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Chiral spin liquids and quantum error-correcting codes
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The possibility of using the twofold topological degeneracy of spin-1/2 chiral spin liquid states on the torus
to construct quantum error-correcting codes is investigated. It is shown that codes constructed using these
states on finite periodic lattices do not meet the necessary and sufficient conditions for correcting even a single
qubit error with perfect fidelity. However, for large enough lattice sizes, these conditions are approximately
satisfied, and the resulting codes may therefore be viewed as approximate quantum error-correcting codes.

PACS number~s!: 03.67.2a, 75.10.Jm
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I. INTRODUCTION

If one could be built, a quantum computer would be c
pable of solving certain computational problems much m
efficiently than any classical computer, most notably fact
ing large integers into primes in polynomial time@1# and
searching unordered lists ofN items inO(N1/2) queries@2#.
In a quantum computer classical bits, which take the value
or 1, are replaced by quantum bits, or qubits—two-le
quantum systems whose Hilbert spaces are spanned b
orthonormal statesu0& andu1&. Unlike a classical bit, a qubi
can therefore be placed in an arbitrary quantum superp
tion au0&1bu1&. However, due to the coupling of this qub
with the outside world, which may be small but which c
never be reduced to zero, this state will eventually beco
entangled with its environment, losing its quantum coh
ence. Because maintaining this coherence is crucial for qu
tum computers to achieve their superiority over class
computers, the question of how to protect qubits from de
herence has been central to the ongoing effort in quan
computing.

One of the most surprising recent developments in qu
tum information theory has been the discovery of a sche
for fighting decoherence using what are called quant
error-correcting codes@3,4#. A quantum error-correcting
code is a mapping from the Hilbert space of a single qu
~or, possibly, more than one qubit! to a subspace of the Hil
bert space of many physical qubits. The resulting many-q
state is then referred to as anencodedqubit. These encoded
states are carefully designed so that if an error occurs, i.e
a small number of the physical qubits become entangled w
their environment, certain measurements can be perfor
to determine which error has occurred and how it can
correctedwithout disturbing the quantum information store
in the encoded qubit.

An important connection between quantum err
correcting codes, many-body physics, and topological qu
tum numbers was pointed out by Kitaev@5#, who constructed
a class of spin Hamiltonians realized on two-dimensio
lattices with periodic boundary conditions. For the simpl
of these models, the physical qubits correspond to spin
particles located on lattice edges. Kitaev showed that th
models have degenerate ground states which are distinc
thogonal states but which nevertheless cannot be dis
guished by anylocal operators. Instead, these degener
1050-2947/2000/62~6!/062310~9!/$15.00 62 0623
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states can only be distinguished byglobal operators, e.g.,
operators which act on a set of spins which encircle a to
logically nontrivial cycle of the torus formed by the period
lattice. Kitaev showed that these ‘‘topologically’’ degenera
states could be used as quantum error-correcting co
called toric codes, in which encoded qubits correspond
particular superpositions of these degenerate ground st
Because these states can only be distinguished by topolo
quantum numbers, and not by any local observables, the
vironment has difficulty ‘‘measuring’’ the encoded quantu
information, which is therefore, to some extent, protec
from decoherence.

This connection between quantum spin models with to
logically degenerate ground states and quantum er
correcting codes provides motivation to revisit some of
topological degeneracies which can arise ‘‘naturally’’ in ce
tain condensed-matter systems. In this paper, as a con
example, the spin-1/2 chiral spin liquid states originally pr
posed by Kalmeyer and Laughlin@6# as possible spin liquid
ground states for frustrated spin-1/2 quantum antiferrom
nets are considered in this context. It is known that th
states possess a kind of topological order@7#, not unlike the
topological order of Kitaev’s toric codes, which leads to no
trivial ground-state degeneracies on Riemann surfaces
genus 1 or greater. It should be emphasized that it is by
means clear that the results of this paper will be useful
constructing quantum error-correction schemes for reali
quantum computers. Rather, the goal of the present wor
to provide some insight into the possible ways that the H
bert space of an array of qubits can exhibit topological qu
tum numbers.

The paper is organized as follows. In Sec. II, the ba
physics of the chiral spin liquid states is reviewed. The c
of finite N13N2 periodic lattices is considered and it
proven that, if properly constructed, the chiral spin liqu
states realized on these lattices are exact singlet states,
eralizing a previous proof due to Laughlin that these sta
are singlets forN3N periodic lattices withN even @8#. In
addition, it is shown by explicit construction that these sta
possess a topological degeneracy on any periodic lattice
agreement with@7#. In Sec. III, the nature of this topologica
degeneracy is characterized using the Lieb-Schultz-Ma
‘‘slow twist’’ operator and it is shown to be related to
topological decoupling of the Hilbert space of short-ran
valence-bond states on periodic lattices. In Sec. IV, the g
©2000 The American Physical Society10-1
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N. E. BONESTEEL PHYSICAL REVIEW A 62 062310
eral properties of quantum error-correcting codes are
viewed and compared with analogous properties of the to
logically degenerate chiral spin liquid states, which a
computed by variational Monte Carlo. It is shown that, u
like the toric codes, chiral spin liquid states donot satisfy the
necessary and sufficient conditions to be exact quan
error-correcting codes. However, as the lattice size increa
the violation of these conditions becomes weaker until, in
thermodynamic limit, they become satisfied. In this sense
topologically degenerate chiral spin liquid states may
viewed as approximate quantum error-correcting codes
large enough lattices. Finally, Sec. V summarizes the res
and conclusions of the paper.

