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A method for compiling quantum algorithms into specific braiding patterns for non-Abelian quasiparticles
described by the so-called Fibonacci anyon model is developed. The method is based on the observation that
a universal set of quantum gates acting on qubits encoded using triplets of these quasiparticles can be built
entirely out of three-stranded braids �three-braids�. These three-braids can then be efficiently compiled and
improved to any required accuracy using the Solovay-Kitaev algorithm.
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I. INTRODUCTION

The requirements for realizing a fully functioning quan-
tum computer are daunting. There must be a scalable system
of qubits which can be initialized and individually measured.
It must be possible to enact a universal set of quantum gates
on these qubits. And all this must be done with sufficient
accuracy so that quantum error correction can be used to
prevent decoherence from spoiling any computation.

The problems of error and decoherence are particularly
difficult ones for any proposed quantum computer. While the
states of classical computers are typically stored in macro-
scopic degrees of freedom which have a built-in redundancy
and thus are resistant to errors, building similar redundancy
into quantum states is less natural. To protect quantum infor-
mation it is necessary to encode it using quantum error-
correcting code states.1,2 These states are highly entangled,
and have the property that code states corresponding to dif-
ferent logical qubit states can be distinguished from one an-
other only by global �“topological”� measurements. Unlike
states whose macroscopic degrees of freedom are effectively
classical �think of the magnetic moment of a small part of a
hard drive�, such highly entangled “topologically degener-
ate” states do not typically emerge as the ground states of
physical Hamiltonians. One route to fault-tolerant quantum
computation is therefore to build the encoding and fault-
tolerant gate protocols into the software of the quantum
computer.3

A remarkable recent development in the theory of quan-
tum computation which directly addresses these issues has
been the realization that certain exotic states of matter in two
space dimensions, so-called non-Abelian states, may provide
a natural medium for storing and manipulating quantum
information.4–7 In these states, localized quasiparticle excita-
tions have quantum numbers that are in some ways similar to
ordinary spin quantum numbers. However, unlike ordinary
spins, the quantum information associated with these quan-
tum numbers is stored globally, throughout the entire system,
and so is intrinsically protected against decoherence. Further-
more, these quasiparticles satisfy so-called non-Abelian sta-
tistics. This means that when two quasiparticles are adiabati-
cally moved around one another, while being kept
sufficiently far apart, the action on the Hilbert space is rep-

resented by a unitary matrix which depends only on the to-
pology of the path used to carry out the exchange. Topologi-
cal quantum computation can then be carried out by
moving quasiparticles around one another in two space
dimensions.4,5 The quasiparticle world-lines form topologi-
cally nontrivial braids in three �=2+1� -dimensional space-
time, and because these braids are topologically robust �i.e.,
they cannot be unbraided without cutting one of the strands�
the resulting computation is protected against error.

Non-Abelian states are expected to arise in a variety of
quantum many-body systems, including spin systems,8–10 ro-
tating Bose gases,11 and Josephson junction arrays.12 Of
those states which have actually been experimentally ob-
served, the most likely to possess non-Abelian quasiparticle
excitations are certain fractional quantum Hall states. Moore
and Read13 were the first to propose that quasiparticle exci-
tations which obey non-Abelian statistics might exist in the
fractional quantum Hall effect. Their proposal was based on
the observation that the conformal blocks associated with
correlation functions in the conformal field theory describing
the two-dimensional Ising model could be interpreted as
quantum Hall wave functions. These wave functions describe
both the ground state of a half-filled Landau level of spin-
polarized electrons, as well as states with some number of
fractionally charged quasihole excitations �charge e /4�. The
particular ground state this construction produces, the so-
called Pfaffian or Moore-Read state, is considered the most
likely candidate for the observed fractional quantum Hall
state at Landau level filling fraction �=5/2 ��=1/2 in the
second Landau level�.14,15

In this conformal field theory construction, states with
four or more quasiholes present correspond to finite-
dimensional conformal blocks, and so the corresponding
wave functions form a finite-dimensional Hilbert space. The
monodromy—or braiding properties—of these conformal
blocks are then assumed to describe the unitary transforma-
tions acting on the Hilbert space produced by adiabatically
braiding quasiholes around one another.13 Explicit wave
functions for these states were worked out in Ref. 16, and the
non-Abelian braiding properties have been verified numeri-
cally in Ref. 17. In an alternate approach, the Moore-Read
state can be viewed as a composite fermion superconductor
in a so-called weak pairing px+ ipy phase.18 In this descrip-
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tion, the finite-dimensional Hilbert space arises from zero-
energy solutions of the Bogoliubov–de Gennes equations
in the presence of vortices,18 and the vortices themselves are
non-Abelian quasiholes whose braiding properties have been
shown to agree with the conformal field theory result.19,20

Recently, a number of experiments have been proposed
to directly probe the non-Abelian nature of these
excitations.21–24

Unfortunately, the braiding properties of quasihole excita-
tions in the Moore-Read state are not sufficiently rich to
carry out purely topological quantum computation, although
“partially” topological quantum computation using a mixture
of topological and nontopological gates has been shown to
be possible.25,26 However, Read and Rezayi27 have shown
that the Moore-Read state is just one of a sequence of states
labeled by an index k corresponding to electrons at filling
fractions �=k / �2+k�, with k=1 corresponding to the �
=1/3 Laughlin state and k=2 to the Moore-Read state. The
wave functions for these states can be written as correlation
functions in the Zk parafermion conformal field theory,27 and
the braiding properties of the quasihole excitations were
worked out in detail in Ref. 28. There it was shown that the
quasiholes are described by the SU�2�k Chern-Simons-
Witten �CSW� theories, up to overall Abelian phase factors
which are irrelevant for quantum computation. More re-
cently, explicit quasihole wave functions have been worked
out for the k=3 Read-Reazyi state,29 with results consistent
with the predicted SU�2�3 braiding properties. The elemen-
tary braiding matrices for the SU�2�k CSW theory for k=3
and k�5 have been shown to be sufficiently rich to carry out
universal quantum computation, in the sense that any desired
unitary operation on the Hilbert space of N quasiparticles,
with N�3 for k�3,k�4,8 and N�4 for k=8, can be ap-
proximated to any desired accuracy by a braid.5,6

The main purpose of this paper is to give an efficient
method for determining braids which can be used to carry
out a universal set of a quantum gates �i.e., single-qubit ro-
tations and controlled-NOT gates� on encoded qubits for the
case k=3, thought to be physically relevant for the experi-
mentally observed30 �=12/5 fractional quantum Hall
effect27,31 ��=12/5 corresponds to �=2/5 in the second Lan-
dau level, and this is the particle-hole conjugate of �=3/5
corresponding to k=3�. We refer to the process of finding
such braids as “topological quantum compiling” since these
braids can then be used to translate a given quantum algo-
rithm into the machine code of a topological quantum com-
puter. This is analogous to the action of an ordinary compiler
which translates instructions written in a high-level program-
ming language into the machine code of a classical com-
puter.

It should be noted that the proof of universality for
SU�2�3 quasiparticles is a constructive one,5,6 and therefore,
as a matter of principle, it provides a prescription for com-
piling quantum gates into braids. However, in practice, for
two-qubit gates �such as controlled-NOT gates� this prescrip-
tion, if followed straightforwardly, is prohibitively difficult
to carry out, primarily because it involves searching the
space of braids with six or more strands. We address this
difficulty by dividing our two-qubit gate constructions into a

series of smaller constructions, each of which involves
searching only the space of three-stranded braids �three-
braids�. The required three-braids then can be found effi-
ciently and used to construct the desired two-qubit gates.
This divide and conquer approach does not, in general, yield
the most accurate braid of a given length which approxi-
mates a desired quantum gate. However, we believe that it
does yield the most accurate �or at least among the most
accurate� braids which can be obtained for a given fixed
amount of classical computing power.

This paper is organized as follows. In Sec. II we review
the basic properties of the SU�2�k Hilbert space, and show
that the case SU�2�3 is, for our purposes, equivalent to the
case SO�3�3—the so-called Fibonacci anyon model. Section
III then presents a quick review of the mathematical machin-
ery needed to compute with Fibonacci anyons. In Sec. IV we
outline how, in principle, these particles can be used to en-
code qubits suitable for quantum computation. Section V
then describes how to find braiding patterns for three Fi-
bonacci anyons which can be used to carry out any allowed
operation on the Hilbert space of these quasiparticles to any
desired accuracy, thus effectively implementing the proce-
dure given in Ref. 5 for carrying out single-qubit rotations.
In Sec. VI we discuss the more difficult case of two-qubit
gates, and give two classes of explicit gate constructions—
one, first discussed by the authors in Ref. 32, in which a pair
of quasiparticles from one qubit is “woven” through the qua-
siparticles in the second qubit, and another, presented here
for the first time, in which only a single quasiparticle is wo-
ven. Finally, in Sec. VII we address the question of to what
extent the constructions we find are special to the k=3 case,
and in Sec. VIII we summarize our results.

II. FUSION RULES AND HILBERT SPACE

Consider a system with quasiparticle excitations described
by the SU�2�k CSW theory. It is convenient to describe the
properties of this system using the so-called quantum group
language.28 The relevant quantum groups are “deformed”
versions of the representation theory of SU�2�, i.e., the
theory of ordinary spin, and much of the intuition for think-
ing about ordinary spin can be carried over to the quantum
group case.

In the quantum group description of an SU�2�k CSW
theory, each quasiparticle has a half-integer q-deformed spin
�q-spin� quantum number. Just as for ordinary spin, there are
rules for combining q-spin known as fusion rules. The fusion
rules for the SU�2�k theory are similar to the usual triangle
rule for adding ordinary spin, except that they are truncated
so that there are no states with total q-spin �k /2. Specifi-
cally, the fusion rules for the level k theory are33

s1 � s2 = �s1 − s2� � �s1 − s2� + 1 � ¯

� min�s1 + s2,k − s1 − s2� . �1�

Note that, in the quantum group description of non-Abelian
anyons, states are distinguished only by their total q-spin
quantum numbers. The q-deformed analogs of the Sz quan-
tum numbers are physically irrelevant—there is no degen-
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eracy associated with them, and they play no role in any
computation involving braiding.28 The situation is somewhat
analogous to that of a collection of ordinary spin-1/2 par-
ticles in which the only allowed operations, including mea-
surement, are rotationally invariant and hence independent of
Sz, as is the case in exchange-based quantum computation.34

The fusion rules of the SU�2�k theory fix the structure of
the Hilbert space of the system. For a collection of quasipar-
ticles with q-spin-1/2, a useful way to visualize this Hilbert
space is in terms of its so-called Bratteli diagram. This dia-
gram shows the different fusion paths for N q-spin-1/2 qua-
siparticles in which these quasiparticles are fused, one at a
time, going from left to right in the diagram. Bratteli dia-
grams for the cases k=2 and 3 are shown in Fig. 1.

