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Chiral spin liquids and quantum error-correcting codes
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The possibility of using the twofold topological degeneracy of spin-1/2 chiral spin liquid states on the torus
to construct quantum error-correcting codes is investigated. It is shown that codes constructed using these
states on finite periodic lattices do not meet the necessary and sufficient conditions for correcting even a single
qubit error with perfect fidelity. However, for large enough lattice sizes, these conditions are approximately
satisfied, and the resulting codes may therefore be viewed as approximate quantum error-correcting codes.

PACS numbdp): 03.67—a, 75.10.Jm

[. INTRODUCTION states can only be distinguished bjobal operators, e.g.,
operators which act on a set of spins which encircle a topo-
If one could be built, a quantum computer would be ca-logically nontrivial cycle of the torus formed by the periodic
pable of solving certain computational problems much mordattice. Kitaev showed that these “topologically” degenerate
efficiently than any classical computer, most notably factorstates could be used as quantum error-correcting codes,
ing large integers into primes in polynomial tinf¢] and  called toric codes, in which encoded qubits correspond to
searching unordered lists df items inO(NY?) queries[2]. particular superpositions of these degenerate ground states.
In a quantum computer classical bits, which take the values Because these states can only be distinguished by topological
or 1, are replaced by quantum bits, or qubits—two-levelquantum numbers, and not by any local observables, the en-
guantum systems whose Hilbert spaces are spanned by thizonment has difficulty “measuring” the encoded quantum
orthonormal statef0) and|1). Unlike a classical bit, a qubit information, which is therefore, to some extent, protected
can therefore be placed in an arbitrary quantum superposfrom decoherence.
tion a|0)+ B|1). However, due to the coupling of this qubit ~ This connection between quantum spin models with topo-
with the outside world, which may be small but which canlogically degenerate ground states and quantum error-
never be reduced to zero, this state will eventually becomeorrecting codes provides motivation to revisit some of the
entangled with its environment, losing its quantum cohertopological degeneracies which can arise “naturally” in cer-
ence. Because maintaining this coherence is crucial for quatiain condensed-matter systems. In this paper, as a concrete
tum computers to achieve their superiority over classicakxample, the spin-1/2 chiral spin liquid states originally pro-
computers, the question of how to protect qubits from decoposed by Kalmeyer and Laughlf8] as possible spin liquid
herence has been central to the ongoing effort in quanturground states for frustrated spin-1/2 quantum antiferromag-
computing. nets are considered in this context. It is known that these
One of the most surprising recent developments in quanstates possess a kind of topological ori@r not unlike the
tum information theory has been the discovery of a schem#opological order of Kitaev’s toric codes, which leads to non-
for fighting decoherence using what are called quantuntrivial ground-state degeneracies on Riemann surfaces with
error-correcting codeg3,4]. A quantum error-correcting genus 1 or greater. It should be emphasized that it is by no
code is a mapping from the Hilbert space of a single qubitmeans clear that the results of this paper will be useful for
(or, possibly, more than one quptb a subspace of the Hil- constructing quantum error-correction schemes for realistic
bert space of many physical qubits. The resulting many-qubiguantum computers. Rather, the goal of the present work is
state is then referred to as ancodedjubit. These encoded to provide some insight into the possible ways that the Hil-
states are carefully designed so that if an error occurs, i.e., lfiert space of an array of qubits can exhibit topological quan-
a small number of the physical qubits become entangled withum numbers.
their environment, certain measurements can be performed The paper is organized as follows. In Sec. Il, the basic
to determine which error has occurred and how it can bghysics of the chiral spin liquid states is reviewed. The case
correctedwithout disturbing the quantum information stored of finite N;XN, periodic lattices is considered and it is
in the encoded qubit. proven that, if properly constructed, the chiral spin liquid
An important connection between quantum error-states realized on these lattices are exact singlet states, gen-
correcting codes, many-body physics, and topological quareralizing a previous proof due to Laughlin that these states
tum numbers was pointed out by Kitagd], who constructed are singlets foiNX N periodic lattices withN even[8]. In
a class of spin Hamiltonians realized on two-dimensionabddition, it is shown by explicit construction that these states
lattices with periodic boundary conditions. For the simplestpossess a topological degeneracy on any periodic lattice, in
of these models, the physical qubits correspond to spin-1/agreement with7]. In Sec. 1lI, the nature of this topological
particles located on lattice edges. Kitaev showed that thesgegeneracy is characterized using the Lieb-Schultz-Mattis
models have degenerate ground states which are distinct, dfslow twist” operator and it is shown to be related to a
thogonal states but which nevertheless cannot be distirtopological decoupling of the Hilbert space of short-range
guished by anylocal operators. Instead, these degeneratevalence-bond states on periodic lattices. In Sec. IV, the gen-
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eral properties of quantum error-correcting codes are remetric wave function describing these bosonsbi§{r;}),
viewed and compared with analogous properties of the topahen the corresponding spin state is

