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We construct quantum circuits for measuring the commuting set of vertex and plaquette operators that
appear in the Levin-Wen model for doubled Fibonacci anyons. Such measurements can be viewed as syndrome
measurements for the quantum error-correcting code defined by the ground states of this model (the Fibonacci
code). We quantify the complexity of these circuits with gate counts using different universal gate sets and find
these measurements become significantly easier to perform if n-qubit Toffoli gates with n = 3, 4, and 5 can be
carried out directly. In addition to measurement circuits, we construct simplified quantum circuits requiring only
a few qubits that can be used to verify that certain self-consistency conditions, including the pentagon equation,
are satisfied by the Fibonacci code.
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I. INTRODUCTION

The ground states of certain two-dimensional lattice Hamil-
tonians of a type first introduced by Kitaev1 can be used
as quantum error-correcting codes known as surface codes.
Quantum information can be stored and protected using
these codes when they are defined on lattices with holes
(defects).2 Fault-tolerant gates can then be carried out either
transversally or by deforming the code in order to braid these
defects while staying entirely within the code subspace.3–5 One
downside to using the Kitaev surface codes, for which defects
behave as Abelian anyons, is that to realize a universal set of
fault-tolerant gates, at least one gate using a resource costly
“magic-state” distillation process6 is required. The same is true
for fault-tolerant quantum computation using the so-called
color codes.7–11 Nevertheless, quantum computation using
these surface codes has a number of appealing features, notably
the need for only nearest-neighbor gates between qubits in a
two-dimensional array and high error thresholds, e.g.,∼1% for
the Kitaev surface code.3–5,12

Recently, König, Kuperberg, and Reichardt13 (KKR) out-
lined a method for fault-tolerant quantum computation using
non-Abelian surface codes. These codes, which are defined
mathematically in terms of the Turaev-Viro topological invari-
ants for three-manifolds,14 can be viewed physically as ground
states of Levin-Wen models,15 two-dimensional lattice models
which generalize the Kitaev model.16 These models can be
used to realize so-called “doubled” versions of any consistent
anyon theory, including theories of non-Abelian anyons for
which braiding is universal for quantum computation. The
simplest such universal anyons are the Fibonacci anyons.
Here, we refer to the corresponding Levin-Wen model as the
Fibonacci Levin-Wen model and, following KKR,13 refer to
the ground states of this model as the Fibonacci code. As shown
in Ref. 13, when using the Fibonacci code, Fibonacci anyons
can be associated with holes in the lattice subject to certain
boundary conditions and proper initialization. These Fibonacci
anyons can then be used to encode logical qubits, and universal
quantum computation can be carried out purely by braiding
them,17–19 without the need for magic-state distillation.

The Levin-Wen models are defined by a set of commuting
vertex and plaquette projection operators which act on qubits
(more generally, qudits) associated with the edges of a two-
dimensional trivalent lattice. When using the ground states
of these models as quantum codes, it will be necessary to
continually measure these vertex and plaquette operators in
order to check for errors, which would then have to be corrected
without disturbing the quantum information stored in the
topological degrees of freedom of the code. For the Kitaev
surface code, quantum circuits which can be used to measure
these operators are known and are fairly straightforward.20 For
either an n-sided plaquette, or a vertex where n edges meet,
these measurement circuits each require a single initialized
syndrome qubit which is measured after carrying out n

controlled-NOT (CNOT) gates.
The simplicity of the quantum circuits used to measure

the vertex and plaquette operators for the Kitaev surface code
reflects the Abelian nature of this code. It is natural to ask
how complex the quantum circuits need to be to measure the
vertex and plaquette operators for the non-Abelian Fibonacci
code. In this paper, we present explicit quantum circuits for
performing such measurements. These circuits are built in part
out of smaller circuits which carry out unitary transformations
which have been described both in KKR (Ref. 13) and, in
the context of entanglement renormalization, in Ref. 21. Our
goal here is to explicitly construct these circuits in terms of
standard elements (Toffoli gates, CNOT gates, and single-qubit
rotations) in an attempt to quantify their complexity.

The purpose of this work is not to argue that non-Abelian
surface codes are viable competitors to the Kitaev surface code.
Indeed, we share the view of many in the field that quantum
computation using the Kitaev surface code, given its clear
advantages over other fault-tolerant quantum computation
schemes, may well provide the best practical route to building
a functioning quantum computer.5,22 Here, our goal is the
more modest one of making a first pass at determining
the complexity of syndrome extraction for the significantly
less-well-understood Fibonacci code, which we believe is of
intrinsic interest in its own right. An additional goal of this
work is to begin developing a “dictionary” for translating
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the mathematical structures which appear in general anyon
theories into interesting quantum circuits, some of which we
find require only a few qubits and might feasibly be carried
out experimentally in the near future.

II. LEVIN-WEN MODELS AND THE FIBONACCI CODE

The Levin-Wen models15 are defined on two-dimensional
trivalent lattices such as the hexagonal lattice shown in
Fig. 1(a). The degrees of freedom of the models are associated
with lattice edges which can take on a finite number of labels.
These labels can, in general, be oriented, meaning for each
label i there is a dual label i∗. If i = i∗, then the edge is
unoriented. For the Fibonacci Levin-Wen model, there are
only two labels 0 and 1 and the edges are unoriented (0 = 0∗,
1 = 1∗). Thus, for this model, as for the Kitaev surface code,
we simply associate a qubit with each edge of the lattice. The
two states of each qubit |0〉 and |1〉 then correspond to the two
labels 0 and 1, respectively.

For a given trivalent lattice, the Levin-Wen Hamiltonian
has the form

H = −
∑

v

Qv −
∑

p

Bp. (1)

Here, Qv and Bp are projection operators associated with the
vertices (labeled v) and plaquettes (labeled p) of the lattice.

