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Resources required for topological quantum factoring
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We consider a hypothetical topological quantum computer composed of either Ising or Fibonacci anyons. For
each case, we calculate the time and number of qubits (space) necessary to execute the most computationally
expensive step of Shor’s algorithm, modular exponentiation. For Ising anyons, we apply Bravyi’s distillation
method [S. Bravyi, Phys. Rev. A 73, 042313 (2006)] which combines topological and nontopological operations
to allow for universal quantum computation. With reasonable restrictions on the physical parameters we find that
factoring a 128-bit number requires approximately 103 Fibonacci anyons versus at least 3 × 109 Ising anyons.
Other distillation algorithms could reduce the resources for Ising anyons substantially.
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I. INTRODUCTION

Shor’s algorithm is at the center of much of the excitement
surrounding quantum computation. Classically, the time to
factor a number of length L grows exponentially in L, but
given a sufficiently large quantum computer, Shor’s algorithm
could be used to factor in polynomial time [1]. Specifically,
the most computationally expensive step of Shor’s algorithm
is modular exponentiation which scales as L3. Since internet
security is based on the near impossibility of factoring large
numbers, the ability to factor in polynomial time, or in other
words, the existence of a sufficiently large quantum computer,
would be of monumental importance. In this article, we will
address the question of what sufficiently large means for a
topological quantum computer.

Many different systems have been proposed as the building
blocks for a quantum computer known as quantum bits or
qubits, but we will focus on topologically protected qubits
which are created using non-Abelian particles [2]. Topological
systems are particularly attractive candidates for quantum
computation because of their natural resistance to decoher-
ence. Non-Abelian particles have the property that topological
operations, or braiding the particles around each other at large
distances, can rotate the system between its degenerate ground
states. The ground-state degeneracy grows exponentially with
the number of particles allowing groups of particles to store
quantum information in the form of qubits [2,3].

The most commonly considered non-Abelian particle is the
Majorana fermion, or Ising anyon, where it is most convenient
to use four Ising anyons to form a single qubit. Ising anyons
are expected to be the excitations of the ν = 5/2 fractional
quantum Hall state [4]. Additionally, there have been proposals
to create Ising anyons in Sr2RuO4 thin films [5], cold atoms [6],
and most recently in several varieties of strongly coupled
spin orbit systems involving superconducting junctions [7].
While Ising anyons are the simplest example of a non-Abelian
particle, braiding Ising anyons is not sufficient for universal
quantum computation (UQC). Bravyi has suggested a method
for combining topological and nontopological operations to
allow for UQC with Ising anyons [8]. We will explore this
method in detail below, but the basic strategy is to create
entangled states using nontopological operations and then
braid these states with the target qubits to perform gates that

are not allowed topologically. We find that when the time to
prepare these entangled states is large compared to the time to
run the algorithm, the number of qubits required to perform
the algorithm scales approximately as the number of gates, N ,
which is proportional to L3.

A second type of non-Abelian particle are Fibonacci anyons
which are expected to be the excitations of the ν = 12/5
fractional quantum Hall state [9] and exist in certain toy
lattice models [10]. Here it is convenient to use three Fibonacci
anyons to form a single qubit. Since braiding Fibonacci anyons
is sufficient for UQC, the number of Fibonacci anyons needed
to factor a number of length L scales as L rather than L3.
Practically, this means that factoring a 128-bit number requires
approximately 103 Fibonacci anyons rather than 3 × 109 Ising
anyons. While 109 is a huge number, Ising anyons remain
attractive as a possible platform for quantum computation
because, as shown by Bravyi [8], and seen explicitly below,
there is a high error tolerance for the nontopological operations
necessary to prepare the states.

To estimate the number of particles necessary for modular
exponentiation, we will assume that all braid operations can be
performed perfectly and that error only results from the error
intrinsic in the gates themselves. For Ising anyons, the error
stems from the nontopological operations needed to prepare
the entangled states, while for Fibonacci anyons, the length of
the braid determines the accuracy of the gate. In this paper,
all errors will be stated as error probabilities (the square of
the amplitude), and for both Ising and Fibonacci anyons, the
error per gate must be less than or on the order of 1/N where
N is the total number of gates [11]. Additionally, we assume
that the state of the qubit can be measured efficiently and with
negligible error (which can always be achieved by repetitive
measurements). The number of NOT, CNOT (controlled-NOT),
and CCNOT (controlled-controlled-NOT) gates required for
efficient modular exponentiation is proportional to L3 and
was calculated precisely in Ref. [12]. For L = 128, the total
number of gates is N ≈ 109.

