground state energies for the trial state
with the exact phase kT1(l=1) (circles) and the trial state with an approximate phase
kT2(a=0.001) (squares) for various values of time step y. The y=0 extrapolated results are
also displayed. Using a trial state with the exact phase in the FP DMC simulations allows one
to solve the problem exactly, while using a trial state with an approximate phase allows one to
obtain a variational upper bound for the exact solution.

Fig. 4. Ground state density for the exact ground state kT1(l=0) (Exact), the trial state
kT1(l=1) (VMC), the density obtained in FP diffusion Monte Carlo with trial state
kT1(l=1) at time step y=0.001 (FP mixed estimator), and the extrapolated density defined
as ratio of the square of FP density to the variational density. The diffusion Monte Carlo
density (FP mixed estimator) improves on the variational result but still differs from the exact
one. The extrapolated estimator for the density constructed by combining both, the FP mixed
estimator and the variational density makes it possible to improve on FP density and is very
close to the exact result. The density is normalized in such a way that its integral over the
surface of the sphere is 4pR2. The magnetic length is l0=`(c/|e| B.
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In Fig. 4 the density profiles for the exact GS kgs=kT1(l=0) (Exact),
the trial state kT1(l=1) (VMC), the density obtained in FP DMC with
trial state kT1(l=1) (FP mixed estimator), and the extrapolated density
defined as ratio of the square of FP density to the variational density cor-
responding to kT1(l=1), are shown. Note that since the density in our
DMC calculation is determined as a mixed estimate (see Eq. 10), and the
density operator does not commute with the Hamiltonian between the
DMC solution and the trial state, the corresponding density profile (FP
mixed estimator) improves on the variational result but still differs from
the exact one. The extrapolated estimator constructed by combining both
the FP and variational estimators makes it possible to improve on the FP
density, and is seen to be very close to the exact result.

First Excited State (n=1). Consider the first excited state of the
electron-monopole system. Taking m=S+1 the exact wave function is

kes=1
|z|

z(1+|z|2)
2S+1

|z|=|kes | e ijes. (51)

Fig. 5. The difference between the computed and exact excited state energies for the trial
state with the exact phase k −T1(l=1) (circles) and the trial state with an approximate phase
k −T2(a=0.0015) (squares) for various values of time step. The extrapolated results to time step
y=0 are also displayed. For the trial state with the exact phase one finds the exact solution
and for the trial state with an approximate phase one finds a variational upper bound for the
exact solution.
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Again, we introduce two trial states

k −T1=1
|z|

z(1+|z|2)
2S+1 |z|

1+l|z|2
, k −T2=1

|z|
z(1+|z|2)
2S+1

|z| 1 |z|
z
2a(52)

which for l=0 and a=0 each reduce to the exact excited state. As before,
for l ] 0 the modulus of k −T1 is approximate and the phase is exact, and for
a ] 0 the modulus of k −T2 is exact and the phase is approximate.

Figure 5 shows the difference between FP DMC energies computed
using trial states k −T1(l=1) and k −T2(a=0.0015) and the exact excited state
energy for different values of time step y as well as the extrapolated y=0
result. (23) Again, when the phase of the trial state is exact we obtain the
exact energy (circles), E1=(3/2+1/S) (wc, and when the phase is
approximate we obtain a variational upper bound on that energy (squares).

Figure 6 displays the density profiles corresponding to the trial state
k −T1(l=1) (VMC), the FP density (FP mixed estimator), the extrapolated
density, computed as above by taking the ratio of square of the FP density
and the VMC density (Extrap. estimator), and the exact density (Exact). As
for the GS, the FP estimator improves on the VMC result, and the extra-
polated density is nearly equal to the exact excited state density.

Fig. 6. Excited state density corresponding to the trial state k −T1(l=1) (VMC), FP density
with the same state at time step y=0.001 (FP mixed estimator), the extrapolated density,
which is computed by taking the ratio of square of the FP density and the VMC density
(Extrap. estimator), and the exact density (Exact). The FP estimator improves on the VMC
result, but still differs from the exact density. The extrapolated density allows one to improve
on the FP diffusion Monte Carlo result and is very close to the exact. The density is nor-
malized in such a way that its integral over the surface of the sphere is 4pR2.
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VI. DISCUSSION AND CONCLUSIONS

In this paper we have introduced a stochastic method to solve the
many-body Schrödinger equation on curved manifolds. This method is
essentially a generalized Diffusion Monte Carlo (DMC) technique allowing
one to deal with the effects of space curvature. Such curvature leads to new
terms—quantum corrections—in the diffusion matrix and drift vector
which appear in the Green’s function used as a conditional probability in
DMC simulations. Expressions for these corrections for general metric
tensors have been worked out in detail.

To illustrate the general methodology we have concentrated on the
problem of interacting fermions in external electromagnetic potentials. In
this case a variational upper bound to the exact ground state energy can be
found by applying the Fixed-Phase approximation, where the fermionic
problem is treated as a bosonic one by fixing the phase of the many-body
wave function (which is complex-valued in general) by some trial phase. As
an example, we have considered the problem of a single electron confined
to the surface of a two-sphere, which has a magnetic monopole at its
center. This problem can be solved in closed form and, therefore, we have
used it as a toy model for testing our technique. In the paper we have pre-
sented two calculations, where the ground and first excited state energies
are computed using the exact phases, but approximate modulus for the
corresponding guiding functions. We have shown that the exact energies
are reproduced within statistical accuracy thus proving that the approach
for dealing with the quantum corrections is valid.

As emphasized in the Introduction, the method presented in this paper
for performing DMC simulations on curved manifolds can be used to study
many interesting physical systems. An important example is the quantum
Hall (QH) effect, a phenomenon which occurs when a two-dimensional
electron system is placed in a strong magnetic field. As first pointed out by
Haldane, (19) the electron-monopole system described in Section V provides
a convenient geometry for performing finite size numerical studies of QH
systems when many interacting electrons are placed on the sphere. This is
in part because the spherical geometry has no boundary so that finite size
effects are suppressed. In addition, the spherical geometry is conceptually
simpler than the (flat metric) torus geometry, which also has no boundary,
because on the torus the topological order exhibited by QH states leads to
certain nontrivial degeneracies. (24)

Recently we have used the method developed in this paper to study the
fractionally charged quasiparticle excitations of the fractional QH effect, (25)

and the charged spin texture excitations (skyrmions) of the integer QH
effect. (26) Previous numerical studies of these excitations have been based on
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either VMC or exact diagonalization calculation which, for the most part,
have assumed that the wave functions describing the excitations are
confined to the lowest (n=0) Landau level. In fact, this is a poor approx-
imation for real experimental systems which can exhibit significant Landau
level mixing due to the electron-electron interaction. It has been shown that
the FP DMC method provides a systematic way to include the effect of
Landau level mixing on QH states, (15) and so the generalization of this
method to curved manifolds described in this paper was used in our cal-
culations to perform such studies using Haldane’s spherical geometry.
Along with the test case of the electron-monopole system, these calcula-
tions of Landau level mixing effects in QH systems using the Haldane
sphere have shown that the method presented here for performing FP
DMC calculations on curved manifolds is a useful tool for studying many
interesting physical systems.
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