logically degenerate chiral spin liquid states, which are

computed by variational Monte Carlo. It is shown that, un- - "

like the toric codes, chiral spin liquid states ot satisfy the |q>>={r rz,r , d{rhs S, S L. @)
necessary and sufficient conditions to be exact quantum veon

error-correcting codes. However, as the lattice size increases, Becausel, andJ, are both positive, the effective hopping
the violation of these conditions becomes weaker untiI, in thQOr the bosons is frustrated. As pointed out by Ka|meyer and
thermodynamic limit, they become satisfied. In this sense thﬁaugh]m [6], this frustration can be viewed as being due to
topologically degenerate chiral spin liquid states may behe presence of a magnetic field. To see this, imagine that
viewed as approximate gquantum error-correcting codes oBach boson has chargeand moves in the presence of a
large enough lattices. Finally, Sec. V summarizes the resultgagnetic field perpendicular to the plane of the lattice with

and conclusions of the paper. field strengthB= ¢,/b?, where¢,=hc/q is the flux quan-
tum. The corresponding vector potential in the Landau gauge
Il. CHIRAL SPIN LIQUID WAVE FUNCTIONS ON FINITE is thenA=—Byx and it can readily be shown that
PERIODIC LATTICES "
127 (1
Consider the following spin-1/2 Hamiltonian realized on a Ji=3; eXp—OJ A-dl, (©)]
T

two-dimensional square lattice:

127 Fj
Jo,==1J exp—f A-dl, (4)
H=\]1<izj> SiSJ+J2<<IZI>> SiSJ, (1) 2 2 o Jr,

wherer; andr; denote the starting and ending sites of the

where J;,J,=0 and (i,j) and ({i,j)) denote nearest- relevant hopping process and the line integrals are taken
neighbor and next-nearest-neighbor pairs of lattice sites, realong straight lines connecting these sites. Thus a positive
spectively. The lattice size is taken to bg XN, with N;  (frustrated J, corresponds to a negativenfrustrated J, in
even and lattice spacirtyg Periodic boundary conditions will the presence of a fictitious magnetic field of suitable
be assumed throughout the paper. For concretgiaeskfu-  strength.
ture referencethe lattice is taken to lie in they plane, with The sign ofJ; can be changed without affectinly by
lattice Siteg‘:(nl;(+ nzy)b, Wherenl and n, are integers_ leIdIng the square lattice int& and B sublattices and rotat-

If 3;>0 andJ,=0, Hamiltonian(1) describes an unfrus- iNg the spins on thé\ sublattice by 2r radians about any
trated two-dimensional spin-1/2 Heisenberg antiferromagnefixed axis in spin space while leaving tt sublattice un-
for which the ground state is known to possess long-rangéouched. Under this sublattice rotation, the boson wave func-
Neéel order in the thermodynamic limit. In the opposite ex- tion is transformed according to
treme,J,>J,, the two sublattices decouple, and each devel-
ops Nel order independently. It is generally believed that V({r})=
over an intermediate range &§/J; values, the ground state '
is in a “spin-Peierls” phase with a locally observable broken
translational symmetry, but there is no evidence that Hamillt is important for what follows to note that the spin wave
tonian (1) ever has a spin liquid ground state, i.e., a groundunction ® must satisfy periodic boundary conditions on an
state with neither long-range Bleorder nor any other locally Nj XN, lattice in thex andy directions, whereN; is even.
observable broken translational symmetry, other than atherefore, for even values df, the transformed wave func-
zero-temperature critical points. Nevertheless, in what foltion ¥ must also satisfy periodic boundary conditions in the
lows Hamiltonian(1) will be used to introduce the chiral x andy directions, while for odd values dfl,, due to the
spin liquid states with the understanding that while thesesublattice mismatchy® must satisfy periodic boundary con-
states almost certainly do not describe the ground state of Editions in thex directions andantiperiodic boundary condi-
(1) in any parameter range, theyaybe eigenstates of an as tions in they direction.
yet unknown frustrated spin Hamiltonian. Fortunately, the This mapping from a frustrated spin system to a gas of
topic of this paper—the relationship between chiral spin lig-hard-core bosons hopping on a lattice in the presence of a
uid states and quantum error-correcting codes—involvesnagnetic field inspired Kalmeyer and Laughlin to propose a
properties of Hilbert space and does not depend on th&ial wave function based on the related system of interacting
Hamiltonian. bosons moving in free spadé]. Following their work,