II. CHIRAL SPIN LIQUID WAVE FUNCTIONS ON FINITE
PERIODIC LATTICES

Consider the following spin-1/2 Hamiltonian realized on
two-dimensional square lattice:

H5J1(
^ i , j &

Si•Sj1J2 (
^^ i , j &&

Si•Sj , ~1!

where J1 ,J2>0 and ^ i , j & and ^^ i , j && denote nearest
neighbor and next-nearest-neighbor pairs of lattice sites
spectively. The lattice size is taken to beN13N2 with N1
even and lattice spacingb. Periodic boundary conditions wil
be assumed throughout the paper. For concreteness~and fu-
ture reference! the lattice is taken to lie in thexy plane, with
lattice sitesr5(n1x̂1n2ŷ)b, wheren1 andn2 are integers.

If J1.0 andJ250, Hamiltonian~1! describes an unfrus
trated two-dimensional spin-1/2 Heisenberg antiferromag
for which the ground state is known to possess long-ra
Néel order in the thermodynamic limit. In the opposite e
treme,J2@J1, the two sublattices decouple, and each dev
ops Néel order independently. It is generally believed th
over an intermediate range ofJ2 /J1 values, the ground stat
is in a ‘‘spin-Peierls’’ phase with a locally observable brok
translational symmetry, but there is no evidence that Ham
tonian ~1! ever has a spin liquid ground state, i.e., a grou
state with neither long-range Ne´el order nor any other locally
observable broken translational symmetry, other than
zero-temperature critical points. Nevertheless, in what
lows Hamiltonian~1! will be used to introduce the chira
spin liquid states with the understanding that while the
states almost certainly do not describe the ground state o
~1! in any parameter range, theymaybe eigenstates of an a
yet unknown frustrated spin Hamiltonian. Fortunately, t
topic of this paper—the relationship between chiral spin l
uid states and quantum error-correcting codes—invol
properties of Hilbert space and does not depend on
Hamiltonian.

Hamiltonian~1! can be viewed as describing a system
N interacting hard-core bosons hopping on a square la
where N5N1N2/2. In this description, the bosons corr
spond to up spins moving in a down spin background w
matrix elementsJ1 and J2 for nearest-neighbor and nex
nearest-neighbor hopping, respectively. If the totally sy
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metric wave function describing these bosons isF($r i%),
then the corresponding spin state is

uF&5 (
$r1r2•••rN%

F~$r i%!Sr1

1Sr2

1
•••SrN

1 u↓↓•••↓&. ~2!

BecauseJ1 andJ2 are both positive, the effective hoppin
for the bosons is frustrated. As pointed out by Kalmeyer a
Laughlin @6#, this frustration can be viewed as being due
the presence of a magnetic field. To see this, imagine
each boson has chargeq and moves in the presence of
magnetic field perpendicular to the plane of the lattice w
field strengthB5f0 /b2, wheref05hc/q is the flux quan-
tum. The corresponding vector potential in the Landau ga
is thenA52Byx̂ and it can readily be shown that

J15J1 exp
i2p

f0
E

r i

r j
A•dl, ~3!

J252J2 exp
i2p

f0
E

r i

r j
A•dl, ~4!

where r i and r j denote the starting and ending sites of t
relevant hopping process and the line integrals are ta
along straight lines connecting these sites. Thus a pos
~frustrated! J2 corresponds to a negative~unfrustrated! J2 in
the presence of a fictitious magnetic field of suitab
strength.

The sign ofJ1 can be changed without affectingJ2 by
dividing the square lattice intoA andB sublattices and rotat
ing the spins on theA sublattice by 2p radians about any
fixed axis in spin space while leaving theB sublattice un-
touched. Under this sublattice rotation, the boson wave fu
tion is transformed according to

C~$r i%!5S)
i

eib(xi1yi )/2DF~$r i%!. ~5!

It is important for what follows to note that the spin wav
function F must satisfy periodic boundary conditions on
N13N2 lattice in thex and y directions, whereN1 is even.
Therefore, for even values ofN2 the transformed wave func
tion C must also satisfy periodic boundary conditions in t
x and y directions, while for odd values ofN2, due to the
sublattice mismatch,C must satisfy periodic boundary con
ditions in thex directions andantiperiodicboundary condi-
tions in they direction.