The dimensionality of the Hilbert space for N q-spin-1/2
quasiparticles with total q-spin S can be determined by
counting the number of paths in the Bratteli diagram from
the origin to the point �N ,S�. The results of this path count-
ing are also shown in Fig. 1, where one can see the well-
known 2N/2−1 Hilbert space degeneracy for the k=2 �Moore-
Read� case,13,16 and the Fibonacci degeneracy for the k=3
case.27

In this paper we will focus on the k=3 case, which is the
lowest k value for which SU�2�k non-Abelian anyons are
universal for quantum computation.5,6 In fact, we will show
that two-qubit gates are particularly simple for this case. Be-
fore proceeding, it is convenient to introduce an important
property of the SU�2�3 theory, namely, that the braiding
properties of q-spin-1/2 quasiparticles are the same as those
with q-spin 1 �up to an overall Abelian phase which is irrel-
evant for topological quantum computation�. This is a useful
observation because the theory of q-spin-1 quasiparticles in
SU�2�3 is equivalent to SO�3�3, a theory also known as the
Fibonacci anyon theory35,36—a particularly simple theory
with only two possible values of q-spin, 0 and 1, for which
the fusion rules are

0 � 0 = 0, 0 � 1 = 1 � 0 = 1, 1 � 1 = 0 � 1. �2�

Here we give a rough proof of this equivalence. This
proof is based on the fact that for k=3 the fusion rules in-

volving q-spin-3/2 quasiparticles take the following simple
form:

3

2
� s =

3

2
− s . �3�

The key observation is that, since for k=3 the highest pos-
sible q-spin is 3/2, when fusing a q-spin-3/2 object with any
other object �here we use the term object to describe either a
single quasiparticle or a group of quasiparticles viewed as a
single composite entity�, the Hilbert space dimensionality
does not grow. This implies that moving a q-spin-3/2 object
around other objects can, at most, produce an overall Abelian
phase factor. While this phase factor may be important physi-
cally, particularly in determining the outcome of interference
experiments involving non-Abelian quasiparticles,21–24 it is
irrelevant for quantum computing, and thus does not matter
when determining braids which correspond to a given com-
putation. Because �3� implies that a q-spin 1/2 object can be
viewed as the result of fusing a q-spin-1 object with a
q-spin-3/2 object, it follows that the braid matrices for
q-spin-1/2 objects are the same as those for q-spin-1 objects
up to an overall phase �as can be explicitly checked�.

In fact, based on this argument we can make a stronger
statement. Imagine a collection of SU�2�3 objects which each
have either q-spin 1 or q-spin 1/2. It is then possible to carry
out topological quantum computation, even if we do not
know which objects have q-spin 1 and which have q-spin
1/2. The proof is illustrated in Fig. 2. Figure 2�a� shows a
braiding pattern for a collection of objects, some of which
have q-spin 1/2 and some of which have q-spin 1. Figure
2�b� then shows the same braiding pattern, but now all ob-
jects with q-spin 1/2 are represented by objects with q-spin 1
fused to objects with q-spin 3/2. Because, as noted above, the
q-spin-3/2 objects have trivial �Abelian� braiding properties,
the unitary transformation produced by this braid is the
same, up to an overall Abelian phase, as that produced by
braiding nothing but q-spin-1 objects, as shown in Fig. 2�c�.
It follows that, provided one can measure whether the total
q-spin of some object belongs to the class 1��1,1 /2� or the
class 0��0,3 /2�—something which should, in principle, be

FIG. 1. Bratteli diagrams for SU�2�k for
k��a� 2 and �b� 3. Here N is the number of
q-spin-1/2 quasiparticles and S is the total q-spin
of those quasiparticles. The number at a given
�N ,S� vertex of each diagram indicates the num-
ber of paths to that vertex starting from the �0,0�
point. This number gives the dimensionality of
the Hilbert space of N q-spin-1/2 quasiparticles
with total q-spin S.
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possible by performing interference experiments as described
in Refs. 37 and 38—then quantum computation is possible,
even if we do not know which objects have q-spin 1/2 and
which have q-spin 1.

III. FIBONACCI ANYON BASICS

Having reduced the problem of compiling braids for
SU�2�3 to compiling braids for SO�3�3, i.e., Fibonacci
anyons, it is useful for what follows to give more details
about the mathematical structure associated with these qua-
siparticles. For an excellent review of this topic see Ref. 35,
and for the mathematics of non-Abelian particles in general
see Ref. 39.

Note that for the rest of this paper, except for Sec. VII, it
should be understood that each quasiparticle is a q-spin-1
Fibonacci anyon. It should also be understood that, from the
point of view of their non-Abelian properties quasihole ex-
citations are also q-spin-1 Fibonacci anyons, even though
they have opposite electric charge and give opposite Abelian
phase factors when braided. Because it is the non-Abelian
properties that are relevant for topological quantum compu-
tation, for our purposes quasiparticles and quasiholes can be
viewed as identical non-Abelian particles. Unless it is impor-
tant to distinguish between the two �as when we discuss cre-
ating and fusing quasiparticles and quasiholes in Sec. IV� we
will simply use the terms quasiparticle or Fibonacci anyon to
refer to either excitation.

Figure 3 establishes some of the notation for representing
Fibonacci anyons which will be used in the rest of the paper.
This figure shows SU�2�3 Bratteli diagrams in which the
q-spin axis is labeled by both the SU�2�3 q-spin quantum
numbers and, in boldface, the corresponding Fibonacci
q-spin quantum numbers, i.e., 0 for �0,3 /2� and 1 for
�1/2 ,1�. In Fig. 3�a� Bratteli diagrams showing fusion paths
corresponding to two basis states spanning the two-
dimensional Hilbert space of two Fibonacci anyons are
shown. Beneath each Bratteli diagram an alternate represen-
tation of the corresponding state is also shown. In this rep-
resentation dots correspond to Fibonacci anyons and ovals
enclose collections of Fibonacci anyons which are in q-spin
eigenstates whenever the oval is labeled by a total q-spin

quantum number. �Note: If the oval is not labeled, it should
be understood that the enclosed quasiparticles may not be in
a q-spin eigenstate.�

In the text we will use the notation • to represent a Fi-
bonacci anyon, and the ovals will be represented by paren-
theses. In this notation, the two states shown in Fig. 3�a� are
denoted �• , • �0, and �• , • �1.

Figure 3�b� shows a Bratteli diagram, again with both
SU�2�3 and Fibonacci quantum numbers, with fusion paths
that this time correspond to three basis states of the three-
dimensional Hilbert space of three Fibonacci anyons. Be-
neath these diagrams the oval representations of these three
states are also shown, which in the text will be represented
(�• , • �0 , • )1, (�• , • �1 , • )1, and (�• , • �1 , • )0.

In addition to fusion rules, all theories of non-Abelian
anyons possess additional mathematical structure which al-
lows one to calculate the result of any braiding operation.
This structure is characterized by the F �fusion� and R �rota-
tion� matrices.35,39,40

To define the F matrix, note that the Hilbert space of three
Fibonacci anyons is spanned by both the three states labeled
(�• , • �a , • )c, and the three states labeled (• , �• , • �b)c. The F
matrix is the unitary transformation which maps one of these
bases to the other,

„•,�•, • �a…c = �
b

Fab
c
„�•, • �b, • …c, �4�

and has the form

F = � � 	�

	� − �

1

 , �5�

where �= �	5−1� /2 is the inverse of the golden mean. In this
matrix the upper left 2�2 block Fab

1 acts on the two-
dimensional total q-spin-1 sector of the three-quasiparticle
Hilbert space, and the lower right matrix element F11

0 =1 acts
on the unique total q-spin-0 state. Note that this F matrix can
be applied to any three objects which each have q-spin 1,
where each object can consist of more than one Fibonacci
anyon. Furthermore, if one considers three objects for which
one or more of the objects has q-spin 0, then the state of

FIG. 2. �Color online� Graphical proof of the equivalence of braiding q-spin-1/2 and q-spin-1 objects for SU�2�3. �a� shows a braiding
pattern for a collection of objects, some having q-spin 1/2 and some having q-spin 1. �b� shows the same braiding pattern but with the
q-spin-1/2 objects represented by q-spin-1 objects fused with q-spin-3/2 objects, which, for SU�2�3, has a unique fusion channel. Finally, �c�
shows the same braid with the q-spin-3/2 objects removed. Because these q-spin-3/2 objects are effectively Abelian for SU�2�3, removing
them from the braid will only result in an overall phase factor which will be irrelevant for quantum computing.

HORMOZI et al. PHYSICAL REVIEW B 75, 165310 �2007�

165310-4



these objects is uniquely determined by the total q-spin of all
three, and in this case the F matrix is trivially the identity.
Thus, for the case of Fibonacci anyons, the matrix �5� is all
that is needed to make arbitrary basis changes for any num-
ber of Fibonacci anyons.

The R matrix gives the phase factor produced when two
Fibonacci anyons are moved around one another with a cer-
tain sense. One can think of these phase factors as the
q-deformed versions of the −1 or +1 phase factors one ob-
tains when interchanging two ordinary spin-1/2 quasiparti-
cles when they are in a singlet or triplet state, respectively.
This phase factor depends on the overall q-spin of the two
quasiparticles involved in the exchange, so for Fibonacci
anyons there are two such phase factors which are summa-
rized in the R matrix,

R = �e−i4�/5 0

0 ei3�/5 � . �6�

Here the upper left and lower right matrix elements are, re-
spectively, the phase factor that two Fibonacci anyons ac-
quire if they are interchanged in a clockwise sense when they
have total q-spin 0 or q-spin 1. Again, this matrix also ap-
plies if we exchange two objects that both have total q-spin
1, even if these objects consist of more than one Fibonacci
anyon. And if one or both objects has q-spin 0 the result of
this interchange is the identity. Again we emphasize that in
the k=3 Read-Rezayi state, there will be additional Abelian
phases present, which may have physical consequences for

some experiments, but which will be irrelevant for topologi-
cal quantum computation.

Typically the sequence of F and R matrices used to com-
pute the unitary operation produced by a given braid is
not unique. To guarantee that the result of any such compu-
tation is independent of this sequence, the F and R matrices
must satisfy certain consistency conditions. These consis-
tency conditions, the so-called pentagon and hexagon
equations,35,39,40 are highly restrictive, and, in fact, for the
case of Fibonacci anyons essentially fix the F and R matrices
to have the forms given above �up to a choice of chirality,
and Abelian phase factors which are again irrelevant to our
purposes here�.35

Finally, we point out an obvious, but important, conse-
quence of the structure of the F and R matrices. When inter-
changing any two quasiparticles which are part of a larger set
of quasiparticles with a well-defined total q-spin quantum
number, this total q-spin quantum number will not change.