Hamiltonian(1) can be viewed as describing a system ofimagine that no lattice is present and that the bosons move
N interacting hard-core bosons hopping on a square latticen a torus of lengthL;=N;b in the x direction andL,
where N=N;N,/2. In this description, the bosons corre- =N,b in the y direction. Since the magnetic field B
spond to up spins moving in a down spin background with= ¢/b?=2(hc/q)n, where n is the number density of
matrix elementsl; and J, for nearest-neighbor and next- bosons, the effective Landau-level filling fraction for the
nearest-neighbor hopping, respectively. If the totally sym-bosons isy=1/2. In what follows, the effective magnetic

H eib(xi”i”Z)(I)({ri})- G
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lengthl = (%.c/qB)Y? s taken as the natural length scale andF,(Z). As shown by Haldangl1], this twofold degeneracy
set equal to 1, so that, for example, the lattice spaciry is is required for any translationally invariant system on a torus

— (2 7T) 1/2.

at v=1/2. Note that although the stat¥g, and¥'; span the

A naturalansatzfor the ground state of this many-boson two-dimensional Hilbert space of Laughlin states on the
system with strong short-range repulsion is that the boson®rus, they are not orthogonal. However, wher L, it can
condense into a=1/2 bosonic Laughlin state. The corre- be shown that
sponding Laughlin wave function is completely determined

by the lowest Landau-level constraint and the requirement
that the wave function vanish as(zi—zj)2 as two bosons oo 77[Z—Wn—L1
approach one another. In the Landau gauge, the Laughlin (Z)= [=2 > exp-

. n
wave function forv=1/2 bosons on ah, XL, torus can be 1m=—o

written [9]
w({r)=w({zhI] e” ()
where
w({z|}>=F<Z)if<[j [ m(z—2)/L4| 712 (7)

Here 9,(z|7) is the odd elliptic theta functiof10] with 7
=iL,/L4, zj=X;+1iy; is the complex coordinate of th¢h
boson,Z= %,z is the center-of-mass coordinate, and

2
F(2)=e*?1] oulm(Z-w,)/Ly|7] ®)

is the center-of-mass part of the wave function.

The constant&, w4, andw, in Eq. (8) must be chosen so

that ¥ satisfies the twisted boundary conditions
’\I}(rl"_)’il_l,rz, ...):ei¢l\1}(rl,r2, ), (9)
=€ bW (r 1y, ..

W(ry+ylo,ro, .. ), (10

for each boson coordinate. Hetlg and ¢, are two toroidal
fluxes which characterize theandy boundary conditions.

2

m+§

Lilo
(15

This function is sharply peaked at the poidts W, +L,/2
+mL, for any integem with peak widths~+/L;L,. It fol-
lows that in the limitL,/L,—0, the overlap betweefr
andF, vanishes and the statds, and¥; become orthogo-
nal.

To use ¥, and ¥, as wave functions for hard-core
bosons on thé&; XN, periodic square lattice, the boson co-

ordinates are restricted to the lattice points=(n;x

+n,y)b. For these lattice points, the '-2* factor in Eq.

(10) is identically 1 and the toroidal fluxeg; and ¢, then
correspond to overall phases associated with the boundary
conditions in thex andy directions. As shown above, for
even and odd values ®f, the boson wave function® , are
required to be, respectively, periodic and antiperiodic, in the
y direction. Thus¢,=0 for even values oN, and ¢,= =

for odd values ofN,, implying that the parametet, ap-
pearing inF,(2) is

nL,/2, N, even,
Wn= (2n+1)L,/4, N, odd. (16

BecauseN, is assumed to be even, the wave functidihg
are always required to be periodic in thalirection, imply-

The requirement that the wave function satisfy these boundng that ¢, =0 for all lattices.

ary conditions leads to the following restrictions Enw,,
andw, [9]:

eKZ_gidy (11
gi2m(wytwy)/ly — @ ¢2ek|—27 (12)

which can be satisfied in a variety of wa}g]. Here theK
=0 “coherent states” are used, for which

Fn(Z)= 04 m(Z—Wy)/L4|7]?, (13
where
(N ¢
Wn_(§+ E)Ll (14)
forn=0 and 1.

The two degenerate Laughlin statélsy and V4, corre-

The spin statesb, obtained fromW¥, by undoing the
sublattice rotation(5) are referred to as chiral spin liquid
states. These states break both time-reversal symmigtry
and parity(P) under both of whichb —®* [12]. This bro-
ken symmetry, characterized by a nonvanishing chiral order
parameter{ o+ - (0, X 03)), leads to a twofold degeneracy
which is clearlynot topological because it can be identified
by measuring a local order parameter, and therefore not po-
tentially useful for constructing quantum error-correcting
codes. However, the additional degeneracy associated with
the center-of-mass part of the wave function is global in
character and not associated with any local order parameter
(at least in the thermodynamic limit, see Sec).IUsing a
field-theoretic description, Wen has argued that the degen-
eracy of chiral spin liquids on a two-dimensional closed sur-
face with genug should be2(2)9, where the overall factor
of 2 is due to the brokei andP symmetries and the factor
of 29 is a measure of the topological ordét]. The explicit

sponding ton=0 and 1, are distinguished only by the dif- construction of the state®, and ®, on periodic lattices is
ference in the center-of-mass parts of their wave functionstherefore consistent with Wen'’s result fgr=1.
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The requirement that the spin statkg be singlet states is direction. Under this operator, the relative part of the wave
equivalent to the requiremeBt |®,)=0, which in turn im-  function ®, is unaffected and only the center-of-mass coor-
plies that dinate is shifted according to