This mapping from a frustrated spin system to a gas
hard-core bosons hopping on a lattice in the presence
magnetic field inspired Kalmeyer and Laughlin to propos
trial wave function based on the related system of interac
bosons moving in free space@6#. Following their work,
imagine that no lattice is present and that the bosons m
on a torus of lengthL15N1b in the x direction andL2
5N2b in the y direction. Since the magnetic field isB
5f0 /b252(hc/q)n, where n is the number density o
bosons, the effective Landau-level filling fraction for th
bosons isn51/2. In what follows, the effective magneti
0-2
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CHIRAL SPIN LIQUIDS AND QUANTUM ERROR- . . . PHYSICAL REVIEW A 62 062310
lengthl 05(\c/qB)1/2 is taken as the natural length scale a
set equal to 1, so that, for example, the lattice spacingb
5(2p)1/2.

A naturalansatzfor the ground state of this many-boso
system with strong short-range repulsion is that the bos
condense into an51/2 bosonic Laughlin state. The corre
sponding Laughlin wave function is completely determin
by the lowest Landau-level constraint and the requirem
that the wave function vanish as;(zi2zj )

2 as two bosons
approach one another. In the Landau gauge, the Laug
wave function forn51/2 bosons on anL13L2 torus can be
written @9#

C~$r i%!5c~$zi%!)
i

e2yi
2/2, ~6!

where

c~$zl%!5F~Z!)
i , j

q1@p~zi2zj !/L1ut#2. ~7!

Here q1(zut) is the odd elliptic theta function@10# with t
5 iL 2 /L1 , zi5xi1 iy i is the complex coordinate of thei th
boson,Z5( izi is the center-of-mass coordinate, and

F~Z!5eiKZ )
n51

2

q1@p~Z2wn!/L1ut# ~8!

is the center-of-mass part of the wave function.
The constantsK, w1, andw2 in Eq. ~8! must be chosen so

that C satisfies the twisted boundary conditions

C~r11 x̂L1 ,r2 , . . . !5eif1C~r1 ,r2 , . . . !, ~9!

C~r11 ŷL2 ,r2 , . . . !5eif2e2 iL 2xC~r1 ,r2 , . . . !, ~10!

for each boson coordinate. Heref1 andf2 are two toroidal
fluxes which characterize thex and y boundary conditions.
The requirement that the wave function satisfy these bou
ary conditions leads to the following restrictions onK, w1,
andw2 @9#:

eiKZ5eif1, ~11!

ei2p(w11w2)/L15eif2ekL2, ~12!

which can be satisfied in a variety of ways@9#. Here theK
50 ‘‘coherent states’’ are used, for which

Fn~Z!5q1@p~Z2Wn!/L1ut#2, ~13!

where

Wn5S n

2
1

f2

4p DL1 ~14!

for n50 and 1.
The two degenerate Laughlin states,C0 and C1, corre-

sponding ton50 and 1, are distinguished only by the di
ference in the center-of-mass parts of their wave functio
06231
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Fn(Z). As shown by Haldane@11#, this twofold degeneracy
is required for any translationally invariant system on a to
at n51/2. Note that although the statesC0 andC1 span the
two-dimensional Hilbert space of Laughlin states on t
torus, they are not orthogonal. However, whenL1@L2 it can
be shown that

Fn~Z!.AL2

L1
(

m52`

`

exp2

pFZ2Wn2L1S m1
1

2D G2

L1L2
.

~15!

This function is sharply peaked at the pointsZ5Wn1L1/2
1mL1 for any integerm with peak widths;AL1L2. It fol-
lows that in the limitL1 /L2→`, the overlap betweenF0
andF1 vanishes and the statesC0 andC1 become orthogo-
nal.

To use C0 and C1 as wave functions for hard-cor
bosons on theN13N2 periodic square lattice, the boson c
ordinates are restricted to the lattice pointsr5(n1x̂
1n2ŷ)b. For these lattice points, thee2 iL 2x factor in Eq.
~10! is identically 1 and the toroidal fluxesf1 andf2 then
correspond to overall phases associated with the boun
conditions in thex and y directions. As shown above, fo
even and odd values ofN2 the boson wave functionsCn are
required to be, respectively, periodic and antiperiodic, in
y direction. Thusf250 for even values ofN2 and f25p
for odd values ofN2, implying that the parameterWn ap-
pearing inFn(Z) is

Wn5H nL1/2, N2 even,

~2n11!L1/4, N2 odd.
~16!

BecauseN1 is assumed to be even, the wave functionsCn
are always required to be periodic in thex direction, imply-
ing thatf150 for all lattices.

