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We give an analytic construction of a class of two-qubit gate pulse sequences that act on five of the six
spin- 1

2 particles used to encode a pair of exchange-only three-spin qubits. Within this class, the problem of gate
construction reduces to that of finding a smaller sequence that acts on four spins and is subject to a simple
constraint. The optimal sequence satisfying this constraint yields a two-qubit gate sequence equivalent to that
found numerically by Fong and Wandzura. Our construction is sufficiently simple that it can be carried out
entirely with pen, paper, and knowledge of a few basic facts about quantum spin.
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Controlled Heisenberg spin exchange is useful for realizing
quantum gates in a quantum computer [1]. If qubits are
encoded in the Hilbert space of one [1] or two [2] spin- 1

2
particles, resources beyond exchange are required for universal
quantum computation. Controlled exchange alone, however, is
universal if qubits are encoded in the Hilbert space of at least
three spin- 1

2 particles [3–5].
Semiconductor quantum dots with trapped electrons are

promising systems for manipulating spin-1/2 particles [6].
Controlled exchange between pairs of electron spins in quan-
tum dots has been demonstrated [7] and used to manipulate
a variety of three-spin encoded qubits [8–13], including the
resonant exchange qubit [14–16] which maintains encoding by
keeping the intraqubit exchange “always on” (see also [17]).
Here we assume the exchange is kept off except when pulsed,
i.e., adiabatically switched on and off, between pairs of spins.
It is then necessary to design pulse sequences that realize
quantum gates on encoded qubits without resulting in leakage
out of the encoded space [5,11,18–22].

Designing such sequences is straightforward for single-
qubit gates but poorly understood for two-qubit gates. The
difficulty comes from the no-leakage constraint combined
with the large search space of operators acting on six spins.
Not surprisingly, the shortest known two-qubit gate sequence,
presented by Fong and Wandzura [20], was found by a
numerical search which offers little insight into its derivation.
Furthermore, existing analytic derivations of less optimal
sequences are lengthy and complicated [19,22].

In this Rapid Communication we analytically construct a
class of pulse sequences for two-qubit gates. We show that
within this class the most efficient sequence is equivalent to
the Fong-Wandzura sequence. Throughout our construction
we avoid as much as possible complicated calculations and
use only the most basic facts about quantum spin [23].

Because we exclusively consider rotationally invariant
operators we are free to describe states of multiple spins using
only total spin quantum numbers. Accordingly, we employ the
notation of [22] where each spin- 1

2 is represented by the symbol
• and groups of spins are enclosed in ovals labeled by total
spin. Figure 1(a) shows the encoding of [5] in which qubits
are stored in the Hilbert space of three spin- 1

2 particles with a
total spin of 1

2 in this notation. In the text we write these states
using parentheses instead of ovals. The qubit states of Fig. 1(a)
defining the computational basis are then (•(••)a)1/2 = |a〉
with a = 0 and 1, for which the two rightmost spins form a

singlet and triplet, respectively. Leakage out of the encoded
space then involves transitions to the noncomputational state
(• • •)3/2. Figure 1(b) shows six spins encoding two qubits
and highlights the five spins the pulse sequences we consider
act on, where the total spin f can be either 1

2 or 3
2 .

Consider the exchange Hamiltonian H = JSi · Sj acting
on two spins (••)a whose Hilbert space is spanned by
the two states with total spin a = 0 and 1. (Because only
total spin quantum numbers are relevant, we treat the three-
fold degenerate a = 1 state as a single state.) Pulsing this
Hamiltonian for a duration t measured in units of π/J results
in the time evolution operator (up to an irrelevant overall phase
factor)

Uij (t) = diag(1,e−iπt ), (1)

where the matrix representation is given in the a = {0,1} basis.
We take t ∈ [0,2) for which the inverse pulse has duration
2 − t .

Two exchange pulses square to the identity and play a
fundamental role in our construction. The durations of these
pulses, which we denote r , can only be either 0 or 1, and we
refer to them as r pulses. For r = 0 an r pulse is simply the
identity, while for r = 1 it is a SWAP operation, equivalent to
physically exchanging two spins [24]. Figure 2(a) shows an
r pulse acting on the state (••)a using standard notation with
pulses represented by double arrows labeled by duration. The
corresponding matrix representation of the resulting operation,
also given in Fig. 2(a), shows that applying an r pulse
multiplies the a = 0 state by 1 and the a = 1 state by m, where
m = 1 or −1 for r = 0 or 1, respectively. In both cases m2 = 1,
reflecting the fact that the r pulses square to the identity.