IV. QUBIT ENCODING AND GENERAL COMPUTATION
SCHEME

Before proceeding, it will be useful to have a specific
scheme in mind for how one might actually carry out topo-
logical quantum computation with Fibonacci anyons. Here
we follow the scheme outlined in Ref. 7, which, for com-
pleteness, we briefly review below.

The computer can be initialized by pulling quasiparticle-
quasihole pairs out of the “vacuum” �by vacuum we mean
the ground state of the k=3 Read-Rezayi state or any other

FIG. 3. �Color online� Basis states for the Hilbert space of �a� two and �b� three Fibonacci anyons. SU�2�3 Bratteli diagrams showing
fusion paths corresponding to the basis states for the Hilbert space of two and three q-spin-1/2 quasiparticles are shown. The q-spin axes on
these diagrams are labeled by both the SU�2�3 q-spin quantum numbers 0, 1/2, 1 and 3/2 and, to the left of these in bold, the corresponding
Fibonacci q-spin quantum numbers 0��0,3 /2� and 1��1/2 ,1�. Beneath each Bratteli diagram the same state is represented using a
notation in which dots correspond to Fibonacci anyons, and groups of Fibonacci anyons enclosed in ovals labeled by q-spin quantum
numbers are in the corresponding q-spin eigenstates.

TOPOLOGICAL QUANTUM COMPILING PHYSICAL REVIEW B 75, 165310 �2007�

165310-5



state that supports Fibonacci anyon excitations�. Each such
pair will consist of two q-spin-1 excitations in a state with
total q-spin 0, i.e., the state �• , • �0. In principle, this pair can
also exist in a state with total q-spin 1, provided there are
other quasiparticles present to ensure the total q-spin of the
system is 0, so one can imagine using this pair as a qubit.
However, it is impossible to carry out arbitrary single-qubit
operations by braiding only the two quasiparticles forming
such a qubit—this braiding never changes the total q-spin of
the pair, and so only generates rotations about the z axis in
the qubit space.

For this reason it is convenient to encode qubits using
more than two Fibonacci anyons. Thus, to create a qubit, two
quasiparticle-quasihole pairs can be pulled out of the
vacuum. The resulting state is then (�• , • �0 , �• , • �0)0 which
again has total q-spin 0. The Hilbert space of four Fibonacci
anyons with total q-spin 0 is two dimensional, with basis
states, which we can take as logical qubit states �0L
= (�• , • �0 , �• , • �0)0 and �1L= (�• , • �1 , �• , • �1)0 �see Fig. 4�a��.
The state of such a four-quasiparticle qubit is determined by
the total q-spin of either the rightmost or leftmost pair of
quasiparticles. Note that the fusion rules �2� imply that the
total q-spin of these two pairs must be the same because the
total q-spin of all four quasiparticles is 0.

For this encoding, in addition to the two-dimensional
computational qubit space of four quasiparticles with total
q-spin 0, there is a three-dimensional noncomputational Hil-
bert space of states with total q-spin 1 spanned by the states
(�• , • �0 , �• , • �1)1, (�• , • �1 , �• , • �0)1, and (�• , • �1 , �• , • �1)1.
When carrying out topological quantum computation it is
crucial to avoid transitions into this noncomputational space.

Fortunately, single-qubit rotations can be carried out by
braiding quasiparticles within a given qubit and, as discussed
in Sec. III, such operations will not change the total q-spin of
the four quasiparticles involved. Single-qubit operations can
therefore be carried out without any undesirable transitions
out of the encoded computational qubit space.

Two-qubit gates, however, will require braiding quasipar-
ticles from different qubits around one another. This will in
general lead to transitions out of the encoded qubit space.

Nevertheless, given the so-called “density” result of Ref. 6 it
is known that, as a matter of principle, one can always find
two-qubit braiding patterns which will entangle the two qu-
bits, and also stay within the computational space to what-
ever accuracy is required for a given computation. The main
purpose of this paper is to show how such braiding patterns
can be efficiently found.

Note that the action of braiding the two leftmost quasipar-
ticles in a four-quasiparticle qubit �referring to Fig. 4�a�� is
equivalent to that of braiding the two rightmost quasiparti-
cles with the same sense. This is because as long as we are in
the computational qubit space both the leftmost and right-
most quasiparticle pairs must have the same total q-spin, and
so interchanging either pair will result in the same phase
factor from the R matrix. It is therefore not necessary to
braid all four quasiparticles to carry out single-qubit
rotations—one need only braid three.

In fact, one may consider qubits encoded using only three
quasiparticles with total q-spin 1, as originally proposed in
Ref. 5. Such qubits can be initialized by first creating a four-
quasiparticle qubit in the state �0L, as outlined above, and
then simply removing one of the quasiparticles. In this three-
quasiparticle encoding, shown in Fig. 4�b�, the logical qubit
states can be taken to be �0L= (�• , • �0 , • )1 and �1L
= (�• , • �1 , • )1. For this encoding there is just a single non-
computational state �NC= (�• , • �1 , • )0, also shown in Fig.
4�b�. As for the four-quasiparticle qubit, when carrying out
single-qubit rotations by braiding within a three-quasiparticle
qubit the total q-spin of the qubit, in this case 1, remains
unchanged and there are no transitions from the computa-
tional qubit space into the state �NC. However, just as for
four-quasiparticle qubits, when carrying out two-qubit gates
these transitions will in general occur and we must work
hard to avoid them. Henceforth we will refer to these un-
wanted transitions as leakage errors.

Note that, because each three-quasiparticle qubit has total
q-spin 1, when more than one of these qubits is present the
state of the system is not entirely characterized by the “in-
ternal” q-spin quantum numbers which determine the com-
putational qubit states. It is also necessary to specify the state
of what we will refer to as the “external fusion space”—the
Hilbert space associated with fusing the total q-spin-1 quan-
tum numbers of each qubit. When compiling braids for three-
quasiparticle qubits it is crucial that the operations on the
computational qubit space not depend on the state of this
external fusion space—if they did, these two spaces would
become entangled with one another leading to errors. Fortu-
nately, we will see that it is indeed possible to find braids
which do not lead to such errors.

For the rest of this paper �except Sec. VII� we will use
this three-quasiparticle qubit encoding. It should be noted
that any braid which carries out a desired operation on the
computational space for three-quasiparticle qubits will carry
out the same operation on the computational space of four-
quasiparticle qubits, with one quasiparticle in each qubit act-
ing as a spectator. The braids we find here can therefore be
used for either encoding.

We can now describe how topological quantum computa-
tion might actually proceed, again following Ref. 7. A quan-
tum circuit consisting of a sequence of one- and two-qubit

FIG. 4. �Color online� �a� Four-quasiparticle and �b� three-
quasiparticle qubit encodings for Fibonacci anyons. �a� shows two
states that span the Hilbert space of four quasiparticles with total
q-spin 0 which can be used as the logical �0L and �1L states of a
qubit. �b� shows two states spanning the Hilbert space of three
quasiparticles with total q-spin 1 which can also be used as logical
qubit states �0L and �1L. This three-quasiparticle qubit can be ob-
tained by removing the rightmost quasiparticle from the two states
shown in �a�. The third state shown in �b�, labeled �NC for non-
computational, is the unique state of three quasiparticles that has
total q-spin 0.

HORMOZI et al. PHYSICAL REVIEW B 75, 165310 �2007�

165310-6



gates which carries out a particular quantum algorithm
would first be translated �or “compiled”� into a braid by
compiling each individual gate to whatever accuracy is re-
quired. Qubits would then be initialized by pulling
quasiparticle-quasihole pairs out of the vacuum. These local-
ized excitations would then be adiabatically dragged around
one another so that their world-lines trace out a braid in
three-dimensional space-time which is topologically equiva-
lent to the braid compiled from the quantum algorithm. Fi-
nally, individual qubits would be measured by trying to fuse
either the two rightmost or two leftmost excitations within
them �referring to Fig. 4�a�� for four-quasiparticle qubits, or
just the two leftmost excitations �referring to Fig. 4�b�� for
three-quasiparticle qubits. If this pair of excitations consists
of a quasiparticle and a quasihole �and it will always be
possible to arrange this�, then, if the total q-spin of the pair is
0, it will be possible for them to fuse back into the vacuum.
However, if the total q-spin is 1 this will not be possible. The
resulting difference in the charge distribution of the final
state would then be measured to determine if the qubit was in
the state �0L or �1L. Alternatively, as already mentioned in
Sec. II, interference experiments37,38 could be used to initial-
ize and read out encoded qubits.

As a simple illustration, Fig. 5 shows a computation in
which a four-quasiparticle qubit �which can also be viewed
as a three-quasiparticle qubit if the top quasiparticle is ig-
nored� is initialized by pulling quasiparticle-quasihole pairs
out of the vacuum, a single-qubit operation is carried out by
braiding within the qubit, and the final state of the qubit is
measured by fusing a quasiparticle and quasihole together
and observing the outcome.

V. COMPILING THREE-BRAIDS AND SINGLE-QUBIT
GATES

We now focus on the problem of finding braids for three
Fibonacci anyons �three-braids� which approximate any al-
lowed unitary transformation on the Hilbert space of these

quasiparticles. This is important not only because it allows
one to find braids which carry out arbitrary single-qubit
rotations,5 but also because, as will be shown in Sec. VI, it is
possible to reduce the problem of constructing braids which
carry out two-qubit gates to that of finding a series of three-
braids approximating specific operations.

A. Elementary braid matrices

Using the F and R matrices, it is straightforward to deter-
mine the elementary braiding matrices that act on the three-
dimensional Hilbert space of three Fibonacci anyons. If, as in
Fig. 6, we take the basis states for the three-quasiparticle
Hilbert space to be the states labeled (�• , • �a , • )c then, in the
ac= �01,11,10� basis, the matrix 	1 corresponding to a
clockwise interchange of the two bottommost quasiparticles
in the figure �or leftmost in the (�• , • �a , • )c representation� is

	1 = �e−i4�/5 0

0 ei3�/5

ei3�/5
 , �7�

where the upper left 2�2 block acts on the total q-spin-1
sector ��0L and �1L� of the three quasiparticles, and the
lower right matrix element is a phase factor acquired by the
q-spin 0 state ��NC�. This matrix is easily read off from the
R matrix, since the total q-spin of the two quasiparticles
being exchanged is well defined in this basis.