The vertex operator Qv acts on the three qubits associated
with the edges connected to vertex v and is diagonal in the
standard {|0〉, |1〉} basis. (Here, we focus on the Fibonacci
Levin-Wen model and so only consider the case when a single
qubit is assigned to each edge.) If these qubits are in the states
|i〉, |j 〉, and |k〉, the result of applying Qv is determined by the
tensor δijk [see Fig. 1(b)] which, for the Fibonacci Levin-Wen
model, is given by

δijk =
{

1 if ijk = 000,011,101,110,111,

0 otherwise.
(2)

The plaquette operator Bp is significantly more complex
than Qv. For example, for a hexagonal plaquette, Bp acts on
the six qubits on the edges of plaquette p in a way determined
by the state of the six qubits on the edges connected to the
plaquette. Bp is therefore a 12-qubit interaction (in general,
a 2n-qubit interaction for an n-sided plaquette). For the
Fibonacci Levin-Wen model, the precise form of the plaquette

projection operator is

Bp = 1

1 + φ2

(
B0

p + φB1
p

)
, (3)

where Bs
p for s = 0 and 1 are plaquette operators associated

with the label s and φ = (
√

5 + 1)/2 is the golden ratio. The
action of Bs

p on an n-sided plaquette is shown in Fig. 1(b)
where

B
s,i ′1i

′
2...i

′
n−1i

′
n

p,i1i2...in−1in
(a1a2 . . . an−1an)

= F
a1ini1

si ′1i ′n
F

a2i1i2

si ′2i
′
1

. . . F
an−1in−2in−1

si ′n−1i
′
n−2

F
anin−1in
si ′ni

′
n−1

. (4)

Here, the six-indexed tensor F
ijk

lmn, along with δijk , forms the
basic data of a so-called tensor category: the mathematical
framework for a general anyon theory, in this case the theory
of Fibonacci anyons. The F and δ tensors satisfy certain self-
consistency conditions which, among other things, guarantee
that the operators Bs

p and Qv all commute with each other.15,23

Note that since the Fibonacci Levin-Wen model is unoriented,
in (4) we have assumed i = i∗ for all labels. The precise form
of the F tensor for this model is given in Sec. IV.

When using the ground states of the Levin-Wen model as
quantum error-correcting codes, the commuting vertex and
plaquette projection operators Qv and Bp should be viewed as
stabilizers. The code space is then defined by the requirement
that Qv = 1 on each vertex and Bp = 1 on each plaquette.
For the Fibonacci code, the constraint Qv = 1 projects the
Hilbert space onto the space spanned by states in which
edges in the state |1〉 form branching-loop configurations
[see Fig. 1(a)], while the plaquette constraint Bp = 1 leads to
particular quantum superpositions of these states. As described
in KKR,13 when these code states are defined on lattices with
holes that have certain boundary conditions on their edges,
these holes (or defects) can realize a “doubled” version of the
anyon theory characterized by the F and δ tensors. For the
Fibonacci code, this means that these defects can encode two
types of Fibonacci anyons with opposite chiralities. As further
shown in KKR,13 with proper initialization these defects can
be forced to encode Fibonacci anyons of a particular chirality.
These chiral anyons can then be used to encode qubits and
braided in order to carry out universal quantum computation.

In this paper, we focus on the problem of how to measure
the stabilizers Qv and Bp for the Fibonacci code. In the passive
approach to the Levin-Wen model envisioned in KKR,13 rather
than engineering the Levin-Wen Hamiltonian to realize the
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FIG. 1. (Color online) (a) Example of a trivalent lattice (in this case a honeycomb lattice) on which the Levin-Wen model can be defined.
For the Fibonacci Levin-Wen model, a qubit is associated with each edge. A particular state which satisfies the vertex constraint Qv = 1 on
each vertex for this model is shown. Thick edges indicate qubits in the state |1〉, thin edges indicate qubits in the state |0〉. (b) Action of the
vertex operator Qv on the three qubits on the edges connected to a trivalent vertex, and of the plaquette operators Bs

p on the 2n qubits associated
with an n-sided plaquette.
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v1 Q−

FIG. 2. (Color online) Quantum circuit which can be used to
measure Qv for the Fibonacci code.

Fibonacci code, it will be necessary to continually measure
these operators in order to detect errors which can then be
corrected.

III. QUANTUM CIRCUIT TO MEASURE Qv

The measurement of Qv for the Fibonacci code is straight-
forward and not significantly more difficult to carry out than
the analogous measurement for the Kitaev surface code. A
quantum circuit which carries out a quantum nondemolition
measurement of Qv is shown in Fig. 2. The circuit acts on the
three qubits associated with a given vertex as well as a fourth
syndrome qubit initialized in the state |0〉. After carrying out
the circuit, the syndrome qubit is measured. If it is found
to be in the state |0〉, then Qv = 1 for this vertex and the
vertex constraint is satisfied; if not, then Qv = 0 and the vertex
constraint is violated.

The most difficult part of the Qv circuit to carry out is likely
to be the four-qubit Toffoli gate which performs a NOT gate
on the syndrome qubit if and only if the state of each of the
three vertex qubits is |1〉. (Here and throughout, it should be
understood that an n-qubit Toffoli gate is a gate with n − 1
control qubits and one target qubit.) This four-qubit Toffoli
gate is the first of several n-qubit Toffoli gates required in
our constructions, all of which are directly related to the non-
Abelian nature of the Fibonacci code. Here, this gate is needed
to allow for the loop branching associated with the fact that
δ111 = 1.