II. ISING ANYONS

Bravyi’s method to achieve UQC with Ising anyons
uses nontopological operations to poorly approximate the
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one- and two-qubit states |a4〉 = 1√
2
(|0〉 + eiπ/4|1〉) and |a8〉 =

1√
2
(|0,0〉 + |1,1〉). These states are then distilled in a process

that takes many states with large error to a single state
with smaller error using only topological operations and
measurements [8,14]. States with arbitrarily small error can
be produced by repeating the distillation process. The purified
|a4〉 and |a8〉 states are then braided with the target qubits to
implement the controlled π/4 phase gate, �(eiπ/4), and CNOT

gates. The combination of CNOT and �(eiπ/4) allows for UQC
with Ising anyons [13].

We will calculate how many qubits and how many opera-
tions are necessary to first distill the states and then execute
the modular exponentiation algorithm. Reference [8] carried
out a similar calculation and found that to distill N states,
the number of operations and qubits necessary scaled as
N (lnN )3. This calculation assumed that the error in the
initial states was asymptotically small, and in this limit, the
distillation procedure is successful nearly 100% of the time.
Since the probability of a successful distillation vanishes as the
initial error approaches an upper bound, the number of qubits
required to distill one state depends strongly on the initial
error. Additionally, the calculation did not account for the
possibility of reusing qubits or performing distillation rounds
in parallel. In theory, one could imagine starting with enough
qubits to distill allN states simultaneously without qubit reuse
and then performing the modular exponentiation. This would
minimize the time; however, as we will see, it would also
require a gigantic number of qubits. In our calculation, we
will not assume asymptotically small initial error and we will
explore the balance between the time and space requirements
by combining parallel operations with reusing qubits. Initially,
since N distilled states are required to perform the algorithm,
let us assume we have at least N qubits to work with (which
is already a large number) and we will attempt to perform the
full distillation and algorithm with no more than this number
(we will further examine this requirement below).

The number of qubits necessary to distill a single |a8〉 state
is shown in Fig. 1(a) where |a8〉 distillation is only successful
when the initial error is less than 0.38. Notice that even for
a relatively large initial error, the number of qubits to distill
one |a8〉 state is small compared to N for L = 128. Given
our attempt to limit the number of qubits, we choose to create
N |a8〉 states using O(N ) qubits. Specifically, we will start
with about N poorly approximated |a8〉 states and perform
the distillation algorithm in parallel on all these initial states.
This will result in a small fraction of the initial qubits being
converted into fully distilled |a8〉 states. The remainder of the
qubits can be reinitialized to poor approximations of |a8〉 and
again distilled in parallel to purified |a8〉 states. By repeating
this process, nearly all the initial qubits can be converted into
fully distilled |a8〉 states. Note that the distillation process ends
by measuring the qubits which are not part of the distilled state.
Since these qubits are no longer entangled with the purified
state, they can easily be reused in a subsequent distillation.

|a4〉 distillation has an added complication because |a8〉
states are required in the distillation process. At each level of
distillation, the |a8〉 states must have an error at least as small as
the final |a4〉 states. The number of qubits to distill a single |a4〉
state is shown in Fig. 1(b), where the qubits needed for the |a4〉
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FIG. 1. (Color online) Plot (a) shows the number of qubits
required to create a single |a8〉 state with final error of 10−9 (dashed),
10−11 (solid), and 10−13 (dash-dot). The jumps indicate where the
number of distillation levels increases by one, with plateau at 0.1
being four purification rounds. Plot (b) shows the number of qubits to
create a single |a4〉 state where (i)/(ii) is the qubits to make |a4〉/|a8〉
states. The initial error of the |a8〉 states is taken to be 0.01, and the
final errors for |a4〉 are the same as plot (a).

and |a8〉 states are plotted separately, and the maximum error
for the initial |a4〉 state is 0.14. Notice the number of qubits
needed for |a8〉 states sometimes decreases as the initial error
increases. These decreases result from a technicality where less
exact |a8〉 states are required within the |a4〉 distillation round.
To avoid confusion, we will not plot these nonmonotonicities
in the future as the distillation can always be run assuming the
larger error.