The spin statesFn obtained fromCn by undoing the
sublattice rotation~5! are referred to as chiral spin liqui
states. These states break both time-reversal symmetry~T!
and parity~P! under both of whichF→F* @12#. This bro-
ken symmetry, characterized by a nonvanishing chiral or
parameter̂ s1•(s23s3)&, leads to a twofold degenerac
which is clearlynot topological because it can be identifie
by measuring a local order parameter, and therefore not
tentially useful for constructing quantum error-correcti
codes. However, the additional degeneracy associated
the center-of-mass part of the wave function is global
character and not associated with any local order param
~at least in the thermodynamic limit, see Sec. IV!. Using a
field-theoretic description, Wen has argued that the deg
eracy of chiral spin liquids on a two-dimensional closed s
face with genusg should be2(2)g, where the overall factor
of 2 is due to the brokenT andP symmetries and the facto
of 2g is a measure of the topological order@7#. The explicit
construction of the statesF0 andF1 on periodic lattices is
therefore consistent with Wen’s result forg51.
0-3
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N. E. BONESTEEL PHYSICAL REVIEW A 62 062310
The requirement that the spin statesFn be singlet states is
equivalent to the requirementS2uFn&50, which in turn im-
plies that

(
r1

8 Fn~r1 ,r2 , . . . !50, ~17!

where the primed sum denotes a sum over lattice sites on
torus. If the toroidal fluxes are chosen so thatFn is periodic
in both thex andy directions when evaluated on lattice site
then it can be shown thatFn satisfies Eq.~17! by using the
singlet sum rule derived by Laughlin@8#,

(
r

G~r ! f ~z!e2uzu2/250, ~18!

where for lattice sitesr5(n1x̂1n2ŷ)b,

G~r !5~21!n1n21n11n211, ~19!

and f (z) is any polynomial inz. Note that in order for Eq.
~18! to be satisfied, it is necessary to sum over all latt
points on the infinite two-dimensional plane.

Following Laughlin@8#, the sum rule~18! can be applied
to the chiral spin liquid wave functions for finiteN13N2
periodic lattices by first exploiting the periodicity ofF in the
x andy directions to extend the summation in Eq.~17! to the
entire lattice,

(
r1

8 Fn~r1 ,r2 , . . . !5 lim
R→`

2pN1N2

pR2 (
ur1u,R

Fn~r1 ,r2 , . . . !,

~20!

and then using the following identity which holds for a
lattice points:

eib(x1y)/2e2y2/252G~r !ez2/4e2uzu2/4, ~21!

to show that

(
ur1u,R

Fn~r1 ,r2 , . . . !5 (
ur1u,R

G~r1!ez1
2/4

3Fn~Z!c~z1 ,z2 , . . . !e2uz1u2/4

3)
iÞ1

e2yi
2/2. ~22!

In the limit R→`, the summation on the right-hand side
Eq. ~22! vanishes due to the sum rule~18! and the fact that

the functionez1
2/4Fn(Z)c(z1 ,z2 , . . . ) is analytic inz1. The

chiral spin liquid states are therefore singlets forany N1
3N2 lattice whereN1 is even, provided the toroidal fluxe
have been chosen, as they have been here, to ensure th
spin wave function is periodic in both thex andy directions.

The nature of the topological degeneracy of the ch
spin liquid states depends on whetherN2 is even or odd. To
understand this distinction, consider the translation oper
Tx which translates each boson by one lattice vector in thx
06231
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direction. Under this operator, the relative part of the wa
function Fn is unaffected and only the center-of-mass co
dinate is shifted according to

Z→Z1Nb5Z1
N1N2b

2
5Z1

N2L1

2
. ~23!

For odd values ofN2, this implies that the center of mass
shifted through a half-odd integer multiple ofL1 and, due to
the periodic boundary conditions, this is equivalent to a
shift of the center of mass byL1/2. Thus, in obvious nota-
tion,

TxFn~Z!5Fn~Z1L1/2!, ~24!

from which it follows that

TxF05F1 and TxF15F0 . ~25!

This implies that for odd values ofN2, the spin liquid states
F0 and F1 break translational symmetry. In contrast, f
even values ofN2, the center-of-mass coordinate is shifte
through an integer multiple ofL1 and the translation operato
Tx has no effect,

TxF05F0 and TxF15F1 . ~26!

Finally, becauseN1 is even, for both even and odd values
N2,

TyF05F0 and TyF15F1 , ~27!

where Ty is the translation operator which translates ea
boson by one lattice vector in they direction.

III. CONNECTION TO LIEB-SCHULTZ-MATTIS
OPERATOR AND VALENCE-BOND TOPOLOGY

The topological degeneracy of the chiral spin liquid sta
can be elucidated further by introducing Affleck’s two
dimensional generalization of the Lieb-Schultz-Mattis slo
twist operator@13,14#,

ULSM5expS i
p

L1
(

r
8 xs r

zD , ~28!

where the primed sum denotes a sum over lattice points
the torus. The usefulness of this operator derives partly fr
the fact that whenN1@N2, for any singlet stateuSing& and
any rotationally invariant spin Hamiltonian such as Eq.~1!,
which only includes short-range interactions, it can be sho
that @13,14#

^Singu~ULSMHULSM
† 2H !uSing&;OS J

N2

N1
D , ~29!

where J is a measure of the typical magnetic interacti
strength. If, as is supposed to be the case here,H has degen-
erate singlet ground states separated by a gap from all
cited states, then Eq.~29! implies that in theN1 /N2→`
0-4
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CHIRAL SPIN LIQUIDS AND QUANTUM ERROR- . . . PHYSICAL REVIEW A 62 062310
limit, ULSM maps states in the finite-dimensional Hilbe
space spanned by these states into one another.