In what follows, we will be interested in quantifying the
complexity of the quantum circuits we construct. Of course, the
notion of quantum circuit complexity is somewhat ill defined
and depends, among other things, on what we take as our
primitive gate set. This in turn will depend on the particular
hardware of the quantum computer being considered.

Accurate three-qubit Toffoli-class gates have recently
been been carried out experimentally using superconducting
qubits24–26 and trapped ions.27 Motivated by this, we take one
primitive gate set to consist of three-qubit Toffoli gates, CNOT
gates, and single-qubit rotations. An n-qubit Toffoli gate can
then be carried out using 4n − 12 three-qubit Toffoli gates if
n − 3 additional qubits are available.28 These additional qubits
need not be initialized and their states are left unchanged once
the full n-qubit Toffoli gate is carried out. Thus, nearby code
qubits which are not being acted on directly by the operator
under measurement can be used. With this construction, we can
count the total number of three-qubit Toffoli gates (or, simply,
Toffoli gates), CNOT gates, and single-qubit rotations required
to carry out a given circuit. For the case of the four-qubit Toffoli
gate appearing in our Qv circuit, this count gives four Toffoli
gates. The total gate count for our Qv circuit is then four Toffoli

gates and three CNOT gates. This can be contrasted with the
analogous circuit for the Kitaev surface code which, when
acting on a trivalent vertex, would require only three CNOT
gates (it is, in fact, identical to the circuit shown in Fig. 2 with
the four-qubit Toffoli gate removed).20

For a second gate count, we assume that the n-qubit Toffoli
gates which appear in our circuits are themselves primitive
gates. By this count, our Qv circuit consists of one four-qubit
Toffoli gate and three CNOT gates. We note that there are
proposals for carrying out single-step n-qubit Toffoli-class
gates using trapped ions,29 superconducting qubits,30 and
neutral atoms interacting with cavity photons;31 in addition,
it has been observed that these gates are efficiently achieved
if one of the qubits has n available quantum levels.32 Of
course, n-qubit Toffoli gates can also be simulated using
the usual primitive gate set consisting of CNOT gates and
single-qubit rotations.33 However, as we have seen with our
Qv measurement circuit, and as will become more clear in what
follows, the ability to directly carry out accurate n-qubit Toffoli
gates (with n = 3, 4, and 5) will give a strong advantage when
carrying out quantum computation using the Fibonacci code.

Despite requiring a four-qubit Toffoli gate, the Qv measure-
ment circuit shown in Fig. 2 is relatively simple, reflecting the
simplicity of the vertex operator. In what follows, we turn to the
more difficult problem of measuring the plaquette operator Bp.
For this case, a brute-force approach to constructing a circuit
which measures the appropriate operator acting on the edges
of a plaquette for each possible state of the edges connected
to that plaquette is problematic. Fortunately, there is a useful
resource which simplifies the problem greatly: the F -move.

IV. F-MOVE

When using the Fibonacci code, the physical qubits of a
quantum computer may be fixed in space and may even form
a rigid lattice. However, this physical lattice need not be the
same as that formed by the edges of the abstract trivalent lattice
used to define the code. Indeed, as emphasized in KKR,13

this abstract trivalent lattice should be thought of as fluid
and constantly changing throughout the computation. These
changes are accomplished by carrying out F -moves, processes
which locally redraw the trivalent lattice while reassigning
the physical qubits to new lattice edges and carrying out an
appropriate unitary operation.

Specifically, when carrying out an F -move, five edges of
the lattice are redrawn as shown in Fig. 3(a), while a unitary
transformation determined by the six indexed tensor Fabe

cde′ [the
same F tensor which appears in (4)] is applied to the five
qubits associated with these edges. This five-qubit unitary
is a controlled operation on the qubit labeled e in Fig. 3(a)
contingent on the states of the other four qubits (labeled abcd).
The usefulness of the F -move here derives from the fact that
if one starts in a ground state of a given Levin-Wen model on a
particular trivalent lattice, then, after performing an F -move,
the resulting state will be a ground state of the new Levin-Wen
model defined on the new trivalent lattice.21 This is true even
though this lattice has decoupled from the physical qubits, as
illustrated in Fig. 3(b).

It was shown in KKR (Ref. 13) that the ability to decouple
the abstract trivalent lattice from the physical qubits with
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(a)

(b)

FIG. 3. (Color online) (a) An F -move, a five-qubit unitary
operation defined in terms of the tensor F abe

cde′ . (b) Action of an F -move
on the abstract trivalent lattice of the Fibonacci code, which illustrates
the decoupling of this lattice from the physical qubits. In this example,
the qubits (open circles) are arranged in a kagome lattice and lie on
the edges of an initial trivalent (hexagonal) lattice. After the F -move,
the edges of the new trivalent lattice must be distorted if they are
forced to coincide with the physical qubit lattice.

F -moves is an important resource for carrying out quantum
computation using the Fibonacci code. For example, by
carrying out sequences of F -moves, one can deform the code
to perform Dehn twists on the trivalent lattice which can then
be used to braid defects encoding Fibonacci anyons.13 Since
the braiding of Fibonacci anyons is universal for quantum
computation, this means that one can perform a universal set
of gates while staying inside the Fibonacci code subspace
without the need for magic-state distillation.

The F -move for the Fibonacci code is represented graphi-
cally in Fig. 4. This figure, together with Fig. 3(a), can serve as
a definition of the F tensor for Fibonacci anyons. The effect of
carrying out an F -move is only shown for those states which
satisfy the vertex constraint (i.e., for which Qv = 1 for all
vertices). When defining the Levin-Wen models, the F tensor
is assumed to vanish when acting on those states which violate
the vertex constraint.15 Here, we will assume before applying
any F -move that it has been verified that Qv = 1 on each
relevant vertex of the initial trivalent lattice. The structure of
the F -move then guarantees that the vertex constraint will
continue to be satisfied on the new trivalent lattice.