To distill many |a4〉 states, we will again choose to minimize
the space requirements and use only O(N ) qubits to distill N
|a4〉 states. Since the number of qubits needed to make |a8〉
states for a single |a4〉 distillation (we will call these states
|a(4)

8 〉) approaches N for L = 128, our distillation scheme will
be to dedicate approximately N qubits to making |a(4)

8 〉 states.
We will then make as many |a(4)

8 〉 states as possible, do the
|a4〉 distillation, go back and reuse the qubits to make more
|a(4)

8 〉 states, do another round of |a4〉 distillation and repeat this
process until the |a4〉 states are fully distilled. |a4〉 distillation
is slow compared to |a8〉 distillation, so when considering the
total resources required, there will be a one to one trade-off
between space and time that depends on the number of qubits
dedicated to |a(4)

8 〉 production.
The results for how many qubits and how much time is

required to perform modular exponentiation with Ising anyons
are shown in Fig. 2. We define the time to perform one braid as
a time step, and our calculations assume that a measurement
can also be performed in a single time step. This assumption
is probably unrealistic, but currently no model exists for
estimating the time of a measurement. Measurements account
for between 5% and 8% of the operations while running the
distillation and executing the CNOT and CCNOT gates with the
remainder being topological braids. If the time to perform a
measurement is an order of magnitude longer than to perform
a braid, then the total time will nearly double from that plotted
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FIG. 2. (Color online) Total qubits and time steps necessary
for modular exponentiation. The connected (dashed) lines are for
changing the initial error of the |a8〉 (|a4〉) states while the |a4〉 (|a8〉)
initial error is held constant at 0.01.

in Fig. 2 (this may be the case if repetitive measurement is
required to obtain reliability).

Figure 2 can be considered in three regimes which are
sketched in Fig. 3. When the initial error is small enough, tdist,
the time to distill all the required |a8〉 and |a4〉 states as outlined
above, is short compared to the time to run the algorithm, talg.
Rather than distilling the states all at once, we will minimize
the number of qubits subject to the constraint that the total
distillation time is comparable to talg. In this model, states are
distilled, used to perform the algorithm, and then the qubits are
reused to distill more states and continue the algorithm, and
so on until the algorithm is completed. For any given L, there
always exists an initial error small enough such that the time
to run the algorithm dominates, so state distillation does not
need to change the scaling of the total time. In Figs. 2 and 3,

FIG. 3. (Color online) Cartoon sketch to help clarify Fig. 2. The
three regimes which describe our results are when the time to run the
algorithm, talg, is (a) greater than tdist, (b) less than tdist, and (c) when
the number of qubits to distill a single state is comparable or large
compared to N . These three regimes are seen in Fig. 2 for L = 512
while changing the initial error of |a8〉 (solid line) for the approximate
values (a) 0–0.07, (b) 0.07–0.35, and (c) 0.35–0.38 (not shown).

this regime is seen where the time is nearly flat and the number
of qubits is increasing.

For larger values of the initial error, tdist becomes large
compared to talg, and we choose to use O(N ) qubits to distill
all the states at once as described previously. In this case,
the time does not depend directly on L, but rather on the
number of distillation rounds necessary to fully purify the |a4〉
and |a8〉 states. Hence, the time is nearly independent of L
across a wide range of values and increases as the initial error
increases. We choose the total number of qubits to scale as N ,
but there is approximately a one to one trade-off between
space and time. Conceivably, the number of qubits could
be significantly reduced, but the total time would increase
comparably. Additionally, for any initial error, there is always
an L large enough to return us to the previous region where
tdist < talg.

Finally, as the initial error approaches its upper bound, the
number of qubits to distill a single state becomes comparable
and eventually exceeds N . Once this happens, both the total
number of qubits and total distillation time diverge. Note that
the time does not exhibit a strong divergence in Fig. 2 as the
initial error of the |a4〉 states is increased because the initial
|a8〉 error remains small. The details of Fig. 2 depend on the
exact distillation scheme, but the qualitative results sketched
in Fig. 3 are more universal.