' N;N5b N,L
> Dy(ry. 1y, ...)=0, (17) Z—Z+Nb=Z+ 122 —Z+ ;1. (23)
M

where the primed sum denotes a sum over lattice sites on tHeor odd values oN,, this implies that the center of mass is
torus. If the toroidal fluxes are chosen so thigtis periodic  shifted through a half-odd integer multiple bf and, due to

in both thex andy directions when evaluated on lattice sites, the periodic boundary conditions, this is equivalent to a net
then it can be shown thab,, satisfies Eq(17) by using the  shift of the center of mass bly,/2. Thus, in obvious nota-

singlet sum rule derived by Laughl[i], tion,
T,Fn(Z2)=F,(Z+L4/2), 24
E G(r)f(z)e’|z|2’2=0, (18) X n( ) n( 1 ) ( )
' from which it follows that
where for lattice sites=(n;x+ n,y)b, T.bo=D, and T,d,=dy 25
G(r):(—l)“1“2+“1+”2+1, (19)

This implies that for odd values ®,, the spin liquid states

and f(z) is any polynomial inz. Note that in order for Eq. ®, and @, break translational symmetry. Ip con_trast,_ for
(18) to be satisfied, it is necessary to sum over all lattice€Ven values oNy, the center-of-mass coordinate is shifted
points on the infinite two-dimensional plane. through an integer multiple df; and the translation operator

Following Laughlin[8], the sum rulg(18) can be applied Tx has no effect,
to the chiral spin liquid wave functions for finitl; <N, B B
periodic lattices by first exploiting the periodicity @f in the TxPo=®o and T,P,=®;. (26)
x andy directions to extend the summation in Eg7) to the

. . Finally, becaus®, is even, for both even and odd values of
entire lattice,

N,,
, 27NN - -
S Dry, )= lIm T S Dy, ), Ty®o=®o and T,y =y, @)
51 Row wRZ <R
(200  WhereT, is the translation operator which translates each

boson by one lattice vector in thedirection.
and then using the following identity which holds for all

lattice points: Ill. CONNECTION TO LIEB-SCHULTZ-MATTIS
b (X2 V212 24— 214 OPERATOR AND VALENCE-BOND TOPOLOGY
elb(x+y)2a—y =—G(r)e* Mg~ 1a"4 (21 . . T
The topological degeneracy of the chiral spin liquid states

to show that can be elucidated further by introducing Affleck’s two-
dimensional generalization of the Lieb-Schultz-Mattis slow

B 11,1y, ... )= ; G(rl)ezf"‘ twist operator{13,14],
T [ri/<R

[r/<R

— H 1 ! z
XFn(Z) (24,25, . .. )e |2l ULSM_eXp(' L, Z er), (28)
XH efyflz' (22) where the primed sum denotes a sum over lattice points on
i#1 the torus. The usefulness of this operator derives partly from

o _ ) ) the fact that wheN;>N,, for any singlet staté¢Sing) and
In the limit R— o2, the summation on the right-hand side of any rotationally invariant spin Hamiltonian such as EB,
Eq. (22) vanishes due to the sum rul&g) and the fact that  which only includes short-range interactions, it can be shown
the functione®*F(Z2)¥(z;,2,, . ..) isanalytic inz;. The that[13,14
chiral spin liquid states are therefore singlets &ty N;
X N, lattice whereN; is even, provided the toroidal fluxes
have been chosen, as they have been here, to ensure that the
spin wave function is periodic in both theandy directions.

The nature of the topological degeneracy of the chiralwhere J is a measure of the typical magnetic interaction
spin liquid states depends on wheti\ris even or odd. To strength. If, as is supposed to be the case ht¢ieas degen-
understand this distinction, consider the translation operatagrate singlet ground states separated by a gap from all ex-
T, which translates each boson by one lattice vector inxthe cited states, then Eq29) implies that in theN;/N,— o