A quantum circuit which acts on five qubits at a time and
which carries out the F -move defined in Fig. 4 for those states

a

c

e

b

d =

=

(a)

(b)

F

R(θ y)R(-θ y)

X
X

X

X
X

XF

FIG. 5. (Color online) (a) Quantum circuit which carries out an
F -move for the Fibonacci code [the 2 × 2 matrix F is given in
Eq. (5)]. The labels abcde refer to the same labels in Fig. 3(a). (b)
Five-qubit controlled-F gate expressed in terms of a five-qubit Toffoli
gate. Here, R(±θŷ) = e±iθσy/2 are single-qubit rotations about the y

axis with θ = tan−1 φ−1/2 for which R(θŷ)XR(−θŷ) = F .

satisfying the vertex constraint is shown in Fig. 5. In this figure,
the labels abcde refer to the same labels shown in Fig. 3(a).
Although it is not immediately apparent from its structure,
one can readily check that this circuit has the symmetries
of the F tensor15 (e.g., Fabe

cde′ = Fcde
abe′ = Fbae

dce′ ). Note also that
the circuit squares to 1 (since F 2 = 1, see below), so the same
circuit can be used for the inverse transformation. As described
above, this F circuit carries out a particular operation on the
qubit labeled e depending on the state of the other four qubits
labeled abcd, which are themselves left unchanged at the end
of the circuit. The F circuit can therefore be viewed as a
generalized Toffoli-class gate. Because the four control qubits
are not equivalent, it is important to label these qubits in our F

circuit as we have done in the green box in Fig. 4. This notation
will be useful when we embed the F circuit into larger circuits
acting on more than five qubits.

At the heart of the F circuit is the five-qubit controlled-F
gate where F is the 2 × 2 unitary matrix acting on qubit e

FIG. 4. (Color online) F -move for Fibonacci anyons. Under this F–move, a unitary transformation is performed on one qubit—the one
associated with the edge which goes from horizontal to vertical—conditioned on the state of the qubits on the other four edges. As in Fig. 1,
thick lines indicate edges in the state |1〉 and thin lines indicate edges in the state |0〉. Only those states which satisfy the Qv = 1 constraint are
shown.
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when a = b = c = d = 1:

F =
(

φ−1 φ−1/2

φ−1/2 −φ−1

)
. (5)

The remaining Toffoli gate and CNOT gates take care of all
other cases for which the outcome is essentially fixed by the
vertex constraint. As stated above, this circuit is designed to
carry out an F -move only on those states which satisfy the
Qv = 1 constraint on all vertices. In what follows, we will
always assume it has been verified that the vertex constraint is
satisfied before applying the F circuit.

Figure 5(b) shows how to carry out the five-qubit controlled-
F gate using a five-qubit Toffoli gate and two single-qubit
rotations. This simple construction is possible because F 2 = 1
and det F = −1. As for the four-qubit Toffoli gate appearing
in the measurement circuit for Qv, the appearance of this
five-qubit Toffoli gate can be traced back to the fact that loops
are allowed to branch in the Fibonacci code and is a direct
consequence of the non-Abelian nature of this code. Using the
construction of Ref. 28 described above, this five-qubit Toffoli
gate can be carried out using eight conventional Toffoli gates.
The total gate count for our F circuit is then nine Toffoli gates,
four CNOT gates, and two single-qubit rotations. Alternatively,
if we treat n-qubit Toffoli gates as primitives, the gate count
is one five-qubit Toffoli gate, one Toffoli gate, four CNOT
gates, and two single-qubit rotations. Given the importance of
carrying out F -moves when using the Fibonacci code,13 the
ability to accurately carry out this five-qubit Toffoli gate can
be viewed as an important experimental threshold for realizing
this type of quantum computation.

V. PENTAGON EQUATION

The F -move satisfies an important self-consistency condi-
tion known as the pentagon equation. The pentagon equation
can be represented as a sequence of F -moves on a seven-edged
trivalent lattice as shown in Fig. 6(a). In a quantum computer,
the lattice edges would be associated with qubits, labeled
1 through 7 in Fig. 6(a). As one follows this sequence of
F -moves, the trivalent lattice is repeatedly redrawn, while

=

S
W

A
P

F

F

F

F

F

FIG. 7. (Color online) Simple two-qubit circuit identity obtained
by setting the five effective control qubits (qubits 1, 2, 3, 4, and 7) in
the pentagon circuit identity shown in Fig. 6(b) to the state |1〉.

the qubits, which can be considered fixed in physical space,
are reassigned to the new lattice edges after each F -move.
By the time one has gone all the way around the pentagon,
the trivalent lattice has returned to its original form. However,
the qubits associated with two of the edges (labeled 5 and 6
in the figure) are swapped.

The process of carrying out this sequence of five F -moves
and the resulting qubit swap can be translated into the quantum
circuit identity shown in Fig. 6(b). We refer to the left-hand
side of this identity as the pentagon circuit. The solid green
rectangles in the pentagon circuit represent the five-qubit F

circuit shown in Fig. 5 and the corresponding abcde labels are
the same as the labels shown in Fig. 5. Again, we assume that
before carrying out the pentagon circuit it has been verified
that Qv = 1 on each of the two vertices of the initial trivalent
lattice. It is only for this case that the circuit identity shown in
Fig. 6(b) holds (for clarity, these vertices are labeled by their
associated qubits inside the red box under the equals sign in
this figure).