To find the matrix 	2 corresponding to a clockwise inter-
change of the two topmost �or rightmost in the (�• , • �a , • )c

representation� quasiparticles, we must first use the F matrix
to change bases to one in which the total q-spin of these
quasiparticles is well defined. In this basis, the braiding ma-

FIG. 5. �Color online� Space-time paths corresponding to the
initialization, manipulation through braiding, and measurement of
an encoded qubit. Two quasiparticle-quasihole pairs are pulled out
of the vacuum, with each pair having total q-spin 0. The resulting
state corresponds to a four-quasiparticle qubit in the state �0L �see
Fig. 4�a��. After some braiding, the qubit is measured by trying to
fuse the bottommost pair �in this case a quasiparticle-quasihole
pair�. If they fuse back into the vacuum the result of the measure-
ment is �0L; otherwise it is �1L. Because only the three lower
quasiparticles are braided, the encoded qubit can also be viewed as
a three-quasiparticle qubit �see Fig. 4�b�� which is initialized in the
state �0L.

FIG. 6. �Color online� Elementary three-braids and the decom-
position of a general three-braid into a series of elementary braids.
The unitary operation produced by this braid is computed by mul-
tiplying the corresponding sequence of elementary braid matrices,
	1 and 	2 �see text� and their inverses, as shown. Here the �unla-
beled� ovals represent a particular basis choice for the three-
quasiparticle Hilbert space, consistent with that used in the text. In
this and all subsequent figures which show braids, quasiparticles are
aligned vertically, and we adopt the convention that reading from
bottom to top in the figures corresponds to reading from left to right
in expressions such as (�• , • �a , • )c in the text. It should be noted that
these figures are only meant to represent the topology of a given
braid. In any actual implementation of topological quantum compu-
tation, quasiparticles will certainly not be arranged in a straight line,
and they will have to be kept sufficiently far apart while being
braided to avoid lifting the topological degeneracy.
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trix is simply 	1, and so, after changing back to the original
basis, we find

	2 = F−1	1F = �− �e−i�/5 	�e−i3�/5

	�e−i3�/5 − �

ei3�/5
 . �8�

The unitary transformation corresponding to a given
three-braid can now be computed by representing it as a
sequence of elementary braid operations and multiplying the
corresponding sequence of 	1 and 	2 matrices and their in-
verses, as shown in Fig. 6.

If we are only concerned with single-qubit rotations, then
we only care about the action of these matrices on the en-
coded qubit space with total q-spin 1, and not the total
q-spin-0 sector corresponding to the noncomputational state.
However, in our two-qubit gate constructions, various three-
braids will be embedded into the braiding patterns of six
quasiparticles, and in this case the action on the full three-
dimensional Hilbert space does matter.

To understand this action note that 	1 can be written

	1 = �±e−i�/10�±e−i7�/10 0

0 ± ei7�/10�
ei3�/5
 , �9�

where the upper 2�2 block acting on the total q-spin 1
sector is an SU�2� matrix, �i.e., a 2�2 unitary matrix with
determinant 1�, multiplied by a phase factor of either +e−i�/10

or −e−i�/10, and the lower right matrix element ei3�/5 is the
phase acquired by the total q-spin-0 state. The phase factor
pulled out of the upper 2�2 block is only defined up to ±1
because any SU�2� matrix multiplied by −1 is also an SU�2�
matrix.

From �8� it follows that 	2 can be written in a similar
fashion, with the same phase factors. Each clockwise braid-
ing operation then corresponds to applying an SU�2� opera-
tion multiplied by a phase factor of ±e−i�/10 to the q-spin-1
sector, while at the same time multiplying the q-spin-0 sector
by a phase factor of ei3�/5. Likewise, each counterclockwise
braiding operation corresponds to applying an SU�2� opera-
tion multiplied by a phase factor of ±e+i�/10 to the q-spin-1
sector and a phase factor of e−i3�/5 to the q-spin-0 sector.

We define the winding W�B� of a given three-braid B to
be the total number of clockwise interchanges minus the total
number of counterclockwise interchanges. It then follows
that the unitary operation corresponding to an arbitrary braid
B can always be expressed

U�B� = �±e−iW�B��/10�SU�2��
ei3W�B��/5 � , �10�

where �SU�2�� indicates an SU�2� matrix. Thus, for a given
three-braid, the phase relation between the total q-spin-1 and
total q-spin-0 sectors of the corresponding unitary operation
is determined by the winding of the braid. We will refer to
�10� often in what follows. It tells us precisely what unitary
operations can be approximated by three-braids, and places
useful restrictions on their winding.

B. Weaving and brute force search

At this point it is convenient to restrict ourselves to a
subclass of braids which we will refer to as weaves. A weave
is any braid that is topologically equivalent to the space-time
paths of some number of quasiparticles in which only a
single quasiparticle moves. It was shown in Ref. 41 that this
restricted class of braids is universal for quantum computa-
tion, provided the unitary representation of the braid group is
dense in the space of all unitary transformations on the rel-
evant Hilbert space, which is the case for Fibonacci anyons.

Following Ref. 41 we will borrow some weaving termi-
nology and refer to the mobile quasiparticle �or collection of
quasiparticles� as the “weft” quasiparticle�s� and the static
quasiparticles as the “warp” quasiparticles.

One reason for focusing on weaves is that weaving will
likely be easier to accomplish technologically than general
braiding. This is true even if the full computation involves
not just weaving a single quasiparticle, as was proposed in
Ref. 41, but possibly weaving several quasiparticles at the
same time in different regions of the computer—carrying out
quantum gates on different qubits in parallel.

Considering weaves has the added �and more immediate�
benefit of simplifying the problem of numerically searching
for three-braids which approximate desired gates. For the full
braid group, even on just three strands, there is a great deal
of redundancy since braids which are topologically equiva-
lent will yield the same unitary operation. Weaves, however,
naturally provide a unique representation in which the warp
strands are straight, and the weft weaves around them. There
is therefore no trivial double counting of topologically
equivalent weaves when one does a brute force numerical
search of weaves up to some given length.

The unitary operations performed by weaving three qua-
siparticles in which the weft quasiparticle starts and ends in
the middle position will always have the form

Uweave��ni�� = 	1
nm	2

nm−1
¯ 	1

n3	2
n2	1

n1. �11�

Here the sequence of exponents n2 ,n3 , . . . ,nm−1 all take their
values from �±2, ±4�, and n1 and nm can take the values
�0, ±2, ±4�. Because these exponents are all even, each fac-
tor in this sequence takes the weft quasiparticle all the way
around one of the two warp quasiparticles either once or
twice with either a clockwise or counterclockwise sense, re-
turning it to the middle position. We allow n1 and nm to be 0
to account for the possibility that the initial or final weaving
operations could each be either 	1

n or 	2
n with n= ±2 or ±4.

Note that we need only consider exponents ni up to ±4 �i.e.,
moving the weft quasiparticle at most two times around a
warp quasiparticle� because of the fact that 	i

10=1 for Fi-
bonacci anyons, implying, e.g., 	i

6=	i
−4. We define the

length L of such weaves to be equal to the total number of
elementary crossings; thus L=�i=1

m �ni�.
We will also consider weaves in which the weft quasipar-

ticle begins and/or ends at a position other than the middle.
These possibilities can easily be taken into account by mul-
tiplying Uweave��ni��, as defined in �11�, by the appropriate
factors of 	1 or 	2 on the right and/or left. Thus, for ex-
ample, the unitary operation produced by a weave in which
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the weft quasiparticle starts in the top position and ends in
the middle position can be written Uweave��ni��	2, where, be-
cause of the extra factor of 	2, the first braiding operations
carried out by this weave will be 	2

n where n is an odd power,
n= ±1, ±3 or 5. This will weave the weft quasiparticle from
the top position to the middle position after which Uweave will
simply continue weaving this quasiparticle eventually ending
with it in the middle position. �Note that by multiplying
Uweave on the right by 	2, and not 	2

−1, we are not requiring
the initial elementary braid to be clockwise, since Uweave may
have n1=0 and n2=−2 or −4 so that the initial 	2 is imme-
diately multiplied by 	2 to a negative power.� Similarly, the
unitary operation produced by a weave in which the weft
particle starts in the top position and ends in the bottom
position can be written 	1Uweave��ni��	2, and so on.

To find a weave for which the corresponding unitary op-
eration Uweave��ni�� approximates a particular desired unitary
operation, the most straightforward approach is to simply
perform a brute force search over all weaves, i.e., all se-
quences �ni� as described above, up to a certain length L, in
order to find the Uweave��ni�� which is closest to the target
operation. Here we will take as a measure of the distance
between two operators U and V the operator norm distance

�U ,V�= �U−V� where �O� is the operator norm, defined to
be the square root of the highest eigenvalue of O†O. Again, if
we are interested in fixing the relative phase of the total
q-spin-1 and total q-spin-0 sectors then we would restrict the
winding of the weaves so that the phases in �10� match those
of the desired target gate.

For example, imagine our goal is to find a weave which
approximates the unitary operation

iX = �0 i

i 0

1

 . �12�

If the resulting weave were to be used only for a single-qubit
operation, then we would only require that the weave ap-
proximate the upper left 2�2 block of iX up to an overall
phase and we would not care about the phase factor appear-
ing in the lower right matrix element. There would then be
no constraint on the winding of the braid. However, for this
example we will assume that this weave will be used in a
two-qubit gate construction, for which the overall phase
and/or the phase difference between the total q-spin-1 and
total q-spin-0 sectors will matter.

In this case, by comparing iX to �10�, we see that the
winding W of any weave approximating iX must satisfy
ei3�W/5=1 or W=0 �modulo 10�. Results of a brute force
search over weaves satisfying this winding requirement
which approximate iX are shown in Fig. 7. In this figure,
ln�1/
� is plotted vs braid length L, where 
 is the minimum
distance between Uweave and iX for weaves of length L. It is
expected that, for any such brute force search for weaves
approximating a generic target operation, the length should
scale with distance according to L� log�1/
�, because the
number of braids grows exponentially with L. The results
shown in Fig. 7 are consistent with such logarithmic scaling.

All the brute force searches used to find braids in this
paper are straightforward sequential searches, meant mainly
to demonstrate proof of principle. No doubt more sophisti-
cated brute force search methods �e.g., bidirectional search�
could be used to perform deeper searches resulting in longer
and more accurate braids. Nevertheless, the exponential
growth in the number of braids with L implies that finding
optimal braids by any brute force search method will rapidly
become infeasible as L increases. Fortunately one can still
systematically improve a given braid to any desired accuracy
by applying the Solovay-Kitaev algorithm,42,43 which we
now briefly review.