A pulse sequence that acts on three spins and consists of
three r pulses (with either r = 0 or 1) and two explicit SWAPs
is shown in Fig. 2(b). For r = 0 the two SWAPs square to
the identity. For r = 1 the sequence consists of five SWAPs
which, when viewed as spin permutations, are readily seen to
be equivalent to a single SWAP acting on the top two spins.
In both cases, the effect of the sequence is to multiply the
state ((••)a•)c by 1 if a = 0, and m if a = 1, regardless of the
value of c, where, as in Fig. 2(a), m = 1 or −1 for r = 0 or 1,
respectively. The corresponding matrix representation is also
given in Fig. 2(b).

We seek pulse sequences which act on the five spins
((••)a(•(••)b)1/2)f highlighted in Fig. 1(b) and carry out
leakage-free two-qubit gates. We refer to the qubits with state
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FIG. 1. (a) Three-spin qubit encoding. (b) Two qubits in states a

and b and a diagram highlighting the five rightmost spins with total
spin f = 1

2 or 3
2 .

labels a and b as the control and target qubit, respectively.
Our construction is based on using a smaller sequence which
acts on the four rightmost spins in Fig. 1(b) and carries out an
operation we denote R which, as seen shortly, is closely related
to an r pulse. One requirement we place on R is that it not result
in any leakage of the target qubit into its noncomputational
state. We can therefore work within an effective Hilbert space
in which the three spins encoding the target qubit are replaced
by a single effective spin- 1

2 particle,

(•(••)b)1/2 → �. (2)

Matrix elements of operations acting on any collection of spins
including � are then elevated from numbers to 2 × 2 blocks
that act on the Hilbert space of the target qubit hidden
within �.

We require that when R is applied to the state (•�)d
it act on the target qubit with the identity 1 if d = 0, and
a matrix M , with M2 = 1, if d = 1, as also shown in the
corresponding matrix representation of R given in Fig. 3(a).
Such R operations can be viewed as generalized r pulses where
the matrix elements 1 and m, with m2 = 1, of Fig. 2(a) have
been elevated to the 2 × 2 matrices 1 and M , with M2 = 1 in
Fig. 3(a).

This view of R as an elevated r pulse suggests the five-pulse
sequence of Fig. 2(b) can also be elevated to the sequence
shown in Fig. 3(b). This sequence acts on the effective Hilbert
space spanned by the states ((••)a�)f with af = 0 1

2 , 1 1
2 , and

1 3
2 and consists of three R operations and two SWAPs. The

only 2 × 2 block element in the matrix representation of R

not proportional to the identity is M . Because M2 = 1, when
evaluating the matrix representation for the full sequence, each

FIG. 2. (a) Elementary exchange pulse of duration r = 0 or 1,
referred to as an r pulse in the text, and matrix representation of
the resulting operation in the basis a = {0,1}, where m = 1 or −1
for r = 0 or 1, respectively. (b) Sequence of three r pulses and two
explicit SWAPs (r pulses with r = 1) acting on three spins and the
matrix representation of the resulting operation in the basis ac =
{0 1

2 ,1 1
2 |1 3

2 }.

FIG. 3. (a) R operation acting on a spin- 1
2 particle, •, and

an effective spin- 1
2 particle, �, defined in Eq. (2). The matrix

representation of this operation is given in the effective basis d =
{0,1} where 1 is the 2 × 2 identity, and M is a 2 × 2 matrix where
M2 = 1, both of which act on the target qubit hidden within �.
(b) Pulse sequence generalizing that shown in Fig. 2(b). The matrix
representation of the resulting operation is given in the effective basis
af = {0 1

2 ,1 1
2 |1 3

2 }.

block matrix element must be of the form α0 1 + α1 M . The
coefficients α0 and α1 for each block element are completely
determined by the two cases M = ±1, which are equivalent
to the cases m = ±1 in Fig. 2(b). It follows that the matrix
representation of the operation carried out by this sequence in
the effective af = {0 1

2 ,1 1
2 |1 3

2 } basis is that given in Fig. 3(b),
i.e., an elevated version of the matrix shown in Fig. 2(b). To
prove this we only used the fact that M2 = 1. It therefore holds
not just for M = ±1, but also for M = n̂ · σ where n̂ is any
real-valued unit vector and σ = (σx,σy,σz) is the Pauli vector.