(Sind(U syHU[ gy~ H)|Sing~0 J%) (29)
1
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limit, U, gy maps states in the finite-dimensional Hilbert 1.0 ——
space spanned by these states into one another. e o o R
The Lieb-Schultz-Mattis slow twist operator can be recast n=0 .
in bosonic language as A 03
T 2 gﬂ
_ a0 ’ e z
Uism ex;{ |L1 Z x)ex;{l le , (30 Y
whereX is thex coordinate of the center of mass. Due to the %
periodic boundary conditions, there is some freedom in la- @ -05
beling the lattice sites on the torus, and in order to precisely n=1 . ¢
defineU gy it is necessary to choose a particular labeling e *
scheme. Here it will be assumed that the primed sum in Eqg. -1 .% 00—""' 065 5 -10 015 520
(30) is over lattice sitesr=(n;x+n,y)b, where n,= : ' 1IN ' |
—Ny/2+1,...Ny/2 andn,=1,... N,. For this choice, !
Six=L,L,/(2b) and 1.0 ——
x=LaL, /(20) S
27 d
=(—j)N2 i — n=1 .
Uigu=(—1) ex;{| L X). (31 05
A
As shown in Sec. I, wheh;>L, the center-of-mass part 92
of the chiral spin liquid wave function®, becomes sharply D:% 0.0
peaked forZ=W,+L./2+mL; for any integerm. There- -
fore, in this limit ®
27 27 € 05 n=0 . *
exp<|L—lx)Fn(Z):—exp(|L—1Wn)Fn(Z). (32 e . ®
. . _ 1.0 L '
Combining Egs(31) and(32) and using Eq(16), one finds 0.00 0.05 0.10 0.15 0.20
that in theN;/N,—c limit the states®, and ®; become 1N,

eigenstates off), g\, with eigenvaluest 1,
FIG. 1. Real part of the expectation value of the Lieb-Schultz-

) (—1)"(—1)N2*22p N, even, Mattis slow twist operator in the chiral spin liquid statbg and®,
lim  Ugu®,= (_1)n(_1)(N2+ Vl2g, N. odd for N; X3 lattices (top) and N; x4 lattices (bottonm) plotted vs
(N1 /Ng)—ee ne 2 ' 1/N,. Statistical error bars are smaller than symbol sizes.

(33

Figure 1 shows the results of a numerical variational The requirement that valence bonds must connect two
Monte Carlo computation of the real part of the expectatiorsites, and only one bond may be attached to each site, gives
values(®,|U gu|®,) for n=0 and 1 andN,=3 and 4 plot- rise to a topological decoupling of the space of short-range
ted versus M;. The results clearly show that valence-bond stategl5-18. Figure 2 shows four short-
Re(®,|U gy|P,)— =1 in the N;—oo limit for fixed N,. range valence-bond states, two on’&a® lattice and two on
BecauseU, gy is a unitary operator, it follows thab, and a 6X4 lattice. In this figure solid lines connecting pairs of
@, become eigenstates 0Of_ gy in the N, /N,— o0 limit with lattice sites represent valence bonds. In each of these states,
eigenvaluest 1, consistent with Eq(33). the x projection of the length of each bond does not exceed

The fact thatd, and ®,; become eigenstates tf gy i 2b and so it is possible to unambiguously determine the way
the N, /N,—o limit leads to an appealing picture of the in which a given bond “wraps” around the periodic bound-
topological degeneracy of chiral spin liquids in terms of theary condition in thex direction (it is in this sense that these
valence-bond state basis. This basis consists of states #tates are short-range valence-bond stakes each of these
which spins are singlet correlated in pairs, which are said tstates, six vertical dashed lines are shown which “slice” the
be connected by valence bonds. Whiley singlet state may gaps between each vertical line of lattice sites. The parity
be represented as a linear superposition of valence-bor(@=odde=even) of the number of bonds cut by these
states, it is reasonable to assume that any singlet state, sugashed lines is then shown below each line.
as the chiral spin liquid states, in which the spin-spin corre- For N,=3, or any odd value o, an alternating even-
lation function decays exponentially with distarif&8], can  odd pattern invariably appeafd8]. Short-range valence-
by represented as a superpositionshiort-rangevalence-  bond states then fall into two distinct classes, which can be
bond states. A short-range valence-bond state is a valenceeferred to as even-odd and odd-even, corresponding to the
bond state containing only bonds with lengths less than &vo N,=3 configurations shown in Fig. 2. Foi,=4, or
specified length, or bonds with a distribution of lengthsany even value oN,, all gaps have the same parity and,
which falls off exponentially for long bonds. again, there are two possibilities, either each gap has odd
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q)o (I)1 remain approximately in singlet states, they each contribute a
factor of —1 to Eq. (34) because onlyone spin has been

/ N / \\N rotated through # radians.
A I N AAR & \ : According to Eq.(33), whenN;>N, the statesb, and
AU U

! @, become eigenstates bf, 5, with eigenvaluest 1. It is
| | therefore plausible to assume that these states can be repre-

oco0o¢co¢ €c0¢Cco0cCco sented as linear superpositions of those short-range valence-

o0 bond states which also become eigenstatebd @fy, in this

1 1 1 ._l . . . . H
’\I\\ ! limit with the same eigenvalues, i.e., those states whose gap