C. Implementation of the Solovay-Kitaev algorithm for braids

The general result of the Solovay-Kitaev theorem tells us
that we can efficiently improve the accuracy of any given
braid without the need to perform exhaustive brute force
searches of ever improving accuracy.42,43 The essential ingre-
dient in this procedure is an 
-net—a discrete set of operators
which in the present case correspond to finite braids up to
some given length, with the property that for any desired
unitary operator there exists an element of the 
-net that is
within some given distance 
0 of that operator. Provided 
0 is
sufficiently small, the Solovay-Kitaev algorithm gives us a
clever way to pick a finite number of braid segments out of
the 
-net and sew them together so that the resulting gate will
be an approximation to the desired gate with improved accu-
racy.

The implementation of the Solovay-Kitaev algorithm we
use here follows closely that described in detail in Refs. 44
and 45. The first step of this algorithm is to find a braid
which approximates the desired gate, U, by performing a
brute force search over the 
-net. Let U0 denote the result of
this search. Since we know that 
�U0 ,U��
0 it follows that
C=UU0

−1 is an operator that is within a distance 
0 of the
identity.

The next step is to decompose C as a group commutator.
This means that we find two unitary operators A and B for

FIG. 7. ln�1/
� vs braid length L for weaves approximating the
gate iX. Here 
 is the distance �defined in terms of operator norm�
between iX and the unitary transformation produced by a weave of
length L which best approximates it. The line is a guide to the eye.
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which C=ABA−1B−1. The unitary operators A and B are cho-
sen so that their action on the computational qubit space
corresponds to small rotations through the same angle but
about perpendicular axes. For this choice, if A and B are then
approximated by operators A0 and B0 in the 
-net, it can
readily be shown that the operator C0=A0B0A0

−1B0
−1, will ap-

proximate C to a distance of order 
0
3/2. It follows that the

operator U1=A0B0A0
−1B0

−1U0 is an approximation to U within
a distance 
1�c
0

3/2, where c is a constant which determines
the size of the 
-net needed to guarantee an improvement in
accuracy.

What we have just described corresponds to one iteration
of the Solovay-Kitaev algorithm. Subsequent iterations are
carried out recursively. Thus, at the second level of approxi-
mation each search within the 
-net is replaced by the pro-
cedure described above, and so on, so that at the nth level all
approximations are made at the �n−1�st level. The result of
this recursive process is a braid whose accuracy grows su-
perexponentially in n, with the distance to the desired gate
being of order 
n��c2
0��3/2�n

at the nth level of recursion,
while the braid length grows only exponentially in n, with
L�5nL0, where L0 is a typical braid length in the initial

-net. Thus, as the distance of the approximate gate from the
desired target gate, 
, goes to zero, the braid length grows
only polylogarithmically, with L� log��1/
� where �
=ln 5/ ln�3/2��3.97. While this scaling is, of course, worse
than the logarithmic scaling for brute force searching, it is
still only a polylogarithmic increase in braid length which is
sufficient for quantum computation. Similar
arguments44,45can be used to show that the classical com-
puter time t required to carry out the Solovay-Kitaev algo-
rithm also only scales polylogarithmically in the desired ac-
curacy, with t� log�1/
� where =ln 3/ ln�3/2��2.71.

It is worth noting that there is a particularly nice feature
of this implementation of the Solovay-Kitaev algorithm
when applied to compiling three-braids. Recall that when
carrying out two-qubit gates it will be crucial to maintain the
phase difference between the total q-spin-1 and total q-spin-0
sectors of the three-quasiparticle Hilbert space associated
with a given three-braid, and, according to �10�, this can be
done by fixing the winding of the braid �modulo 10�. Be-
cause of the group commutator structure of the Solovay-
Kitaev algorithm, the winding of the nth-level approximation
Un will be the same as that of the initial approximation U0.
This is because all subsequent improvements involve multi-
plying this braid by group commutators of the form
AnBnAn

−1Bn
−1 which automatically have zero winding. The

phase relationship between the total q-spin-1 and total
q-spin-0 sectors is therefore preserved at every level of the
construction.

Figure 8 shows the application of one iteration of the
Solovay-Kitaev algorithm applied to finding a braid which
generates a unitary operation approximating iX. The braid
labeled U0 is the result of a brute force search with L=44
corresponding to the best approximation shown in Fig. 7.
�Note that although this braid is drawn as a sequence of
elementary braid operations, it is topologically equivalent to
a weave. In fact precisely this braid, drawn explicitly as a
weave, is shown in Fig. 13.� The braids labeled A0 and B0

generate unitary operations which approximate operators A
and B whose group commutator gives UU0

−1 where U= iX.
Finally, the braid labeled U1 is the new, more accurate, ap-
proximate weave.

VI. TWO-QUBIT GATES

We have seen that single-qubit gates are “easy” in the
sense that as long as we braid within an encoded qubit there
will be no leakage errors �the overall q-spin of the group of
three quasiparticles will remain 1�. Furthermore, the space of
unitary operators acting on the three-quasiparticle Hilbert
space �essentially SU�2�� is small enough to find excellent
approximate braids by performing brute force searches and
subsequent improvement using the Solovay-Kitaev algo-
rithm. We now turn to the significantly harder problem of
finding braids which approximate entangling two-qubit
gates.

A. Divide and conquer approach

Figure 9 depicts six quasiparticles encoding two qubits
and a general braiding pattern. To entangle these qubits, qua-
siparticles from one qubit must be braided around quasipar-
ticles from the other qubit, and this will inevitably lead to
leakage out of the encoded qubit space, �i.e., the overall
q-spin of the three quasiparticles constituting a qubit may no

FIG. 8. �Color online� One iteration of the Solovay-Kitaev al-
gorithm applied to finding a braid which approximates the operation
U= iX. The braid U0 is the result of a brute force search over
weaves up to length 44 that best approximate the desired gate U
= iX, with an operator norm distance between U and U0 of 
�8.5
�10−4. The braids A0 and B0 are the results of similar brute force
searches to approximate unitary operations A and B whose group
commutator satisfies ABA−1B−1 � UU0

−1. The new braid U1

=A0B0A0
−1B0

−1U0 is then five times longer than U0, and the accuracy
has improved so that the distance to the target gate is now 
1

�4.2�10−5. Given the group commutator structure of the
A0B0A0

−1B0
−1 factor, the winding of the U1 braid is the same as the

U0 braid. Note that, when joining braids to form U1, it is possible
that elementary braid operations from one braid will multiply their
own inverses in another braid, allowing the total braid to be short-
ened. Here we have left these “redundant” braids in U1, as the
careful reader should be able to find.
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longer be 1�. Furthermore, the space of all operators acting
on the Hilbert space of six quasiparticles is much bigger than
for three, making brute force searching extremely difficult.
Here the unitary operations acting on this space are in
SU�5� � SU�8� �up to winding-dependent phase factors as in
�10��, which has 87 free parameters as opposed to three for
the three quasiparticle case of SU�2�.

Still, as a matter of principle, it is possible to perform a
brute force search of sufficient depth so that it corresponds to
a fine enough 
-net to carry out the Solovay-Kitaev algo-
rithm in this larger space.42 This is essentially the program
outlined in Ref. 5 as an “existence proof” that universal
quantum computation is possible; however, it is not at all
clear that, even if one could do this, it would be the most
efficient procedure for compiling braids. For the same
amount of classical computing power required to directly
compile braids in SU�5� � SU�8�, we believe one can find
much more efficient braids �in the sense of having a more
accurate computation with a shorter braid� by breaking the
problem into smaller problems, each consisting of finding a
specific three-braid embedded in the full six-braid space. As
we have shown above, these three-braids can then be very
efficiently compiled.

Here we present two classes of two-qubit gate construc-
tions based on this divide and conquer approach. The first of
these were originally introduced by the authors in Ref. 32
and are characterized by the weaving of a pair of quasiparti-
cles from one qubit through the quasiparticles, forming the
second qubit. The second class, presented here for the first
time, can be carried out by weaving only a single quasipar-
ticle from one qubit around one other quasiparticle from the
same qubit, and two quasiparticles from the second qubit.

B. Two-quasiparticle weave construction

We now review the two-qubit gate constructions first dis-
cussed in Ref. 32. The basic idea behind these constructions
is illustrated in Fig. 10. This figure shows two qubits and a
braiding pattern in which a pair of quasiparticles from the
top qubit �the control qubit� is woven through the quasipar-
ticles forming the bottom qubit �the target qubit�. Throughout
this braiding the pair is treated as a single immutable object
which, at the end of the braid, is returned to its original
position.

If, as in Fig. 10, we choose the pair of weft quasiparticles
to be the two quasiparticles whose total q-spin determines
the logical state of the qubit, then we refer to this pair as the
control pair. We can then immediately see why this construc-
tion naturally suggests itself. If the control qubit is in the
state �0L the control pair will have total q-spin 0, and weav-
ing this pair through the target qubit will have no effect. We
are thus guaranteed that if the control qubit is in the state �0L
the identity operation is performed on the target qubit.

The only nontrivial effect of this weaving pattern occurs
when the control qubit is in the state �1L. In this case, the
control pair has total q-spin 1 and so behaves as a single
Fibonacci anyon. The problem of constructing a two-qubit
controlled gate then corresponds to finding a weaving pattern
in which a single Fibonacci anyon weaves through the three
quasiparticles of the target qubit, inducing a transition on this
qubit without inducing leakage error out of the computa-
tional qubit space, or at least keeping such leakage as small
as required for a particular computation. This reduces the
problem of finding a two-qubit gate to that of finding a weav-
ing pattern in which one Fibonacci anyon weaves around
three others—a problem involving only four Fibonacci
anyons. However, following our divide and conquer philoso-
phy, we will further narrow our focus to weaving a single
Fibonacci anyon through only two others at a time.

We define an “effective braiding” weave to be a woven
three-braid in which the weft quasiparticle starts at the top
position, and returns to the top position at the end of the
weave, with the requirement that the unitary transformation
it generates be approximately equal to that produced by m
clockwise interchanges of the two warp quasiparticles. To
find such weaves we perform a brute force search, as out-
lined in Sec. V, over sequences �ni� which approximately
satisfy

	2Uweave��ni��	2 � 	1
m. �13�

If both sides of this equation are expressed using �10� it
becomes evident that the winding of any effective braiding

FIG. 9. �Color online� Two encoded qubits and a generic braid.
Because quasiparticles are braided outside of their starting qubits
these braids will generally lead to leakage out of the computational
qubit space, i.e., the q-spin of each group of three quasiparticles
forming these qubits will in general no longer be 1.