The pulse sequence shown in Fig. 3(b) acting on the two
qubits of Fig. 1(b) applies the identity 1 to the target qubit when
the state of the control qubit is a = 0, and applies the matrix
M to the target qubit when the state of the control qubit is
a = 1, regardless of the value of f . The matrix representation
of the operation carried out by this sequence can then be given
in the standard two-qubit basis ab = {00,01,10,11} as

U2qubit = diag(1,M). (3)

For M = ±1 the resulting gate is not entangling. However,
for M = n̂ · σ the sequence enacts a leakage-free controlled-
(n̂ · σ ) gate which is equivalent to a controlled-NOT (CNOT)
gate (for which n̂ = x̂), up to single-qubit rotations.

Abandoning the notation � we now consider R acting on
the four-spin Hilbert space spanned by the states (•((••)b•)c)d
where, since c is initially 1

2 ,d is either 0 or 1. The requirements
on R are then that it must (i) preserve the quantum number
c, and (ii) in the restricted Hilbert space with c = 1

2 , have the
form shown in Fig. 3(a) with M = n̂ · σ .

To construct a sequence for R we introduce an operation V

which satisfies the constraint

〈((••)1(••)1)1|V |(•(• • •)3/2)1〉 = 0 (4)

depicted in Fig. 4(a). As shown below, inserting any V

satisfying Eq. (4) into the sequence shown in Fig. 4(b) results
in an R operation with M = n̂ · σ . Letting Uij (t) denote
an exchange pulse of duration t acting on spins i and j ,
as defined in Eq. (1), the sequence for R can be written
V −1U12(1)U34(1)V , using the spin labeling of Fig. 4(b).
From Eq. (1), the matrix representation of the two SWAPs
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FIG. 4. (a) Constraint which must be satisfied by an operation V

used in our construction. (b) Sequence in which V , its inverse, and
two SWAPs carry out an R operation. (c) Evaluation of the matrix
element (6) for the case t1t2 = 11, as described in the text. [Quantum
numbers omitted for readability are as in (a).] (d) Two-pulse solution
of (a) for V .

U12(1)U34(1) in the ((••)b′ (••)b)d basis with state ordering
bb′d = {000,110|011,101,111} is

U12(1)U34(1) = diag(1,1| − 1, − 1,1). (5)

In the d = 0 sector, U12(1)U34(1) acts as the identity, and thus
R also acts as the identity since V and V −1 cancel. For d = 1,
Eq. (4) implies V maps the c = 3

2 state (•(• • •)3/2)1 entirely
into the b′b = 01,10 subspace. The two SWAPs then apply a
phase factor of −1 to any state in this subspace, and so after
applying V −1 the net effect of the full sequence is to multiply
the c = 3

2 state by −1. The fact that R maps the c = 3
2 state onto

itself implies that R also maps the c = 1
2 subspace onto itself,

and thus leads to no leakage of the target qubit. Furthermore,
since the trace of U12(1)U34(1) in the d = 1 sector is −1 [see
Eq. (5)], the trace of the full sequence V −1U12(1)U34(1)V in
this sector is also −1. Thus, since the c = 3

2 matrix element
of the full sequence is −1, the trace of the operation acting
on the c = 1

2 subspace must be 0. Finally, because the two
SWAPs U12(1)U34(1) square to the identity, the full sequence
for R squares to the identity. The operation carried out by
this sequence on the c = 1

2 subspace in the d = 1 sector must
therefore also square to the identity and, because it is traceless,
must have the form M = n̂ · σ .

The set of pulse sequences V that satisfy the constraint (4)
can be used to construct an infinite class of sequences resulting
in two-qubit gates locally equivalent to CNOT. We now show
that the fewest number of pulses needed to satisfy Eq. (4) is 2
and for this optimal case the resulting two-qubit gate sequence
is equivalent to the Fong-Wandzura sequence.