In the pentagon circuit, two of the qubits (qubits 5 and 6)
are acted on, while the remaining qubits play the role of
control qubits. Simpler quantum circuits can be constructed
by fixing these five effective control qubits to be in a particular
state. For example, if we fix all the qubits except for 5 and
6 to be in the state |1〉, then the pentagon circuit reduces to
the simple two-qubit circuit shown on the left-hand side of
the circuit identity in Fig. 7. This simplified pentagon circuit
consists of five controlled-F gates with alternating control
qubits, and the net effect of this sequence of gates is a SWAP
gate which exchanges the states of qubits 5 and 6. Note that
when qubits 5 and 6 are both in the state |0〉 and all other
qubits are in the state |1〉, the vertex constraint is violated in
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FIG. 6. (Color online) (a) The pentagon equation, a self-consistency condition which the F -move must satisfy. As shown here, the pentagon
equation corresponds to a series of F -moves which take a particular seven-edged lattice (upper left) back to an identical lattice (lower left)
while two of the qubits associated with the lattice edges are swapped. Here and in subsequent figures, the edges associated with the initial state
before each F -move are color coded as in Fig. 3. (b) The pentagon equation as a quantum circuit identity. The sequence of F -moves shown
in (a) are carried out by repeatedly applying the F circuit defined in Fig. 5. The labels abcde in each green box refer to the labels in Fig. 5.
The circuit equality holds provided the vertex constraint Qv = 1 is satisfied on all three vertices in the initial lattice. In the figure, the triplets
of numbers given below “Qv = 1” in the red box indicate the qubits which meet at these vertices.
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the full seven-qubit pentagon circuit. However, in this case,
the simplified pentagon circuit merely carries out the identity
operation, which is consistent with swapping the two qubits.
Therefore, the expression shown in Fig. 7 is an exact circuit
identity, regardless of the vertex constraint.

We note the resemblance of this circuit identity to the
familiar three CNOT construction of the SWAP gate.34,35 In
our case, the circuit identity shown in Fig. 7 represents the
nontrivial part of the pentagon equation which uniquely fixes
the form of the matrix F (up to an arbitrary and irrelevant phase
choice for the off-diagonal matrix elements). We envision
that this circuit identity may be useful for calibrating the
F operation. For example, one can imagine tuning F until
it can be verified by quantum process tomography that five
controlled-F gates with alternating control qubits indeed
produce a SWAP gate.

VI. QUANTUM CIRCUIT TO MEASURE Bp

We now turn to constructing a quantum circuit to measure
the plaquette operator Bp. To do this, we use a method inspired
by the entanglement renormalization scheme of Ref. 21. The
essential idea is that through a sequence of F -moves, any
n-sided plaquette can be reduced to a one-sided plaquette with
a single external line, i.e., a “tadpole.” One such sequence of
F -moves which reduces a hexagonal plaquette to a tadpole is
shown in Fig. 8. Note that the final F -move in this sequence
acts on four qubits rather than five. A quantum circuit which
carries out this reduced F -move, obtained by identifying the
qubits labeled a and d in the circuit shown in Fig. 5, is shown
in Fig. 9. (Gate counts for this reduced F circuit: five Toffoli
gates, four CNOT gates, and two single-qubit rotations, or one
four-qubit Toffoli gate, one Toffoli gate, four CNOT gates, and
two single-qubit rotations.)

It was shown in Ref. 21 that the plaquette operator Bp
commutes with F -moves, i.e., after each F -move shown in
Fig. 8 the value of Bp is unchanged even as the plaquette
size is reduced. This is equivalent to the statement that if
we start with a plaquette in a ground state of the Levin-Wen
model (meaning Qv = 1 on each vertex and Bp = 1 for the
plaquette), then, after each F -move, the qubits will continue
to be in the ground state of the Levin-Wen model for the
new lattice. Thus, after each F -move, it will still be true that
Qv = 1 on each vertex and Bp = 1 on the reduced plaquette.
This means that after performing the “disentangling” reduction
of the n-sided plaquette to a tadpole, one need only measure Bp
for the tadpole to measure Bp for the original plaquette. Since
the tadpole only consists of two qubits, this measurement is
straightforward.

For a tadpole, there is a unique eigenstate of Bp with
eigenvalue 1 (Ref. 21):

|ψBp=1〉 = |0〉(|0〉 + φ|1〉)/
√

1 + φ2. (6)

FIG. 8. (Color online) Reduction of a hexagonal plaquette to a
tadpole through a sequence of F -moves.
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FIG. 9. (Color online) Reduced four-qubit F -move obtained by
identifying the qubits labeled a and d in Fig. 5.

Here, the first qubit is the external line (tail of the tadpole)
and the second qubit is the one-sided plaquette (head of
the tadpole). The two-dimensional Hilbert space of states
orthogonal to |ψBp=1〉 which satisfy the vertex constraint will
then have Bp = 0. This space is spanned by the states

|ψBp=0,a〉 = |0〉(φ|0〉 − |1〉)/
√

1 + φ2, (7)

|ψBp=0,b〉 = |1〉|1〉. (8)

To measure Bp for this simple two-qubit system, we first
rotate the head qubit of the tadpole so that it is in the state |0〉
if Bp = 1 and in the state |1〉 if Bp = 0. This can be done by
carrying out a single-qubit rotation S on the head qubit if and
only if the state of the tail qubit is |0〉 where36

S = 1√
1 + φ2

(
1 φ

φ −1

)
. (9)

This transformation corresponds to the diagram shown in
Fig. 10(a) and is defined in terms of the tensor Sa

bb′ , which is
equal to the matrix S when a = 0 and for which S1

11 = 1 (the
case S1

bb′ with b = 0 or b′ = 0 violates the vertex constraint).
A quantum circuit which carries out this transformation (and
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b

a

b’

∑
′

′
b

a
bbS

(a)