The Lieb-Schultz-Mattis slow twist operator can be rec
in bosonic language as

ULSM5expS 2 i
p

L1
(

r
8 xD expS i

2p

L1
XD , ~30!

whereX is thex coordinate of the center of mass. Due to t
periodic boundary conditions, there is some freedom in
beling the lattice sites on the torus, and in order to precis
defineULSM it is necessary to choose a particular labeli
scheme. Here it will be assumed that the primed sum in
~30! is over lattice sitesr5(n1x̂1n2ŷ)b, where n15
2N1/211, . . . ,N1/2 and n251, . . . ,N2. For this choice,
( r8x5L2L1 /(2b) and

ULSM5~2 i !N2 expS i
2p

L1
XD . ~31!

As shown in Sec. II, whenL1@L2 the center-of-mass par
of the chiral spin liquid wave functionsFn becomes sharply
peaked forZ5Wn1L1/21mL1 for any integerm. There-
fore, in this limit

expS i
2p

L1
XDFn~Z!.2expS i

2p

L1
WnDFn~Z!. ~32!

Combining Eqs.~31! and ~32! and using Eq.~16!, one finds
that in theN1 /N2→` limit the statesF0 and F1 become
eigenstates ofULSM with eigenvalues61,

lim
(N1 /N2)→`

ULSMFn5H ~21!n~21!(N212)/2Fn , N2 even,

~21!n~21!(N211)/2Fn , N2 odd.
~33!

Figure 1 shows the results of a numerical variatio
Monte Carlo computation of the real part of the expectat
values^FnuULSMuFn& for n50 and 1 andN253 and 4 plot-
ted versus 1/N1. The results clearly show tha
Rê FnuULSMuFn&→61 in the N1→` limit for fixed N2.
BecauseULSM is a unitary operator, it follows thatF0 and
F1 become eigenstates ofULSM in theN1 /N2→` limit with
eigenvalues61, consistent with Eq.~33!.

The fact thatF0 andF1 become eigenstates ofULSM in
the N1 /N2→` limit leads to an appealing picture of th
topological degeneracy of chiral spin liquids in terms of t
valence-bond state basis. This basis consists of state
which spins are singlet correlated in pairs, which are said
be connected by valence bonds. Whileany singlet state may
be represented as a linear superposition of valence-b
states, it is reasonable to assume that any singlet state,
as the chiral spin liquid states, in which the spin-spin cor
lation function decays exponentially with distance@6,8#, can
by represented as a superposition ofshort-rangevalence-
bond states. A short-range valence-bond state is a vale
bond state containing only bonds with lengths less tha
specified length, or bonds with a distribution of lengt
which falls off exponentially for long bonds.
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The requirement that valence bonds must connect
sites, and only one bond may be attached to each site, g
rise to a topological decoupling of the space of short-ran
valence-bond states@15–18#. Figure 2 shows four short
range valence-bond states, two on a 633 lattice and two on
a 634 lattice. In this figure solid lines connecting pairs
lattice sites represent valence bonds. In each of these st
the x projection of the length of each bond does not exce
2b and so it is possible to unambiguously determine the w
in which a given bond ‘‘wraps’’ around the periodic boun
ary condition in thex direction ~it is in this sense that thes
states are short-range valence-bond states!. For each of these
states, six vertical dashed lines are shown which ‘‘slice’’ t
gaps between each vertical line of lattice sites. The pa
(o5odd,e5even) of the number of bonds cut by the
dashed lines is then shown below each line.

For N253, or any odd value ofN2, an alternating even-
odd pattern invariably appears@18#. Short-range valence
bond states then fall into two distinct classes, which can
referred to as even-odd and odd-even, corresponding to
two N253 configurations shown in Fig. 2. ForN254, or
any even value ofN2, all gaps have the same parity an
again, there are two possibilities, either each gap has

FIG. 1. Real part of the expectation value of the Lieb-Schu
Mattis slow twist operator in the chiral spin liquid statesF0 andF1

for N133 lattices ~top! and N134 lattices ~bottom! plotted vs
1/N1. Statistical error bars are smaller than symbol sizes.
0-5
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N. E. BONESTEEL PHYSICAL REVIEW A 62 062310
parity or each gap has even parity, corresponding to the
N254 states shown in Fig. 2. It is convenient to define
topological quantum number, the gap parity, of a giv
short-range valence-bond stateua& to be (21)ga, wherega
is the number of bonds which cross the gap between the
of lattice points withx5L1/2 and those withx5b2L1/2,
i.e., those bonds which cross the discontinuity inx due to the
periodic boundary conditions using the site-labeling sche
introduced above. According to this definition, for the tw
configurations at the top of Fig. 2,ga52 and 1, and the gap
parities are11 and21, while for the two configurations a
the bottom of Fig. 2,ga51 and 2, and the gap parities a
21 and11.