Using the results from Ref. [15] and the distillation scheme
in Fig. 2, we can estimate the size of a ν = 5/2 sample and the
total time necessary to perform modular exponentiation when
L = 128. For approximately 109 gates, each gate must have
error �10−9. Taking the initial |a4〉 and |a8〉 error to be 0.01, we
need approximately 1011 time steps and 3 × 109 quasiparticles
(qp’s) to create all the states and perform the algorithm (see
Fig. 2). To manipulate the qp’s, we apply an electric field with
magnitude much less than ∼�/(e∗�∗) to avoid particle-hole
pair creation where � is the gap of the 5/2 state, e∗ = e/4
is the qp charge and �∗ = 2� is the effective magnetic length.
This results in a maximum E × B drift velocity of order ��/h̄.
Using the decay length from Ref. [15], and assuming � = 1 K,
we find that the qp’s need to be separated by at least 100�

and that the maximum step rate is 30 MHz. Modern single
electron pumps can function at a rate of nearly 20 MHz
with error rates as low as 15 per 109 [16], so achieving
30 MHz with comparably low error seems plausible. At
this step rate, the calculation would take approximately
3 × 103 s on a sample that is at least 10 × 10 cm. While
we can trade some amount of space for time, if one were to
reduce the space by more than a few orders of magnitude,
the runtime would become sufficiently long that classical
computers could potentially compete. Parameters will differ
and may be more favorable for other potential systems of Ising
anyons [5–7].

III. FIBONACCI ANYONS

Computation with Fibonacci anyons is in many ways much
simpler than using Ising anyons. Since braiding Fibonacci
anyons is sufficient for UQC, we only need to find a braid
to implement the desired gate. Additional entangled states to
act on the target qubits are not necessary, so the space needed
to perform modular exponentiation will be O(L), the length
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FIG. 4. (Color online) Number of time steps needed to complete
modular exponentiation with Fibonacci anyons. Each jump is where
an additional SK iteration is required, and for L � 500, the braid is
determined solely by the brute force search method.

of the number to factor. Further, only O(L) measurements
are required at the end of the calculation. However, Fibonacci
anyons do not naturally implement NOT, CNOT, or CCNOT gates
[17], so the challenge is to find a braid which approximates
the desired gate to the necessary level of accuracy.

Brute force searches for braids have found that gate error
becomes exponentially small as the braid length is increased
linearly [18]; however, due to computational difficulty, the
longest brute force braid available is about 80 steps with
an error of about 10−10. The accuracy of any braid can be
improved using the Solovay-Kitaev (SK) algorithm [13]. With
each iteration of SK, the error improves as ε1 ∼ cε

3/2
0 and the

braid length increases by a factor of 5. Therefore, we can again
construct gates with arbitrarily small error, but at the expense
of the braid length growing as 5n, where n is the number of SK
iterations. (Other schemes to obtain longer and more accurate
braids may replace or be combined with SK beyond where
brute force searches are feasible [19].)

Figure 4 shows the time to complete modular exponen-
tiation using Fibonacci anyons as a function of L. The

total space scales as L and is 2L + 3 for this specific
implementation of modular exponentiation [12]. For L = 128,
modular exponentiation requires 259 qubits (777 Fibonacci
anyons). The time will be proportional to the braid length
per gate times the number of gates, which is approximately
1011 time steps. Assuming a comparable minimum distance
between qp’s in the ν = 12/5 state as the 5/2 state, the gap in
the 12/5 state restricts the maximum step rate to about 3 MHz,
so this computation would take on the order of 3 × 104 s.

To summarize, we explore the space and time requirements
of Bravyi’s distillation technique for Ising anyons. We find
a good balance by producing N nontopological gates using
O(N ) qubits. For this to succeed, the initial error in the |a4〉 and
|a8〉 states must be small enough such that the number of qubits
needed to distill a single |a8〉 or |a4〉 state is small compared to
N . When the time to run the algorithm is small compared to
the time to distill states, we can reduce the space even further
by distilling the states in batches while running the algorithm.
We note that we have made certain assumptions concerning
the trade-offs between space and time which we believe are
appropriate and would give the best possible outcome in a
realistic system. However, other choices can be made, and the
results can be worked out from the details we provide.

Note added: Recently, we have learned of an unpublished
method that allows for CNOT without |a8〉 distillation [20].
Analysis of this new algorithm is beyond the scope of the
current work, but rough estimates suggest that this new scheme
could reduce tdist by a factor of ∼105 compared to the example
presented here.
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