FIG. 10. �Color online� A two-qubit gate construction in which a
pair of quasiparticles from the top �control� qubit is woven through
the bottom �target� qubit. The mobile pair of quasiparticles is re-
ferred to as the control pair and has a total q-spin of 0 if the control
qubit is in the state �0L, and 1 if the control qubit is in the state �1L.
Since weaving an object with total q-spin 0 yields the identity op-
eration, this construction is guaranteed to result in a transformation
of the target qubit state only if the control qubit is in the state �1L.
Note that in this and subsequent figures world-lines of mobile qua-
siparticles will always be dark blue.
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weave must satisfy W=m �modulo 10�. Since the weft par-
ticle starts and ends in the top position, W must be even; thus
effective braiding weaves exist only for even m.

An example of an m=2 effective braiding weave found
through a brute force search is shown in Fig. 11. The corre-
sponding unitary operation approximates that of interchang-
ing the two warp quasiparticles twice to a distance 
�10−3.
�This is a typical distance for a woven three-braid of length
L�46 which approximates a desired operation—precise dis-
tances of approximate weaves are given in the figure cap-
tions.� As for all approximate weaves considered here, the
Solovay-Kitaev algorithm outlined in Sec. V C can be used
to improve the accuracy of this weave so that 
 can be made
as small as required with only a polylogarithmic increase in
length.

The construction of a two-qubit gate using this effective
braiding weave is also shown in Fig. 11. In this construction
the control pair is woven through the top two quasiparticles
of the target qubit using this weave. As described above, if
the control qubit is in the state �0L, the control pair has
q-spin 0 and the target qubit is unchanged. But, if the control
qubit is in the state �1L, the control pair has q-spin 1 and the
action on the target qubit is approximately equivalent to that
of interchanging the top two quasiparticles twice, with the
approximation becoming more accurate as the length of the
effective braiding weave is increased, either by deeper brute
force searching or by applying the Solovay-Kitaev algo-
rithm. Because this effective braiding all occurs within an
encoded qubit, leakage errors can be reduced to zero in the
limit 
→0. The resulting two-qubit gate is then a controlled-
	2

2 gate which corresponds to controlled rotation of the target
qubit through an angle of 6� /5.

Unfortunately, due to the even m constraint, it is impos-
sible to find an effective braiding gate which corresponds to
a controlled � rotation of the target qubit. Such a gate would
be equivalent to a controlled-NOT gate up to single-qubit
rotations.43 Nonetheless, it is known that any entangling two-
qubit gate, when combined with the ability to carry out arbi-
trary single-qubit rotations, forms a universal set of quantum
gates.46 Thus, the efficient compilation of single-qubit opera-
tions described in Sec. V and the effective braiding construc-

tion just given provide direct procedures for compiling any
quantum algorithm into a braid to any desired accuracy.

Although it can be used to form a universal set of gates,
this effective braiding construction is still rather restrictive. It
is clearly desirable to be able to directly compile a
controlled-NOT gate into a braid. We now give a construction
which can be used to efficiently compile any arbitrary con-
trolled rotation of the target qubit—including a controlled-
NOT gate. This construction is based on a class of woven
three-braids which we call “injection weaves.”

In an injection weave the weft quasiparticle again starts at
the top position but in this case ends at a different position.
At the same time we require that the unitary operation gen-
erated by this weave approximate the identity. Thus the ef-
fect of an injection weave is to permute the quasiparticles
involved without changing any of the underlying q-spin
quantum numbers of the system.

Comparing the identity matrix to �10� we see that any
three-braid approximating the identity must have winding
W=0 �modulo 10�. The fact that this winding must be even
implies that the final position of the weft particle must be at
the bottom of the weave. Thus injection weaves correspond
to sequences �ni� which approximately satisfy the equation

	1Uweave��ni��	2 � �1 0

0 1

1

 . �14�

An injection weave obtained through brute force search is
shown in Fig. 12. The unitary operation produced by this
weave approximates the identity operation to a distance 

�10−3.

Our two-qubit gate construction based on injection weav-
ing is carried out in three steps. In the first step, also shown
in Fig. 12, the control pair is woven into the target qubit
using the injection weave. If the control pair has total q-spin
1 �the only nontrivial case� the effect of this weave is merely
to replace the middle quasiparticle of the target qubit with

FIG. 11. �Color online� An effective braiding weave, and a two-
qubit gate constructed using this weave. The effective braiding
weave is a woven three-braid which produces a unitary operation
which is a distance 
�2.3�10−3 from that produced by simply
interchanging the two target particles �	1

2�. When the control pair is
woven through the target qubit using this weave the resulting two-
qubit gate approximates a controlled-�	2

2� gate to a distance 

�1.9�10−3 or 1.6�10−3 when the total q-spin of the two qubits is
0 or 1, respectively.

FIG. 12. �Color online� An injection weave, and step 1 in our
injection-based gate construction. The box labeled I represents an
ideal �infinite� injection weave which is approximated by the weave
shown to a distance 
�1.5�10−3. In step 1 of our gate construc-
tion, this injection weave is used to weave the control pair into the
target qubit. If the control qubit is in the state �1L then a=1 and the
result is to produce a target qubit with the same quantum numbers
as the original, but with its middle quasiparticle replaced by the
control pair.
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the control pair. Because the unitary operation approximated
by the injection weave is the identity, in the 
→0 limit this
injection is accomplished without changing any of the q-spin
quantum numbers. The injected target qubit is therefore �ap-
proximately� in the same quantum state as the original target
qubit.

In the second step of our construction, illustrated in Fig.
13, we carry out an operation on the injected target qubit by
simply weaving the control pair within the target. Because
for a=1 all of this weaving takes place within the injected
target qubit, there will be no leakage error �again, strictly
speaking, only in the limit of an exact injection weave�. The
only constraint on this weave is that the control pair must
both start and end in the middle position, and so it must have
even winding.

If our goal is to produce a gate which is equivalent to a
controlled-NOT gate up to single-qubit rotations then we must
apply a � rotation to the target qubit. Unfortunately, this
cannot be accomplished by any finite weave with even wind-
ing, so we must again consider approximate weaves. Figure

13 shows the control pair being woven through the injected
target qubit using a weave found by a brute force search
which approximates a particular � rotation—the operator iX
defined in �12�—to a distance 
�10−3 �this is, in fact, the
same weave shown at the top of Fig. 8�.

The third step in our construction is the extraction of the
control pair from the target qubit. This is accomplished, as
shown in Fig. 14, by applying the inverse of the injection
weave to the control pair. The effect of this extraction is to
restore the control qubit to its original state, and replace the
control pair inside the target qubit with the quasiparticle
which originally occupied that position.

The full construction is summarized in Fig. 15, which
provides a recipe for compiling a controlled-NOT gate into a
two-quasiparticle weave. A quantum circuit showing that a
controlled-NOT gate is equivalent to a controlled-�iX� gate
and a single-qubit operation is shown in the top part of the
figure. The single-qubit operation can be compiled to what-
ever accuracy is required following Sec. V, and the
controlled-�iX� gate can be decomposed into injection, iX,
and inverse injection operations, as is also shown in the top

FIG. 13. �Color online� A weave that approximates iX �see Eq.
�12��, and step 2 in our injection-based construction. The box la-
beled iX represents an ideal �infinite� iX weave which is approxi-
mated by the weave shown to a distance 
=8.5�10−4 �this is the
same weave that appears at the top of Fig. 8�. In step 2 of our gate
construction the control pair is woven within the injected target
qubit, following this weave, in order to carry out an approximate iX
gate when a=1, as shown.

FIG. 14. �Color online� An inverse injection weave and step 3 in
our injection-based construction. The box labeled I−1 represents an
ideal �infinite� inverse injection weave which is approximated by
the inverse of the injection weave shown in Fig. 12, again to a
distance 
�1.5�10−3. This weave is used to extract the control
pair out of the injected target qubit and return it to the control qubit,
as shown.

FIG. 15. �Color online� Injection-weave based compilation of a controlled-NOT gate into a braid. A controlled-NOT gate can be expressed
as a controlled-�iX� gate and a single-qubit operation R�−� /2ẑ�=exp�i�	z /4� acting on the control qubit. The single-qubit rotation can be
compiled following the procedure outlined in Sec. V, and the controlled-�iX� gate can be decomposed into ideal injection �I�, iX, and inverse
injection �I−1� operations which can be similarly compiled. The full approximate controlled-�iX� braid obtained by replacing I, iX, and I−1

with the weaves shown in the previous three figures is shown at bottom. The resulting gate approximates a controlled-�iX� gate to a distance

�1.8�10−3 and 1.2�10−3 when the total q-spin of the two qubits is 0 or 1, respectively.
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part of the figure. These operations can then all be similarly
compiled following Sec. V.

The full braid shown at the bottom of Fig. 15 corresponds
to using the approximate woven three-braids shown in Figs.
12–14 to carry out a controlled-�iX� gate. In this braid, if the
control qubit is in the state �0L the control pair has total
q-spin 0 and the resulting unitary transformation is exactly
the identity. However, if the control qubit is in the state �1L
the control pair has total q-spin 1 and behaves like a single
Fibonacci anyon. This pair is then woven into the target qubit
using an injection weave, woven within the target in order to
carry out the iX operation, and finally woven out of the target
and back into the control qubit using the inverse of the in-
jection weave. The resulting gate is therefore a controlled-
�iX� gate.

By replacing the iX weave with an even winding weave
which carries out an arbitrary operation U this construction
will give a controlled-U gate. The only restriction on U is
that its overall phase must be consistent with �10� with even
winding W. However, this phase can be easily set to any
desired value by applying the appropriate single-qubit rota-
tion to the control qubit, as in Fig. 15.

Finally, note that at no point in either the effective braid-
ing or injection weave constructions described above did we
make reference to the total q-spin of the two qubits involved.
It follows that, in the limit of exact effective braiding or
injection weaves, the action of the corresponding two-qubit
gates on the computational qubit space does not depend on
the state of the external fusion space associated with the
q-spin-1 quantum numbers of each qubit �see Sec. IV�. These
gates will therefore not entangle the computational qubit
space with this external fusion space.

C. One-quasiparticle weave constructions

We now show that two-qubit gates can be carried out with
only a single mobile quasiparticle. This possibility follows
from the general result of Ref. 41 that for any system of
non-Abelian quasiparticles in which general braids are uni-
versal for quantum computation �such as Fibonacci anyons�,
single quasiparticle weaves are universal as well. However,
the “proof of principle” weaves constructed in that work
were extremely inefficient—involving a huge number of ex-
cess operations. Here we show how to efficiently construct a
single-quasiparticle weave corresponding to a controlled-
NOT gate �up to single-qubit rotations�.