In @18# it was shown that ifN1@N2 for any short-range
valence-bond stateua&,

ULSMua&.~21!gaua&. ~34!

The appearance of the gap parity, (21)ga, in Eq. ~34! is due
to the minus sign obtained whenever a spin-1/2 particle
rotated through 2p radians about any axis. If a given shor
range valence-bond state is acted on byULSM , then, if N1
@N2, for most valence bonds inua& the two spins forming
the bond are rotated by approximately the same amo
These valence bonds are therefore only weakly affected
the slow twist operator. However, for thosega bonds which
cross the discontinuity inx due to the periodic boundar
conditions, the operatorULSM rotates one spin by approx
mately 2p radians while the other spin is, again appro
mately, not rotated at all. Therefore, while these bonds a

FIG. 2. Four short-range valence-bond configurations illust
ing the topological quantum numbers responsible for the deg
eracy of chiral spin liquid states on periodic lattices. Dashed li
are drawn through horizontal gaps in these configurations with
parity of the number of valence bonds crossed by each line sh
below (e5even, o5odd). The upper two configurations on 633
lattices indicate the generic behavior for odd width lattices in wh
an alternating even-odd or odd-even pattern appears. The lowe
configurations on 634 lattices indicate the generic behavior f
even width lattices in which the gap parities are either all odd or
even. The configurations on the left and right contribute, resp
tively, to the statesF0 andF1, in a sense described in the text.
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remain approximately in singlet states, they each contribu
factor of 21 to Eq. ~34! because onlyone spin has been
rotated through 2p radians.

According to Eq.~33!, when N1@N2 the statesF0 and
F1 become eigenstates ofULSM with eigenvalues61. It is
therefore plausible to assume that these states can be r
sented as linear superpositions of those short-range vale
bond states which also become eigenstates ofULSM in this
limit with the same eigenvalues, i.e., those states whose
parities are equal to the corresponding eigenvalues give
Eq. ~33!. The gap parity can then be viewed as the topolo
cal quantum number which distinguishes between the st
F0 andF1 in this limit. Note that the alternating even-odd o
odd-even patterns which appear in the gap parities for
values ofN2, and the uniform gap parities, either all even
all odd, which appear for even values ofN2, are consistent
with the symmetry properties ofF0 andF1 under the trans-
lation operatorsTx derived in Sec. II. For more details on th
connection between the Lieb-Schultz-Mattis slow twist o
erator and the topological decoupling of short-range valen
bond states, see@18#.

IV. CONNECTION TO QUANTUM ERROR-CORRECTING
CODES

In the preceding section it was shown that, in a se
which becomes precise in the limitN1@N2, the topological
quantum number distinguishing degenerate chiral spin liq
states is the gap parity. This topological quantum numbe
similar to that of Kitaev’s toric code in that it appears to
necessary to measure aglobal property of the system, using
for example, the Lieb-Schultz-Mattis slow twist operator,
order to determine its value. Motivated by this similari
between chiral spin liquids and toric codes, it is natural
ask whether, or to what extent, the topologically degene
chiral spin liquid states on finite lattices can be viewed
quantum error-correcting codes.

A quantum error-correcting code for a single qubit is
mapping of the form,u0&→u0L& and u1&→u1L&, where the
statesu0L& and u1L& are made up of severalphysicalqubits.
If the encoded qubit is placed in a pure stateuYL&5au0L&
1bu1L&, then the initial density matrix describing the state
r05uYL&^YLu. After the physical qubits making up the en
coded qubit interact with their environment, the most gene
effect on the density matrix is

r0→(
a

Ear0Ea
†5rE5(

a
EauYL&^YLuEa

† , ~35!

with the constraint(aEa
†Ea51, where the operatorsEa are

referred to as error operators. In order to be able to return
encoded qubit to its original pure state, there must exis
recovery operation which satisfies

rE→(
a

RarERa
†5r05uYL&^YLu, ~36!
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TABLE I. Nearest-neighbor spin-spin correlation functions in the statesF0 andF1 for different lattice
sizes.