(c)

(b)
=

a

b =

a

b

0
p1 B−

a

b

S
X X

X

X

R(-ρ y)X R(ρ y)

FIG. 10. (Color online) (a) S transformation acting on a two-qubit
tadpole. The tensor Sa

bb′ is defined in the text. (b) S circuit which
carries out an S transformation. The 2 × 2 matrix S is given in Eq. (9).
Here, R(±ρŷ) = e±iρσy/2 are single-qubit rotations about the y axis
with ρ = tan−1 φ−1 for which R(ρŷ)XR(−ρŷ) = S. (c) Quantum
circuit which uses the S circuit to measure Bp for a two-qubit tadpole.
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its inverse since the circuit squares to 1) is shown in Fig. 10(b).
This circuit can be carried out with one CNOT gate and
two single-qubit rotations. Like the F circuit, this simple
construction is possible because S2 = 1 and det S = −1. If
the two tadpole qubits are initially in the state |ψBp=1〉, the
result of carrying out this circuit is the state |0〉|0〉. If the
two tadpole qubits are initially in the two-dimensional Hilbert
space spanned by the states {|ψBp=0,a〉,|ψBp=0,b〉}, then after
carrying out this circuit they will be in the space spanned by
the states {|0〉|1〉,|1〉|1〉}. In either case, the state of the second
qubit, i.e., the rotated head of the tadpole, will be equal to
1 − Bp.

After carrying out the S circuit on the tadpole, a CNOT
gate can be done with the head qubit as the control qubit and a
syndrome qubit, initialized to the state |0〉, as the target qubit.
The syndrome qubit can then be measured and if the result
is 0 then Bp = 1 for the tadpole (and hence for the original
plaquette), and if the result is 1 then Bp = 0.

After measuring Bp for the tadpole, the final step is to
reconstruct the full plaquette. This can be done by undoing
the S circuit on the tadpole and then undoing the F -moves.
Putting everything together, the resulting measurement circuit
for the case of a hexagonal plaquette is the palindromic circuit
shown in Fig. 11. In this circuit, the notation is the same as
in the pentagon circuit, with each box corresponding to either
the full or reduced F circuit, or the S circuit, and the letters
labeling the various “inputs” as defined in Figs. 5, 9, and 10.
From the structure of the circuit it is clear how this construction
generalizes to the case of an arbitrary n-sided plaquette.

We again emphasize that the circuit shown in Fig. 11
only measures Bp correctly if the vertex constraint Qv = 1
is satisfied on each vertex of the initial plaquette at the start
of the circuit. If the vertex constraint is violated on any of
these vertices, then by definition Bp = 0 for the plaquette;15

but the circuit will, in some cases, give the wrong result
of Bp = 1. To see this, consider the action of this circuit
on the full 22n-dimensional Hilbert space of the 2n qubits
associated with an n-sided plaquette, including those states
which violate the vertex constraint. From the structure of
the circuit, which performs a unitary transformation on 2n

qubits and then measures the state of a single qubit to
determine Bp, it is clear that the dimensionalities of the Hilbert
spaces for which Bp = 1 or Bp = 0 would both be 22n−1,

0

3
4
5
6

1
2

9
10
11
12

7
8

b

a
e
c

d

b

e
c

d
a

a
e

b

c
a
b

b

c

d

a

b

a
e
c

d

b

e
c

d
a

a
e

b

c
a
b

b

e
c

d

a

b

e
c

d

a

p1 B−

6

1

2

4

3

12

9

10

11

7

8

5

p
a

b

c

d

e
e

X

FIG. 11. (Color online) Quantum circuit which can be used to
measure Bp for the Fibonacci code on a hexagonal plaquette based
on the plaquette reduction shown in Fig. 8. It must be verified that
Qv = 1 on each of the six vertices of the plaquette before carrying
out the circuit.

i.e., half that of the full Hilbert space. However, once the
vertex constraint is taken into account, the Hilbert space is
greatly reduced. The dimensionalities of the projected Hilbert
spaces for which Qv = 1 on each of the n vertices and
Bp = 1 or Bp = 0 for the plaquette are Dim[Bp = 1] = F2n−1

and Dim[Bp = 0] = F2n+1, respectively, where Fn is the nth
Fibonacci number (F0 = 0, F1 = 1, F2 = 1, F3 = 2, etc.). For
the case of a hexagonal plaquette, this means the full 4096 =
212-dimensional Hilbert space of 12 qubits is projected down to
a space of dimensionality 322 = F11 + F13 = 89 + 233 with
an 89-dimensional space of states satisfying the plaquette
constraint with Bp = 1. The reader will be reassured to know
we have numerically checked that the circuit shown in Fig. 11
performs the correct measurement of Bp on this projected
space.

It should be noted that the requirement that Qv = 1
on each vertex before measuring Bp may cause problems
when extracting error syndromes. For example, if a faulty
measurement of Qv gives 1 for a particular vertex on a
plaquette, but the actual value of Qv is 0 for that vertex, then, as
described above, the Bp measurement circuit for the plaquette
will, in some cases, give Bp = 1 even though the correct
value (as it is for any plaquette in which a vertex constraint
is violated) is Bp = 0. In this paper, we have not addressed
the important question of whether it is possible to extract
error syndromes for the Fibonacci code fault tolerantly, nor
the question of precisely how these errors would be corrected.
Our goal has been to construct circuits which, in the absence
of errors, can be used to measure Qv and Bp in order to begin
to get a measure of their complexity.