Our construction is based on a class of weaves that are
similar to injection weaves in that they can be used to swap
two q-spin-1 objects—where one object is a pair of Fi-
bonacci anyons with total q-spin 1 and the other object is a
single Fibonacci anyon—while acting effectively as the iden-
tity operation so that none of the other q-spin quantum num-
bers of the system are disturbed. However, unlike injection
weaves, this new class of weaves accomplishes this swap
without moving the pair as a single object, and in fact can be
carried out by moving just one quasiparticle.

The class of weaves we seek are those that approximate
the transformation

U„�•, • �a, • …c = ei�
„•,�•, • �a…c, �15�

where � is an overall �irrelevant� phase that does not depend
on a or c. The relevant case for showing the similarity with

injection is when a=1, for which the initial and final states in
�15� consist of two q-spin-1 objects—a single Fibonacci
anyon and a pair of Fibonacci anyons with total q-spin 1. If
both these objects are represented as single Fibonacci anyons
then �15� can be written U�• , • �c=ei��• , • �c. In this represen-
tation U therefore acts effectively as the identity operation
�times an irrelevant phase�, similar to injection.

Using the F matrix �5� to expand the right-hand side of
�15� in the (�• , • � , • ) basis yields

U„�•, • �a, • …c = ei��
b

Fab
c
„�•, • �b, • …c. �16�

Comparing this with the action of a unitary operation U with
matrix representation

U = �U00
1 U01

1

U10
1 U11

1

U11
0 
 , �17�

on the state (�• , • �a , • )c,

U„�•, • �a, • …c = �
b

Uab
c
„�•, • �b, • …c, �18�

we see that the matrix representation of the U we seek is
precisely the F matrix �up to a phase�: U=ei�F. While the F
matrix describes a “passive” operation, i.e., a change of ba-
sis, the operator U can be viewed as an “active” F operation
which acts directly on the states of the Hilbert space. Note
that, since F=F−1, we also have

U„•,�•, • �a…c = ei�
„�•, • �a, • …c. �19�

We will refer to weaves that approximate the operation
�15� �and thus also �19�� as F weaves. As we have seen, the
unitary operation U produced by an F weave need only ap-
proximate the F matrix �5� up to an overall irrelevant phase.
To be consistent with �10� this phase must be −1, as can be
seen by writing the matrix −F as

FIG. 16. �Color online� An F weave, and step 1 of our
F-weave-based two-qubit gate construction. The box labeled F rep-
resents an ideal �infinite� F weave which is approximated by the
weave shown to a distance 
�3.1�10−3. Applying the F weave to
the initial two-qubit state, as shown, produces an intermediate state
with q-spins labeled a and b� which depend simply on a and b—the
initial states of the two qubits �see Table I�.
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− F = �±i� ±i� ± i	�

±i	� � i�
�

− 1

 , �20�

where a factor of ±i has been pulled out of the upper left 2
�2 block, leaving an SU�2� matrix �det=�2+�=1�. Compar-
ing �20� with �10�, it is also evident that any F weave must
have winding W=5 �modulo 10�, which is necessarily odd.

The fact that F weaves must have an odd number of wind-
ings implies that if the weft quasiparticle starts at the top
position of the weave it must end at the middle position. For
this choice the F weave must then approximately satisfy the
equation

Uweave��ni��	2 � − F . �21�

The result of a brute force search for an F weave which
approximates the operation −F to a distance 
�10−3 is
shown in Fig. 16.

The first step in our single-quasparticle weave construc-
tion is the application of an F weave to two qubits, also
shown in Fig. 16. Note that in this figure for convenience we
have made a change of basis on the bottom qubit, so that the
pair which determines its state �the control pair� consists of
the top two quasiparticles within it rather than the bottom
two. There is no loss of generality in doing so since this just
corresponds to a single-qubit rotation on the bottom qubit.

With this basis choice the initial state of the two qubits is
determined by the q-spins of their respective control pairs
which are indicated in Fig. 16 as a �top qubit� and b �bottom
qubit�. After carrying out the F weave, taking the middle
quasiparticle of the top qubit as the weft quasiparticle, and
weaving it around both the bottom quasiparticle of the top
qubit and the top quasiparticle of the bottom qubit, the re-
sulting state �again, strictly speaking, only in the limit of an
exact F weave� is shown at the end of the two-qubit weave in
Fig. 16. From �19� it follows that the newly positioned weft
quasiparticle and the quasiparticle beneath will have total
q-spin a. When the quasiparticle beneath these two is also
included, the three quasiparticles form what we will refer to
as the intermediate state (• , �• , • �a)b�, where the total q-spin
of all three quasiparticles, b�, has a well-defined value pro-
vided a and b are well defined, as we now show.

First consider the case a=1. As described above, the ef-
fect of the F weave is then similar to that of the injection
weave from the previous construction—it replaces the top-

most quasiparticle in the bottom qubit with a pair of quasi-
particles with q-spin 1, and the bottom-most pair of quasi-
particles in the top qubit �which also has total q-spin 1� with
a single quasiparticle, without changing any of the other
q-spin quantum numbers of the system. In the limit of an
ideal F weave, this means that the b quantum number does
not change after this swap and so b�=b. The case a=0 is
simpler, since in this case the intermediate state is
(• , �• , • �0)b� for which the fusion rules �2� imply b�=1, re-
gardless of the value of b. The resulting dependence of b� on
a and b is summarized in Table I.

Having used the F weave to create the intermediate state
(• , �• , • �a)b�, the next step in our construction is the applica-
tion of a weave which performs an operation on this state
which does not change a and b� but which does yield an a-
and b�-dependent phase factor. After carrying out such a
weave, which we will refer to as a phase weave, we can then
apply the inverse of the F weave to restore the two qubits to
their initial states a and b.

For any phase weave we will require that the weft quasi-
particle both start and end in the top position so that when
we join it to the F weave and its inverse there will be a single
weft quasiparticle throughout the entire gate construction.

TABLE I. Values of b� for different values of a and b after
applying the F weave as shown in Fig. 16, and the phase applied to
the resulting state by a phase weave with zero winding. The value
of b� is determined by the fact that b�=1 when a=0 and b�=b when
a=1, as shown in the text.

a b b� Phase factor

0 0 b�=1 1 ei�

0 1 1 ei�

1 0 b�=b 0 1

1 1 1 e−i�

FIG. 17. �Color online� A phase weave with �=� �see text�
which gives a � phase shift to the intermediate state when b�=1,
and step 2 of our F-weave-based construction. The box labeled P
represents an ideal �infinite� �=� phase weave which is approxi-
mated by the weave shown to a distance 
�1.9�10−3. Applying
this phase weave to the intermediate state created by the F weave,
as shown, results in a b�-dependent � phase shift �see Table I with
�=��.

FIG. 18. �Color online� An inverse F weave and step 3 in our F
weave construction. The box labeled F−1 is an ideal �infinite� in-
verse F weave which is approximated by the inverse of the F weave
shown in Fig. 16, again to a distance 
�3.1�10−3. By applying
the inverse F weave to the state obtained after applying the phase
weave, as shown, the two qubits are returned to their initial states,
but now with an a- and b-dependent phase factor �see Table I�.
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The phase weave must therefore have even winding, and
with no loss of generality we can consider the case for which
the winding satisfies W=0 �modulo 10�. The unitary opera-
tion produced by such a phase weave must then approxi-
mately satisfy the equation

	2Uweave��ni��	2 � F�ei� 0

0 e−i�

1

F−1, �22�

where the F matrices are needed to change the Hilbert space
basis from that in which the operation produced by the phase
braid must be diagonal �the (• , �• , • �) basis�, to that in which
the 	1 and 	2 matrices are defined �the (�• , • � , • ) basis�.

We will see that a phase weave with �=� produces a
two-qubit gate which is equivalent to a controlled-NOT gate
up to single-qubit rotations. The result of a brute force search
for such a phase weave which approximates the desired op-
eration to a distance 
�10−3 is shown in Fig. 17. This figure
also shows the action of the phase weave on the intermediate
state produced in Fig. 16. In this weave, the weft quasiparti-
cle is now woven through the two quasiparticles beneath it,
and returns to its original position. Because the phase weave
produces a diagonal operation in the basis shown for the
intermediate state, it does not change the values of a and b�.
Its only effect is to give a phase factor of ei� to the state with
a=0 �which necessarily has b�=1� and e−i� to the state with
a=1 and b�=1. The state with a=1 and b�=0 is unchanged.
These phase factors are also shown in Table I.

The final step in this construction is to perform the inverse
of the F weave to return the two qubits to their original
states. This is shown in Fig. 18. In the limit of exact F and
phase weaves, the resulting operation on the computational
qubit space in the basis ab= �00,01,10,11� is then

U =�
ei� 0 0 0

0 ei� 0 0

0 0 1 0

0 0 0 e−i�

 . �23�

If we take the top qubit to be the control qubit and the bot-
tom qubit to be the target qubit, then this gate corresponds,
up to an irrelevant overall phase, to a controlled-
�e−i3�/2ei�	z/2� operation. For the case �=� this is a
controlled-�−Z� gate �where Z=	z�, i.e., a controlled-phase

FIG. 19. �Color online� F-weave-based compilation of a controlled-NOT gate into a braid. A controlled-NOT gate is equivalent to a
controlled-�−Z� gate with the single-qubit operation R�� /2ŷ�=exp�−i�	y /4� and its inverse applied to the target qubit before and after the
controlled-�−Z�. Again, the single-qubit operations can be trivially compiled, and the controlled-�−Z� gate decomposed into ideal F, phase
�P�, and inverse F �F−1� weaves which can be similarly compiled. The full approximate controlled-�−Z� weave obtained by replacing F, P,
and F−1 with the approximate weaves shown in the previous three figures is shown at the bottom. The resulting gate approximates a
controlled-�−Z� to a distance 
�4.9�10−3 and 3.2�10−3 when the total q-spin of the two qubits is 0 or 1, respectively.

FIG. 20. �Color online� Two four-quasiparticle qubits and a
braiding pattern in which only two quasiparticles from each qubit
are braided. Here the quasiparticles are SU�2�k excitations with
q-spin 1/2. The state of the top qubit is determined by the total
q-spin of the quasiparticle pairs labeled a and the state of the bot-
tom qubit is determined by the total q-spin of the quasiparticle pairs
labeled b. The overall q-spin of the four braided quasiparticles is d
�a dashed oval is used because when a=b=1 these quasiparticles
will not be in a q-spin eigenstate�. For this braid to produce no
leakage errors, the unitary operation it generates must be diagonal
in a and b, though it can, of course, result in an a- and b-dependent
phase factor. For k�3, d can take the values 0, 1, or 2, while for
k=3 the only allowed values for d are 0 and 1. The existence of the
d=2 state for k�3 makes it impossible to carry out an entangling
two-qubit gate by braiding only four quasiparticles �see text�.