A parities are equal to the corresponding eigenvalues given in

: Eq. (33). The gap parity can then be viewed as the topologi-

e ! - e b cal qguantum number which distinguishes between the states
oo . ®, and®, in this limit. Note that the alternating even-odd or
000000 ceececce odd-even patterns which appear in the gap parities for odd

FIG. 2. Four short-range valence-bond configurations iIIustrat—values ofN,, and the uniform gap parities, either all even or

ing the topological quantum numbers responsible for the degen"?‘II odd, which appear for even values N}, are consistent

eracy of chiral spin liquid states on periodic lattices. Dashed linedVith the symmetry properties @b, and®, under the trans-
are drawn through horizontal gaps in these configurations with théation operatord, derived in Sec. II. For more details on the
parity of the number of valence bonds crossed by each line showRonnection between the Lieb-Schultz-Mattis slow twist op-
below (e=even, o=o0dd). The upper two configurations orx@ erator and the topological decoupling of short-range valence-
lattices indicate the generic behavior for odd width lattices in whichbond states, seld 8].

an alternating even-odd or odd-even pattern appears. The lower two

configurations on &4 lattices indicate the generic behavior for
even width lattices in which the gap parities are either all odd or alllV. CONNECTION TO QUANTUM ERROR-CORRECTING

even. The configurations on the left and right contribute, respec- CODES

tively, to the statesb, and®,, in a sense described in the text. . . . .
y 0 ! In the preceding section it was shown that, in a sense

_ ) ) which becomes precise in the limit;>N,, the topological
parity or each gap has even parity, corresponding to the twguantum number distinguishing degenerate chiral spin liquid
N,=4 states shown in Fig. 2. It is convenient to define astates is the gap parity. This topological quantum number is
topological quantum number, the gap parity, of a givensimilar to that of Kitaev's toric code in that it appears to be
short-range valence-bond stdte) to be (—1)”«, wherey, necessary to measuregkobal property of the system, using,
is the number of bonds which cross the gap between the lingr example, the Lieb-Schultz-Mattis slow twist operator, in
of lattice points withx=L,/2 and those wittk=b—L1/2,  order to determine its value. Motivated by this similarity
i.e., those bonds which cross the discontinuity ifue to the  petween chiral spin liquids and toric codes, it is natural to
periodic boundary conditions using the site-labeling schem@sk whether, or to what extent, the topologically degenerate
introduced above. According to this definition, for the two chiral spin liquid states on finite lattices can be viewed as
configurations at the top of Fig. 3,,=2 and 1, and the gap quantum error-correcting codes.
parities are+1 and—1, while for the two configurations at A guantum error-correcting code for a single qubit is a
the bottom of Fig. 2;y,=1 and 2, and the gap parities are mapping of the form|0)—|0,) and|1)—|1,), where the

—land+1. _ states|0, ) and|1,) are made up of severaghysicalqubits.
In [18] it was shown that ifN;>N, for any short-range |If the encoded qubit is placed in a pure sti¥g )=a|0,)
valence-bond statgr), + B|1.), then the initial density matrix describing the state is

po=|Y (Y |. After the physical qubits making up the en-
y coded qubit interact with their environment, the most general
Uiswla)=(—1)"|a). (34 effect on the density matrix is

The appearance of the gap parity; 1)?«, in Eq.(34) is due

to the minus sign obtained whenever a spin-1/2 particle is Poﬂé EaPOE;:pEzg EJYL(YLEL, (39
rotated through 2z radians about any axis. If a given short-

range valence-bond state is acted onUhygy, then, if Ny

>N,, for most valence bonds ifw) the two spins forming  with the constrain® ,E!E,=1, where the operatoi&, are

the bond are rotated by approximately the same amounteferred to as error operators. In order to be able to return the
These valence bonds are therefore only weakly affected bgncoded qubit to its original pure state, there must exist a
the slow twist operator. However, for thosg bonds which  recovery operation which satisfies

cross the discontinuity irx due to the periodic boundary

conditions, the operatdd, g, rotates one spin by approxi-

mately 27 radians while the other spin is, again approxi- t_o

matelz, not rotated at all. Therefore, E/)vhile thgse borFl)gs also pEHé RapeRa=po=[YL)(Y1. (36)
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TABLE |. Nearest-neighbor spin-spin correlation functions in the stdtggand &, for different lattice
sizes.