We can now give our final gate counts for measuring
Bp. If we choose to reduce all n-qubit Toffoli gates to
conventional three-qubit Toffoli gates (using 4n − 12 Toffoli
gates, following Ref. 28 as described in Sec. III), then
we find that our procedure for an n-sided plaquette (with
n � 2) requires 18n − 26 Toffoli gates, 8n − 5 CNOT gates,
and 4n single-qubit rotations. Alternatively, if we consider
n-qubit Toffoli gates as primitives, then our procedure requires
2n − 4 five-qubit Toffoli gates, 2 four-qubit Toffoli gates,
2n − 2 Toffoli gates, 8n − 5 CNOT gates, and 4n single-
qubit rotations.37 Not surprisingly, this is significantly more
demanding than the analogous requirement for the Kitaev
surface code, for which only n CNOT gates are needed to
measure the plaquette operator for an n-sided plaquette.

Finally, we note that there are, of course, many different
ways to reduce a given plaquette to a tadpole using F -moves,
all of which can be used to measure Bp and some of which
will be more “parallelizable” than others.

VII. A SIMPLE EXAMPLE

One of the motivations of this work is to find simple
quantum circuits which might feasibly be carried out in the
near term and which begin to test some of the key properties of
the Fibonacci code. We have already seen one example of such
a circuit, the sequence of five controlled-F gates which results
in a two-qubit SWAP gate discussed in Sec. V. This circuit
is a simplified version of the full seven-qubit pentagon circuit
shown in Fig. 6(b) and can potentially be used to calibrate
the F operation. In this section, we give a similar example: a
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FIG. 12. (Color online) (a) Sequence of F -moves which pulls a tadpole through a line. (b) Four-qubit quantum circuit which initializes a
tadpole with an S circuit, carries out the sequence of two F -moves shown in (a), and then performs another S circuit so that measuring qubit 3
would yield Bp for the new tadpole. The tadpole is initialized to a state with Bp = 1 or 0 depending on whether the initial state of qubit 4 is |0〉
or |1〉, respectively. The circuit equality holds provided Qv = 1 on the vertices of the initial lattice. As in Fig. 6(b), these vertices are labeled
inside the red box. The 2 × 2 matrix U is given by Eq. (10) in the text.

four-qubit circuit which first initializes a tadpole into a state
with either Bp = 1 or 0, and then pulls this tadpole through
a line using F -moves to produce a new tadpole which can be
measured to verify that the value of Bp has not changed. As for
the pentagon circuit, this four-qubit circuit can be simplified to
a two-qubit circuit which, in this case, can be used to calibrate
the S operation.

The sequence of operations we consider is illustrated in
Fig. 12(a). The system consists of a four-edged trivalent lattice
and so uses four qubits, labeled 1 through 4 in the figure.
Initially, two qubits (1 and 2) are assigned to edges which
form a line and the other two qubits (3 and 4) form a tadpole
attached to this line. As always, in what follows we assume
that it has been verified that Qv = 1 on each of the two vertices
of this lattice at the start of the process.

The first step is to initialize the tadpole in a state with
either Bp = 1 or 0. Then, using two F -moves, as shown in
Fig. 12(a), the tadpole can be pulled through the line. The
F -moves preserve Bp, and so the intermediate state of this
process is a two-sided plaquette which has been initialized
either into the code space if Bp = 1 or outside of the code
space if Bp = 0. After the tadpole has been pulled through the
line, the two qubits forming the initial tadpole have swapped
places: the head of the tadpole is now the tail and vice versa.
If Bp is now measured for the new tadpole, the result should
yield the same value of Bp that the tadpole was initialized to
at the start of the process.

The left-hand side of the circuit identity shown in Fig. 12(b)
is a four-qubit circuit which carries out the procedure described
above. If qubit 4 is initially in the state |1 − a〉, then the first S

circuit initializes the tadpole in a state with Bp = a. A reduced
F circuit then carries out the first F -move and produces a two-
sided plaquette with Bp = a. Next, a second reduced F circuit
carries out the second F -move producing a new tadpole with
Bp = a but with the head and tail of the tadpole interchanged.
Finally, after carrying out an S circuit on this tadpole, the state
of qubit 3 will be |1 − a〉.

Note that if qubit 4 is initially in the state |1〉 so that the
tadpole is initialized to a state with Bp = 0, then qubit 3 can
initially be in either the state |0〉 or |1〉 while still satisfying
the vertex constraint. After the first S circuit on the left-hand
side of Fig. 12(b) is carried out, the tadpole will then be placed
in a quantum superposition of |ψBp=0,a〉 and |ψBp=0,b〉 [see
Eqs. (7) and (8)]. At the end of the circuit, after being pulled

through the line formed by qubits 1 and 2, the tadpole will
still be in the two-dimensional Bp = 0 Hilbert space, but the
particular superposition will in general have changed. Direct
calculation shows that if qubits 1 and 2 are both in the state
|1〉, then the operation acting on the two-dimensional Bp = 0
space when pulling the tadpole through the line is given by

U =
( −φ−2

√
1 − φ−4√

1 − φ−4 φ−2

)
. (10)

Otherwise, if either qubit 1 or qubit 2 (or both) are in the state
|0〉, the state of the final tadpole will be the same as that of the
initial tadpole with the head and tail qubits swapped. These
cases are all accounted for by the SWAP gate and four-qubit
controlled-U operation on the right-hand side of the circuit
identity in Fig. 12(b). As for the pentagon circuit, this identity
only holds when Qv = 1 on the two vertices of the initial
lattice (again these vertices are labeled inside the red box in
the figure).