HORMOZI et al. PHYSICAL REVIEW B 75, 165310 �2007�

165310-16



gate, which, up to single-qubit rotations, is equivalent to a
controlled-NOT gate.

The full F-weave-based gate construction is summarized
in Fig. 19. A quantum circuit showing a controlled-NOT gate
in terms of a controlled-�−Z� gate and two single-qubit op-
erations is shown in the top part of the figure. As in our
injection based construction, the single-qubit operations can
be compiled to whatever accuracy is required following the
procedure outlined in Sec. V. The controlled-�−Z� gate can
then be decomposed into ideal F, phase, and inverse F
weaves as is also shown in the top part of the figure. Woven
three-braids which approximate these operations can then be
compiled to whatever accuracy is required, again following
Sec. V. The full controlled-�−Z� weave corresponding to us-
ing the approximate F and phase weaves shown in Figs.
16–18 is shown in the bottom part of the figure.

Finally, in this construction, as for the constructions de-
scribed in Sec. VI B, we at no point made reference to the
total q-spin of the two qubits involved. Thus, in the limit of
exact F and phase weaves, the action of the two-qubit gates
constructed here will not entangle the computational qubit
space with the external fusion space associated with the
q-spin 1 quantum numbers of each qubit.

VII. WHAT IS SPECIAL ABOUT k=3?

All of the gate constructions discussed in this paper ex-
ploit the fact that the braiding and fusion properties of a pair
of Fibonacci anyons are either trivial if their total q-spin is 0,
or equivalent to those of a single Fibonacci anyon if their
total q-spin is 1. The fact that these are the only two possi-
bilities is a special property of the Fibonacci anyon model,
and hence also the SU�2�3 model, given their effective
equivalence. It is then natural to ask to what extent our con-
structions can be generalized to SU�2�k CSW theories for
different values of the level parameter k.

Of course we know from the results of Freedman et al.6

that the SU�2�k representations of the braid group are dense
for k=3 and k�4. Thus, for example, braids which approxi-
mate controlled-NOT gates on encoded qubits exist and can,
in principle, be found for all these k values. However, we
will show below that things are somewhat simpler for the
case k=3. Specifically we will show that for k=3, and only
k=3, it is possible to carry out two-qubit entangling gates by
braiding only four quasiparticles, as, for example, in our ef-
fective braiding and F weave constructions.

Consider a pair of SU�2�k four-quasiparticle qubits as
shown in Fig. 20. Here each quasiparticle is assumed to have
q-spin 1/2 and the total q-spin of each qubit is required to be
0. The state of a given qubit is then determined by the q-spin
of either the topmost or bottom-most pair of quasiparticles
within it, where, from the SU�2�k fusion rules �1�, the q-spin
of each pair must be the same for the total q-spin of the qubit
to be 0. Thus, in Fig. 20, the state of the top qubit is deter-
mined by the q-spin labeled a and the state of the bottom
qubit is determined by the q-spin labeled b, where, again
from the fusion rules �1�, a and b can be either 0 or 1.

If we are only allowed to braid the middle four quasipar-
ticles, as shown in Fig. 20, then the total q-spin of the two

topmost quasiparticles of the top qubit and the two bottom-
most quasiparticles of the bottom qubit will remain, respec-
tively, a and b. It follows that if the two qubits are to remain
in their computational qubit spaces, the total q-spin of the
two topmost and two bottom-most quasiparticles that are be-
ing braided must also remain, respectively, a and b. �If this
were not the case, the fusion rules �1� would imply that the
total q-spin of the four quasiparticles forming each qubit
would no longer be 0.� Thus, in order for there to be no
leakage errors after braiding these four quasiparticles, the
resulting operation must be diagonal in a and b.

It is important to note that this result, and the results that
follow, hold not just for four-quasiparticle qubits, but also for
SU�2�k versions of the three-quasiparticle qubits used
throughout this paper. This is because, as pointed out in Sec.
IV, any gate acting on a pair of three-quasiparticle qubits
must result in an operation on the computational qubit space
which is independent of the state of the external fusion space
associated with the fact that each qubit has total q-spin 1/2
�here the total q-spin of a three-quasiparticle qubit is 1/2
rather than 1 because we are using SU�2�k quantum numbers
and assuming that each quasiparticle has q-spin 1/2—see
Fig. 3�b��. It is therefore sufficient to consider the special
case when the state of two three-quasiparticle qubits corre-
sponds to that of the two four-quasiparticle qubits shown in
Fig. 20, but with the topmost and bottommost quasiparticles
removed. The above arguments then imply any leakage free
operation produced by braiding the four middle quasiparti-
cles must be diagonal in a and b.

Now consider the four middle quasiparticles we are al-
lowed to braid. A basis for the Hilbert space of these quasi-
particles can be taken to be one labeled by the q-spin quan-
tum numbers a and b, as well as the total q-spin of all four
quasiparticles which we denote d �see Fig. 20�. For k�3 the
fusion rules �1� imply that this total q-spin d can be equal to
0, 1, or 2, while for k=3 it can only be equal to 0 or 1. We
will see that this truncation of the d=2 state is the crucial
property of the k=3 theory which makes our F weave and
effective braiding constructions possible.

It is convenient at this stage to restrict ourselves to braids
with zero total winding �i.e., equal numbers of clockwise and
counterclockwise exchanges�. For such braids, arguments
similar to those used to derive �10� can be used to show the
unitary operation enacted on the d=0, 1, and 2 sectors must
each have determinant 1. There is no loss of generality in
restricting ourselves to such braids, since a braid with arbi-
trary winding can always be turned into one with zero wind-
ing by adding the appropriate number of interchanges to ei-
ther the two topmost or two bottommost of the braiding
quasiparticles at either the beginning or end of the braid.
These added interchanges will all be within encoded qubits
and so correspond to single-qubit rotations which will not
produce any entanglement between the two qubits.

If we restrict ourselves to braids with zero winding and
insist that these braids approximate gates with zero leakage
error—which, as shown above, implies the gate must be di-
agonal in the a and b quantum numbers—then in the abd
= �000,110,011,101,111,112� basis the unitary transforma-
tion acting on the Hilbert space of the four braiding quasi-
particles must have the form
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U =�
ei� 0

0 e−i�

ei 0 0

0 ei� 0

0 0 e−i�+��

1


 , �24�

where we have required that the d=0, 1, and 2 blocks all
have determinant 1 �in particular, the d=2 block is simply 1�.

Note that the case a=b=1 has three entries in this matrix,
corresponding to the three possible values for the total q-spin
quantum number d. For this gate to produce no leakage error,
the phase factors in all three of these sectors must be the
same. To see this note that one can expand the relevant eight-
quasiparticle state in terms of basis states with well-defined
values of d as follows:

�„�•, • �1,�•, • �1…0,„�•, • �1,�•, • �1…0�0

= �
d=0

2

Fd��•, • �1,„�•, • �1,�•, • �1…d,�•, • �1�0, �25�

where standard quantum group methods28,33 can be used to
compute the coefficients Fd, with the result

F0 =
1

�3�q
, F1 =

	�3�q

�3�q
, F2 =

	�5�q

�3�q
. �26�

Here we have introduced the q-integers �m�q��qm/2

−q−m/2� / �q1/2−q−1/2�, where q=ei2�/�k+2� is the deformation
parameter.

For k�3 all three Fd coefficients are nonzero. Thus, in
order for the action of �24� on the a=b=1 state to produce
the same state back �up to a phase�, the projection of this
state in the three d sectors must all acquire the same phase.
This implies that �=0 and =−�. The resulting unitary op-
eration must therefore take the form

U =�
1 0

0 1

ei 0 0

0 e−i 0

0 0 1

1


 , �27�

which corresponds to the following two-qubit gate in the
ab= �00,01,10,11� basis,

Uk�3
gate =�

1 0 0 0

0 ei 0 0

0 0 e−i 0

0 0 0 1

 . �28�

This gate is simply the tensor product of two single-qubit

rotations, Uk�3
gate =e−i	z

�1�
/2 � ei	z

�2�
/2. Thus we see that for k

�3 any two-qubit gate constructed by braiding only four
quasiparticles for which there is no leakage error must nec-
essarily also produce no entanglement.

For k=3 this argument breaks down because the d=2 sec-
tor of the braiding quasiparticles is not present. In this case,
following the same argument as above, in the abd
= �000,110,011,101,111� basis the allowed leakage free uni-
tary transformations which can be produced by braiding the
four middle quasiparticles must be of the form �again taking
the case of zero winding�

U =�
ei� 0

0 e−i�

ei 0 0

0 ei��−� 0

0 0 e−i�

 , �29�

which corresponds to the following two-qubit gate in the
ab= �00,01,10,11� basis:

Uk=3
gate =�

ei� 0 0 0

0 ei 0 0

0 0 ei��−� 0

0 0 0 e−i�

 . �30�

As for Uk�3
gate, the  dependence of Uk=3

gate corresponds to a
tensor product of single-qubit rotations. Gates of this form
with fixed � but different values of  are thus equivalent up
to single-qubit rotations. If we use this equivalence to set
=� we see that gates of the form Uk=3

gate are equivalent to the
gates produced by our F weave construction �23�, and so, in
particular, when �=� the resulting gate is equivalent to a
controlled-NOT gate.

VIII. CONCLUSIONS

To summarize, we have shown how to construct both
single-qubit and two-qubit gates for qubits encoded using
non-Abelian quasiparticles described by SU�2�3 CSW theory,
or, equivalently, the SO�3�3 theory �Fibonacci anyons�. Qu-
bits are encoded into triplets of quasiparticles and single-
qubit gates are carried out by braiding quasiparticles within
qubits. Two classes of two-qubit gate constructions were pre-
sented. In the first, a pair of quasiparticles from one qubit is
woven through those forming the second qubit. In the sec-
ond, a single quasiparticle is woven through three static qua-
siparticles �one from the same qubit as the mobile quasipar-
ticle, the other two from the second qubit�. A central theme
in all of our two-qubit gate constructions is that of breaking
the problem of compiling braids for the six quasiparticles
used to encode two qubits into a series of braids involving
only three objects at a time. While these constructions do not
in general produce the optimal braid of a given length which
approximates a desired two-qubit gate, we believe they do
lead to the most accurate �or at least among the most accu-
rate� two-qubit gates which can be obtained for a fixed
amount of classical computing power. Finally, we proved a
theorem which states that for the SU�2�k CSW theory, two-
qubit gates constructed by braiding only four quasiparticles
�two from each qubit� can lead to leakage-free entangling
two-qubit gates only when k=3.
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