Latiice Size  (@olo,0” @)  (Dolofol 5lPo)  (@alotol sl (Dyfof ol il

4%2 —0.173(2) —0.946(2) —0.455(2) 0.273(5)
4% 4 —0.247(2) —0.246(3) —-0.230(2) —0.376(3)
4% 6 -0.216(2) -0.312(2) -0.217(2) —0.301(3)
4%8 —0.210(2) —0.306(3) —-0.210(2) —-0.307(3)
6X2 —-0.176(2) —0.944(2) —0.467(2) 0.322(5)
6x4 —-0.311(2) —-0.216(3) —-0.279(2) —0.376(3)
6X6 —0.298(2) —0.300(3) —-0.302(2) -0.281(3)
6x8 —0.303(2) —0.289(3) —0.302(2) —0.290(3)
8x2 —0.175(2) —0.944(2) —0.464(2) 0.335(5)
8x4 —0.306(2) —0.210(3) —0.275(2) —0.382(3)
8X6 —0.290(2) —0.303(3) —0.292(2) —0.281(3)
8x8 —-0.291(2) —-0.291(2) —0.290(2) —0.293(3)
4%3 —0.230(2) —0.241(3) —0.301(2) —-0.241(3)
4x5 —0.229(2) —0.301(3) —-0.221(2) -0.301(3)
4x7 —-0.213(2) —0.305(3) —-0.213(2) —0.305(3)
4%9 —0.209(2) —0.306(3) —0.209(2) —0.306(3)
6x3 —0.334(2) —0.239(3) —-0.257(2) —0.239(3)
6X5 —-0.280(2) —0.290(3) —0.292(2) —0.290(3)
6X7 —-0.283(2) —0.294(3) —-0.281(2) —0.294(3)
6x9 —-0.281(2) —-0.293(3) —-0.281(2) —0.293(3)
8x3 —0.258(2) —0.239(3) —0.336(2) —0.239(3)
8x5 —0.298(2) —0.290(3) —0.293(2) —0.290(3)
8x7 -0.291(2) —0.290(3) —-0.292(2) —0.290(3)
8x9 —0.290(2) —0.291(3) —0.290(2) —-0.291(3)

again with the constrainEaR;Rfl. The necessary and [0)=|Dy), (39

sufficient conditions for such a recovery operation to exist

are[19,2Q

1) =120 (@ol@D 20 w0
|_ - .
(OL|AIAL|OL) = (1 |AIAL[1y), (37) (1=K Po| @)
<0L|A;Ab|1L>=0, (38)  The question to be addressed is then, to what extent do these

states satisfy the criteriéd7) and (38) for being quantum

where the set of operatof#\,} form a linear basis for the error-correcting codes?
error operators, i.e., every error operator can be expanded as Becauseb, and®, are singlets, it is possible to simplify
E,=2p\apA,. For example, for a code capable of correct-EQs.(37) and (38) considerably for the case of single qubit
ing only a single qubit error, one may take the b4#ig} to  errors by noting that an arbitrary encoded qupif,)
consist of the identity operator and all Pauli matrices acting= «|0.)+ 8|1,) is also a singlet, implying that
on individual physical qubits.

The chiral spin liquid state®, and®, are not orthogo- (Yo% Y )=0 (41)
nal, except in the limitN,/N,—. However, on any finite '
lattice it is possible to orthogonalize them and use the result- ) ) )
ing states as a quantum code where the spin-1/2 particldgr &l lattice sites;, wherea=Xx, y, orz, thus ensuring that
located at lattice sites correspond to the physical qubits. FdFds-(37) and(38) are satisfied foA,= o7’ andA,=1. Like-
example, wise,
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<YL|0'|?;0'F]|YL>:5a,B<YL|O'$i0'|%j|YL> (42) D,

for all lattice siteg; andr; . The conditions for a singlet state

to be a quantum error-correcting code capable of correcting a
single qubit error can then be shown to be equivalent to the
requirement that

<Y|_|O'?i0'fj|Y|_>:Cij (43)

for all statesY, i.e., the spin-spin correlation functions
must beidentical for any encoded state.

Because the spin-spin correlation function decays rapidly
with distance in the chiral spin liquid statg& 8], the largest
violation of Eq.(43) is likely to occur for nearest-neighbor

FIG. 3. Patterns formed by nearest-neighbor spin-spin correla-

spin correlations. Consider these correlations faf, )
=|®gy) and |Y )=|®,). For odd values oN,, there is a
broken translation symmetry in thedirection, T,®y=®,
andT,®,=®,, and, for any lattice site,
<(I)n|o'foo'fo+bé|q)n>:<q)n|0' |q)n>

(44)

z z
ro+20x71 o+ ba+ 2bx

and

<®O|Ufoafo+b;|q’o>:<‘b1|0 (@) (49

z . z . .
r0+bx0r0+ba+bx
Here, and in what followsa=x,y. For even values oR.,
there is no broken translation symmetry in thelirection,
T,d,=d,, and

z z z
(D] O'foo'r0+b5|q)n> = <(I)n|0'r0+bio'r0+bé+b§<

[®p). (46)
For both even and odd values df,, there is no broken
translation symmetry in thg direction, T,®,=®,,, and so
in both cases