This four-qubit circuit, which essentially represents initial-
izing a two-sided plaquette into a state with a given value
of Bp and then producing a state which can be measured
to determine Bp after carrying out a different F -move than
the one used to initialize it, is much simpler than the full
circuit for measuring Bp for a hexagonal plaquette. However,
it still involves the four-qubit Toffoli gate which appears in
the reduced F circuit. As for the pentagon circuit, a simpler
two-qubit circuit identity can be found by fixing the states of
the qubits which act effectively as control qubits (qubits 1 and
2 in Fig. 12). If we fix these qubits to both be in the state |1〉,

=

=

(a)

(b)

S
W

A
P

S
W

A
P

U

X

X

XUX

FX S

S XF

FX S

S XF

FIG. 13. (Color online) (a) Simplified two-qubit circuit identity
obtained by setting qubits 1 and 2 to the state |1〉 in the circuit
identity shown in Fig. 12(b). (b) Equivalent circuit identity obtained
by moving the two NOT gates from the left side of the identity shown
in (a) to the right side.
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we obtain the simplified two-qubit circuit identity shown in
Fig. 13(a).

This circuit identity can be simplified further by multiplying
both sides on the left and right by NOT gates which act on the
top and bottom qubits, respectively, to obtain the equivalent
circuit identity shown in Fig. 13(b). Note that if the initial state
for the circuit shown in Fig. 13(a) is |1〉|0〉, where the first qubit
is the top qubit (qubit 3 in Fig. 12), then the vertex constraint
is not satisfied for the full four-qubit circuit. However, the
simplified circuit identity is readily seen to be satisfied in this
case. For all other cases, the vertex constraint is satisfied, and
so it follows that the expression shown in Fig. 13(a) and the
equivalent expression in Fig. 13(b) are exact circuit identities,
independent of whether or not the vertex constraint is satisfied.

The key action of the two-qubit circuit on the left-hand side
of Fig. 13(b) occurs when the tadpole is initialized in a state
with Bp = 1 for which the tail qubit must start in the state
|0〉. For this case, after pulling the tadpole through the line,
the new tadpole must again be in the state with Bp = 1. Thus,
after accounting for the removal of the two NOT gates, this
circuit must take the state |1〉|0〉 to the state |0〉|1〉.

Like the five controlled-F SWAP circuit in Fig. 7, which
can be used to calibrate the F matrix, the circuit identity shown
in Fig. 13(b) can be used to calibrate the S matrix. Once F

has been fixed by the pentagon circuit, the requirement that
the circuit on the left-hand side of Fig. 13(b) takes the state
|1〉|0〉 to the state |0〉|1〉 fixes the form of the matrix S (up to an
overall phase which is irrelevant for our purposes). Note that
in performing this calibration it is not necessary to carry out a
full quantum process tomography. It is sufficient to verify that
the circuit identity holds for the initial state |1〉|0〉. For this
case, only the SWAP gate on the right-hand side is relevant
since the controlled-XUX gate enters only when the initial
state of the second qubit is |1〉.

VIII. CONCLUSIONS

In this paper, we have constructed explicit quantum circuits
for measuring the vertex and plaquette operators Qv and Bp
in the Fibonacci Levin-Wen model. These operators can be
viewed as stabilizers for the Fibonacci code,13 a surface code
for which defects can behave as Fibonacci anyons, the simplest
non-Abelian anyons for which braiding alone is universal
for quantum computation. While the Qv measurement is not
significantly more difficult than the analogous measurement
for the Kitaev surface codes (for which the defects behave as
Abelian anyons), the Bp measurement scheme we present here
is significantly more difficult than its Abelian counterpart.
While the present scheme is almost certainly not the most
efficient one for performing this measurement, given the
complexity of the operator Bp it is likely that even the most

efficient schemes will require a large number of primitive
gate operations. This cost in circuit complexity will then need
to be weighed against the gain of not requiring magic-state
distillation. The situation is somewhat analogous to compar-
ing the relative merits of performing topological quantum
computation with Ising anyons (which requires magic-state
distillation) to Fibonacci anyons.38

It is clear that further work will be needed before such
a direct comparison of the resources needed to carry out
fault-tolerant quantum computation using the Fibonacci code
with that using the Kitaev surface code will be possible. While
recent progress strongly suggests that the Kitaev surface code
is the most promising from the practical point of view of
trying to build an actual fault-tolerant quantum computer,
we believe it is too early to rule out the possibility that the
Fibonacci code may have some practical implications. Even
if it does not, we believe the Fibonacci code is of intrinsic
interest, in part because computing with it can be viewed
as essentially simulating a non-Abelian state of matter on a
quantum computer.

Our measurement circuit for Bp is built out of circuits which
realize F -moves and the action of the S matrix on a trivalent
lattice. In addition to our measurement circuits, we have also
given simpler circuits built out of these F and S circuits. The
first is a seven-qubit circuit which can be used to verify that the
F circuit satisfies the pentagon equation, as well as a simpler
two-qubit circuit which contains the nontrivial content of this
equation and fixes the form of the F matrix. The second is a
four-qubit circuit which uses the S circuit to initialize a tadpole
(one-sided plaquette) in a state with either Bp = 1 or 0, carries
out a sequence of F -moves to pull the tadpole through a line,
and then produces a state which can be measured to determine
Bp for the new tadpole. For this circuit we have also given
a simpler two-qubit circuit which, once F has been fixed by
the pentagon circuit, fixes the form of the S matrix. These
simple two-qubit circuits (Figs. 7 and 13) may be useful for
calibrating the F and S operations.

A recurring theme in this work has been the need for n-qubit
Toffoli gates (with n = 3, 4, and 5) when computing with the
Fibonacci code. These n-qubit Toffoli gates arise as a natural
consequence of the non-Abelian nature of this code. We believe
the possibility of using non-Abelian surface codes such as
the Fibonacci code for fault-tolerant quantum computation
provides further motivation for developing experimental tech-
niques to directly carry out accurate n-qubit Toffoli-class gates.
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