Lattice size ^F0us r0

z s r01bx̂
z uF0& ^F0us r0

z s r01bŷ
z uF0& ^F1us r0

z s r01bx̂
z uF1& ^F1us r0

z s r01bŷ
z uF1&

N13N2

432 20.173(2) 20.946(2) 20.455(2) 0.273(5)
434 20.247(2) 20.246(3) 20.230(2) 20.376(3)
436 20.216(2) 20.312(2) 20.217(2) 20.301(3)
438 20.210(2) 20.306(3) 20.210(2) 20.307(3)

632 20.176(2) 20.944(2) 20.467(2) 0.322(5)
634 20.311(2) 20.216(3) 20.279(2) 20.376(3)
636 20.298(2) 20.300(3) 20.302(2) 20.281(3)
638 20.303(2) 20.289(3) 20.302(2) 20.290(3)

832 20.175(2) 20.944(2) 20.464(2) 0.335(5)
834 20.306(2) 20.210(3) 20.275(2) 20.382(3)
836 20.290(2) 20.303(3) 20.292(2) 20.281(3)
838 20.291(2) 20.291(2) 20.290(2) 20.293(3)

433 20.230(2) 20.241(3) 20.301(2) 20.241(3)
435 20.229(2) 20.301(3) 20.221(2) 20.301(3)
437 20.213(2) 20.305(3) 20.213(2) 20.305(3)
439 20.209(2) 20.306(3) 20.209(2) 20.306(3)

633 20.334(2) 20.239(3) 20.257(2) 20.239(3)
635 20.280(2) 20.290(3) 20.292(2) 20.290(3)
637 20.283(2) 20.294(3) 20.281(2) 20.294(3)
639 20.281(2) 20.293(3) 20.281(2) 20.293(3)

833 20.258(2) 20.239(3) 20.336(2) 20.239(3)
835 20.298(2) 20.290(3) 20.293(2) 20.290(3)
837 20.291(2) 20.290(3) 20.292(2) 20.290(3)
839 20.290(2) 20.291(3) 20.290(2) 20.291(3)
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again with the constraint(aRa
†Ra51. The necessary an

sufficient conditions for such a recovery operation to ex
are @19,20#

^0LuAa
†Abu0L&5^1LuAa

†Abu1L&, ~37!

^0LuAa
†Abu1L&50, ~38!

where the set of operators$Aa% form a linear basis for the
error operators, i.e., every error operator can be expande
Ea5(blabAb . For example, for a code capable of corre
ing only a single qubit error, one may take the basis$Aa% to
consist of the identity operator and all Pauli matrices act
on individual physical qubits.

The chiral spin liquid statesF0 andF1 are not orthogo-
nal, except in the limitN1 /N2→`. However, on any finite
lattice it is possible to orthogonalize them and use the res
ing states as a quantum code where the spin-1/2 part
located at lattice sites correspond to the physical qubits.
example,
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u0L&5uF0&, ~39!

u1L&5
uF1&2^F0uF1&uF0&

~12 z^F0uF1& z2!1/2
. ~40!

The question to be addressed is then, to what extent do t
states satisfy the criteria~37! and ~38! for being quantum
error-correcting codes?

BecauseF0 andF1 are singlets, it is possible to simplify
Eqs. ~37! and ~38! considerably for the case of single qub
errors by noting that an arbitrary encoded qubituYL&
5au0L&1bu1L& is also a singlet, implying that

^YLus r i

a uYL&50 ~41!

for all lattice sitesr i , wherea5x, y, or z, thus ensuring that
Eqs.~37! and~38! are satisfied forAa5s r i

a andAb51. Like-

wise,
0-7
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^YLus r i

as r j

b uYL&5dab^YLus r i

z s r j

z uYL& ~42!

for all lattice sitesr i andr j . The conditions for a singlet stat
to be a quantum error-correcting code capable of correctin
single qubit error can then be shown to be equivalent to
requirement that

^YLus r i

z s r j

z uYL&5Ci j ~43!

for all statesYL , i.e., the spin-spin correlation function
must beidentical for any encoded state.

Because the spin-spin correlation function decays rap
with distance in the chiral spin liquid states@6,8#, the largest
violation of Eq. ~43! is likely to occur for nearest-neighbo
spin correlations. Consider these correlations foruYL&
5uF0& and uYL&5uF1&. For odd values ofN2, there is a
broken translation symmetry in thex direction, TxF05F1
andTxF15F0, and, for any lattice siter0,

^Fnus r0

z s r01bâ
z uFn&5^Fnus r012bx̂

z
s r01bâ12bx̂

z uFn&

~44!

and

^F0us r0

z s r01bâ
z uF0&5^F1us r01bx̂

z
s r01bâ1bx̂

z uF1&. ~45!

Here, and in what follows,â5 x̂,ŷ. For even values ofN2,
there is no broken translation symmetry in thex direction,
TxFn5Fn , and

^Fnus r0

z s r01bâ
z uFn&5^Fnus r01bx̂

z
s r01bâ1bx̂

z uFn&. ~46!

For both even and odd values ofN2, there is no broken
translation symmetry in they direction,TyFn5Fn , and so
in both cases

^Fnus r0

z s r01bâ
z uFn&5^Fnus r01bŷ

z
s r01bâ1bŷ

z uFn&. ~47!