<(Dn| U?OUfOJr bé|q)n> = <(I)n| O'fOergo'foJr bat b§,|q)n>- (47)

Finally, for odd values ofN, the fact that the chiral spin
liquid states are symmetric underT, the product of parity
and time-reversdl12], implies that

(Dolof o] il Po)=(Pa|of o] . s|Py).

fo~ rot+by fo rogtby

(48)

Though it is not possible to compute these correlatio
functions analytically, it is straightforward to compute them
numerically using standard variational Monte Carlo tech-
nigues, and the results of such calculations for various lattic

sizes are given in Table I. In this table the sitg is
taken to be the originrg=0x+0y) and for each lattice

size the correlation functions(d)n|ofoaf Lpi/Pn) and
0

-|®,) are given forn=0 and 1. Using the

<q)n| Ufoo'f(ﬁ. by

n

tion functions((bn|afiafj|d)n) for the topologically degenerate chi-
ral spin liquid state®, and®, on 6X 3 and 6x 4 lattices. Thicker
lines correspond, qualitatively, to larger values of
—(®plo7, crfjld)n) (thicknesses of the lines are exaggerated for clar-
ity). For odd values oN,, the broken translation symmetry is ob-
servable. For even values Wf, the nearest-neighbor spin-spin cor-
relation functions are different in the two states. The ability to
distinguish betwee®, and®,; by measuring operators consisting
of only two Pauli matrices indicates that although the underlying
distinction between them is topological, as depicted in Fig. 2, these
states are not quantum error-correcting codes on finite lattices.

As can be seen in Table I, on finite lattices the nearest-
neighbor spin-spin correlation functions aret identical for
®, andd,, thus violating Eq(43). Therefore, on these lat-
tices, the topologically degenerate chiral spin liquid states
are not exact quantum error-correcting codes, even for single
qubit errors. While it is true that with increasing lattice size
the difference between correlation functionsdr and &
becomes smaller, until it is no longer possible to distinguish
between them due to the statistical error bars of the Monte
Carlo simulation, given the clear violation of E(3) for
lattices sizes as large a<® it is unlikely that these corre-
lation functions ever become exactly equal to one another on
any finite lattice. Rather, it is more plausible that they ap-
proach each other exponentially as the system size, in par-
ticularN,, increases, though no proof of this has been found.

The distinction between the statég andd; can be seen
clearly in the patterns formed by the values of the nearest-
neighbor spin-spin correlation functions. These patterns are
shown for 6X3 and 6x4 lattices in Fig. 3. If the topologi-
cally degenerate chiral spin liquid states did provide exact
guantum error-correcting codes for single qubit errors, then
these patterns would be identical for a given lattice size.
Figure 3 together with Table | show clearly that despite the
fact that the underlying distinction between the statgsand
®, is topological, as illustrated in Fig. 2, on finite lattices the
difference between them can still be measured locally using
just two Pauli matrices. However, as stated above, the
nearest-neighbor spin-spin correlation functions rapidly be-
come effectively indistinguishable for these two states as the

symmetry properties derived above, these correlation funqutiice size increases, as do, plausibly, all the correlation
tions can be used to determine all nearest-neighbor spin-spinctions appearing in Eq43). In this sense the topologi-

correlation functions fob, and®,. (Note that for odd val-

cally degenerate chiral spin liquid states on sufficiently large

ues of N, there is some redundancy in the table, sinCeattices may be viewed as approximate quantum error-

(D U'foo'fomg,@o) = <(I)1|0'?00'fo+b§,|‘1)1>-)

correcting codes.
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V. CONCLUSIONS not perfectly indistinguishable when measured with local op-
. . o __ erators, except in the thermodynamic limit. Thus, on finite
B e et eCpero atice, tese states o o sty the rira
trated spin-1/2 antiferromagnets have been analyzed from thaend (38), and so are nqt exact quantp m er'ror-co'rrec_:tlng
point of view of their connection to quantum error-correcting codes—any error-correction scheme using C.hlral spln_llqwd
codes. Explicit wave functions were constructed for the twos’t.a tes would not _be able to recover even a smgl_e av bit error
topologically degenerate chiral spin liquid states on finiteWlth perfect fidelity. At the same time, the distinction be-_
periodic Ny X N, lattices withN, even and it was proven tween these states, as measured _by chal operators, rapidly
that. if prolperli constructed thlese states are exact SingleFecomes unobservable as the lattice size increases. There-
’ ' gre, on large enough lattices, the topologically degenerate

for any such lattice. It was also shown that, in a sense whicly; o, spin liquid states may be viewed as approximate quan-
becomes precise whex;>N,, the property characterizing }um error-correcting codes

the topological degeneracy is the gap parity—a topological
guantum number associated with the short-range valence- ACKNOWLEDGMENT
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