Without loss of generality we take V = U23(t2)U12(t1). To
determine t1 and t2 for which V satisfies Eq. (4) we employ
a simple “pen and paper” procedure based on the observation
that Eq. (1) implies

〈((••)1(••)1)1|U23(t2)U12(t1)|(•(• • •)3/2)1〉
= α + βe−iπt1 + γ e−iπt2 + δe−iπ(t1+t2), (6)

where the coefficients α,β,γ , and δ can be found by eval-
uating the four cases t1t2 = 00,01,10, and 11. For t1t2 =
00 the left-hand side of Eq. (6) is simply equal to F ≡
〈((••)1(••)1)1|(•(• • •)3/2)1〉 [25]. For t1t2 = 01 and 10 there

FIG. 5. Sequence of Fig. 3(b) acting on two encoded qubits
resulting in a controlled-(n̂ · σ ) gate. Also shown is the full sequence
obtained by first inserting the optimal sequence for V from Fig. 4(d)
into the sequence for R from Fig. 4(b) and inserting the result into
the sequence from Fig. 3(b). This sequence is equivalent to the
Fong-Wandzura sequence.

is a single SWAP which can be applied either to the left (for
t1t2 = 01) or right (for t1t2 = 10) four-spin state in Fig. 4(a).
Since each SWAP then acts on a pair of spins with total spin 1,
the result is an overall factor of −1 using the phase convention
of Eq. (1). In both cases the matrix element (6) is thus equal
to −F .

For the remaining case t1t2 = 11 both pulses are SWAPs and
a method for evaluating Eq. (6) is sketched in Fig. 4(c). First, a
pair of SWAPs which combine to the identity U24(1)U24(1) = 1,
is inserted at the start of the sequence. We then view the
four SWAPs as physical particle exchanges. It is irrelevant
that particle exchange differs from SWAP by a factor of −1
because there are an even number of SWAPs. Applying one of
the exchanges of spins 2 and 4 to the state (•(• • •)3/2)1 then
gives a factor +1, since the two exchanged spins have total
spin 1. The remaining three exchanges can then be applied to
the state ((••)1(••)1)1 where, referring to Fig. 4(c), they result
in a permutation which exchanges the bottom two spins (red
oval) with the top two spins (black oval). This exchange of two
spin-1 objects with total spin 1 results in a factor of −1. Thus
the t1t2 = 11 matrix element (6) is equal to −F .

Having evaluated the left-hand side of Eq. (6) for the four
cases t1t2 = 00, 01, 10, and 11, the coefficients appearing on
the right-hand side are easily found to be −α = β = γ =
δ = F/2. For these coefficients there are only two solutions
which satisfy Eq. (4), t1t2 = 1

2
3
2 , 3

2
1
2 . Figure 4(d) shows the

resulting sequence for the first solution, which consists of one√
SWAP (t = 1

2 ) and one inverse
√

SWAP (t = 3
2 ).

Figure 5 shows the pulse sequence obtained by inserting
the sequence for V from Fig. 4(d) into Fig. 4(b) and inserting
the resulting sequence for R into Fig. 3(b). This sequence can
be applied to a linear array of spins with nearest-neighbor
pulses and carries out a controlled-(n̂ · σ ) gate consisting of
eight SWAPs, six

√
SWAPs, and six inverse

√
SWAPs [26]. After

removing single-qubit rotations, the core Fong-Wandzura
sequence as published in [20] consists of six SWAPs, three√

SWAPs, and nine inverse
√

SWAPs. Our sequence can be
converted into the Fong-Wandzura sequence using elementary
manipulations in which pairs of SWAPs are inserted [as in
Fig. 4(c)] or removed, and single SWAPs are pulled past other
pulses and in some cases combined with

√
SWAPs to form

inverse
√

SWAPs (and vice versa). The same manipulations can
be used to produce sequences applicable to spin geometries
other than linear [21]. These manipulations preserve the
number of nontrivial (i.e., not SWAP) pulses in these sequences
as well as the parity of the sum of the number of SWAPs and
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√
SWAPs. This parity is odd for the Fong-Wandzura sequence

and even for our construction, consistent with the fact that a
single-qubit operation corresponding to a single SWAP must
be added to the core Fong-Wandzura sequence to produce a
controlled-(n̂ · σ ) gate.

In summary, we have analytically constructed a class of
two-qubit gate pulse sequences for exchange-only quantum
computation. These sequences are elevated versions of the
simple three-spin sequences shown in Fig. 2(b) which consist

entirely of SWAP operations. To carry out this elevation we
introduced the four-spin sequence R which is itself built out of
a smaller sequence V which satisfies the constraint (4). When
the shortest pulse sequence for V is plugged back into the
full two-qubit sequence the result is equivalent to the Fong-
Wandzura sequence.
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