Finally, for odd values ofN2 the fact that the chiral spin
liquid states are symmetric underPT, the product of parity
and time-reversal@12#, implies that

^F0us r0

z s r01bŷ
z uF0&5^F1us r0

z s r01bŷ
z uF1&. ~48!

Though it is not possible to compute these correlat
functions analytically, it is straightforward to compute the
numerically using standard variational Monte Carlo tec
niques, and the results of such calculations for various lat
sizes are given in Table I. In this table the siter0 is
taken to be the origin (r050x̂10ŷ) and for each lattice
size the correlation functionŝ Fnus r0

z s r01bx̂
z uFn& and

^Fnus r0

z s r01bŷ
z uFn& are given forn50 and 1. Using the

symmetry properties derived above, these correlation fu
tions can be used to determine all nearest-neighbor spin-
correlation functions forF0 andF1. ~Note that for odd val-
ues of N2 there is some redundancy in the table, sin
^F0us r0

z s r01bŷ
z uF0&5^F1us r0

z s r01bŷ
z uF1&.!
06231
a
e

ly

n

-
e

c-
in

e

As can be seen in Table I, on finite lattices the neare
neighbor spin-spin correlation functions arenot identical for
F0 andF1, thus violating Eq.~43!. Therefore, on these lat
tices, the topologically degenerate chiral spin liquid sta
are not exact quantum error-correcting codes, even for sin
qubit errors. While it is true that with increasing lattice si
the difference between correlation functions inF0 and F1
becomes smaller, until it is no longer possible to distingu
between them due to the statistical error bars of the Mo
Carlo simulation, given the clear violation of Eq.~43! for
lattices sizes as large as 836 it is unlikely that these corre
lation functions ever become exactly equal to one anothe
any finite lattice. Rather, it is more plausible that they a
proach each other exponentially as the system size, in
ticular N2, increases, though no proof of this has been fou

The distinction between the statesF0 andF1 can be seen
clearly in the patterns formed by the values of the near
neighbor spin-spin correlation functions. These patterns
shown for 633 and 634 lattices in Fig. 3. If the topologi-
cally degenerate chiral spin liquid states did provide ex
quantum error-correcting codes for single qubit errors, th
these patterns would be identical for a given lattice si
Figure 3 together with Table I show clearly that despite
fact that the underlying distinction between the statesF0 and
F1 is topological, as illustrated in Fig. 2, on finite lattices th
difference between them can still be measured locally us
just two Pauli matrices. However, as stated above,
nearest-neighbor spin-spin correlation functions rapidly
come effectively indistinguishable for these two states as
lattice size increases, as do, plausibly, all the correlat
functions appearing in Eq.~43!. In this sense the topologi
cally degenerate chiral spin liquid states on sufficiently la
lattices may be viewed as approximate quantum er
correcting codes.

FIG. 3. Patterns formed by nearest-neighbor spin-spin corr
tion functions^Fnus r i

z s r j

z uFn& for the topologically degenerate ch
ral spin liquid statesF0 andF1 on 633 and 634 lattices. Thicker
lines correspond, qualitatively, to larger values
2^Fnus r i

z s r j

z uFn& ~thicknesses of the lines are exaggerated for c
ity!. For odd values ofN2, the broken translation symmetry is ob
servable. For even values ofN2, the nearest-neighbor spin-spin co
relation functions are different in the two states. The ability
distinguish betweenF0 andF1 by measuring operators consistin
of only two Pauli matrices indicates that although the underly
distinction between them is topological, as depicted in Fig. 2, th
states are not quantum error-correcting codes on finite lattices.
0-8
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V. CONCLUSIONS

In this paper, the chiral spin liquid states first introduc
by Kalmeyer and Laughlin as possible ground states for fr
trated spin-1/2 antiferromagnets have been analyzed from
point of view of their connection to quantum error-correcti
codes. Explicit wave functions were constructed for the t
topologically degenerate chiral spin liquid states on fin
periodic N13N2 lattices with N1 even and it was proven
that, if properly constructed, these states are exact sing
for any such lattice. It was also shown that, in a sense wh
becomes precise whenN1@N2, the property characterizing
the topological degeneracy is the gap parity—a topolog
quantum number associated with the short-range vale
bond state basis. However, despite the fact that, like Kitae
toric codes, the degenerate chiral spin liquid states are
tinguished by a topological quantum number, these states
on
,

o-
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not perfectly indistinguishable when measured with local o
erators, except in the thermodynamic limit. Thus, on fin
periodic lattices, these states do not satisfy the criteria~37!
and ~38!, and so are not exact quantum error-correct
codes—any error-correction scheme using chiral spin liq
states would not be able to recover even a single qubit e
with perfect fidelity. At the same time, the distinction b
tween these states, as measured by local operators, ra
becomes unobservable as the lattice size increases. T
fore, on large enough lattices, the topologically degene
chiral spin liquid states may be viewed as approximate qu
tum error-correcting codes.
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