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Valence bond entanglement and fluctuations in random singlet phases
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The ground state of the uniform antiferromagnetic spin-1/2 Heisenberg chain can be viewed as a strongly
fluctuating liquid of valence bonds, while in disordered chains these bonds lock into random singlet states on
long-length scales. We show that this phenomenon can be studied numerically, even in the case of weak disorder,
by calculating the mean value of the number of valence bonds leaving a block of L contiguous spins (the
valence-bond entanglement entropy) as well as the fluctuations in this number. These fluctuations show a clear
crossover from a small L regime, in which they behave similar to those of the uniform model, to a large L regime,
in which they saturate in a way consistent with the formation of a random singlet state on long-length scales.
A scaling analysis of these fluctuations is used to study the dependence on disorder strength of the length scale
characterizing the crossover between these two regimes. Results are obtained for a class of models that include,
in addition to the spin-1/2 Heisenberg chain, the uniform and disordered critical 1D transverse-field Ising model
and chains of interacting non-Abelian anyons.
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I. INTRODUCTION

The set of valence-bond states—states in which localized
spin-1/2 particles are correlated in singlet pairs said to be
connected by valence bonds—provides a useful basis for
visualizing singlet ground states of quantum spin systems.
For example, the ground state of the uniform one-dimensional
nearest-neighbor spin-1/2 antiferromagnetic (AFM)
Heisenberg model (the prototypical spin-liquid state1)
can be viewed as a strongly fluctuating liquid of valence
bonds with a power-law length distribution. This intuitive
picture reflects the long-range spin correlations in this state,
as well as the existence of gapless excitations created by
breaking long bonds.

Valence-bond states also play a key role in describing the
physics of random spin-1/2 AFM Heisenberg chains. For
these systems, it was shown by Fisher,2 using a real space
renormalization group (RSRG) analysis, that on long-length
scales the ground state is described by a single valence-bond
state known as a random singlet state. This single valence-bond
state should be viewed as a caricature of the true ground state,
which will certainly exhibit bond fluctuations on short-length
scales. In fact, it is natural to expect that, when measured on
these short-length scales, a fluctuating random singlet state
would be difficult to distinguish from the uniform Heisenberg
ground state, particularly in the limit of weak disorder.

In valence-bond Monte Carlo (VBMC) simulations,3

valence-bond states are used to stochastically sample sin-
glet ground states of quantum spin systems. One of the
appealing features of VBMC is that if one imagines viewing
the sampled valence-bond states over many Monte Carlo time
steps, the resulting “movie” would correspond closely to the
intuitive resonating valence bond picture described above.
For random Heisenberg chains (and related models) VBMC
should therefore provide a useful method for directly studying
the phenomenon of random singlet formation on long-length
scales, while at the same time capturing the short-range
fluctuations, which will always be present.

With this motivation, we have carried out a VBMC study
of a class of models that include the uniform and random spin-

1/2 AFM Heisenberg chains, as well as models that describe
chains of interacting non-Abelian anyons, as special cases. The
paper is organized as follows. First, in Sec. II, we define the
models and describe their relevant Hilbert spaces. In Sec. III,
we give a short review of the VBMC method, and in Sec. IV
we present results for the valence-bond entanglement entropy
of the uniform and random models. In Sec. V, we introduce
the valence-bond fluctuations—a measure of how strongly the
valence bonds are fluctuating on a given length scale—and
show that this quantity can be used to provide a clear signature
of random singlet state formation. Results of a scaling analysis
of the valence-bond fluctuations are then presented in Sec. VI,
and the paper ends with some conclusions in Sec. VII.

II. HILBERT SPACE AND MODEL HAMILTONIANS

To define the class of model Hamiltonians studied here, we
first specify the relevant Hilbert spaces on which they act. It
is well known that the set of noncrossing valence-bond states
[see Fig. 1(a)] forms a complete linearly independent basis
spanning the total spin-0 Hilbert space of a chain of spin-1/2
particles.4 We denote the singlet projection operator acting
on neighboring sites i and i + 1 by �0

i , which, for spin-1/2
particles, can be expressed as

�0
i = 1

4 − �Si · �Si+1, (1)

where �Si is a spin-1/2 operator (here and throughout h̄ = 1).
Figure 1(b) shows two representative examples of �0

i acting
on a noncrossing valence-bond state. For spin-1/2 particles,
the parameter d appearing in Fig. 1(b) is equal to 2; however, in
principle, d can take any value (of course, if d �= 2 the Hilbert
space no longer describes spin-1/2 particles).

Of particular interest are the cases

d = 2 cos
π

k + 2
, (2)

where k is a positive integer.5 For these values of d, when k is
finite, the noncrossing states are no longer linearly independent
and the Hilbert space dimensionality of N sites can be shown
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FIG. 1. (Color online) (a) A noncrossing valence-bond state.
(b) Action of singlet projection operators �0

i on a noncrossing
valence-bond state. (c) A noncrossing valence-bond state with a block
of L = 5 sites (region enclosed in the box) for which nL, the number
of bonds leaving the block, is 3.

to grow asymptotically as dN with d < 2. The k → ∞ limit
then corresponds to the case of ordinary spin-1/2 particles
with d = 2 for which the Hilbert space dimensionality grows
as 2N .

One consequence of the reduced Hilbert space dimension-
ality for finite integer k is that it changes the entanglement
entropy associated with a valence bond. The entanglement
entropy of a subsystem A of a larger system consisting of
parts A and B is defined to be the von Neumann entropy, SvN,
of the reduced density matrix ρA obtained by tracing out the
degrees of freedom in region B, thus

SvN = −Tr[ρA log2 ρA]. (3)

With this definition, an ordinary singlet formed by two spin-
1/2 particles, with one spin in region A and the other in region
B, will have SvN = 1. However, when d = 2 cos π

k+2 , it was
shown in Ref. 6 that if there are M valence bonds connecting
sites in region A with sites in region B, then, in the M � 1
limit, because the dimensionality of the traced out Hilbert
space grows as dM , SvN � M log2 d and the entanglement per
bond is log2 d.

The class of Hamiltonians studied here are all characterized
by the parameter d and have the form

H = −
∑

i

Ji�
0
i , (4)

with Ji > 0. For d = 2, these models correspond to spin-1/2
AFM Heisenberg chains with Ji equal to the exchange energy
associated with spins i and i + 1. For general d, if the Ji

are uniform (Ji = J ) the Hamiltonians (4) can be viewed as
1+1 dimensional quantum Potts models obtained by taking
the asymmetric limit of the transfer matrix of the Q-state Potts
models7 with Q = d2.

For d � 2, the uniform models are all gapless, and for the
special values d = 2 cos π

k+2 they correspond to a sequence of
conformally invariant Andrews-Baxter-Forrester8 (ABF) mod-
els with central charges ck = 1 − 6/(k + 1)(k + 2).9 Physi-
cally, these ABF models can be thought of as describing
chains of interacting non-Abelian particles described by
su(2)k Chern-Simons-Witten theory, believed to be relevant
for certain quantum Hall states.10 Two special cases of these
models are k = 2 (d = √

2), which corresponds to the critical
1D transverse field Ising model, and k = 3 (d = φ where
φ = (

√
5 + 1)/2 is the golden mean), which corresponds to

the so-called golden chain made up of interacting Fibonacci
anyons.10 The known universal entanglement scaling of

conformally invariant 1+1 dimensional systems11 implies that
the entanglement entropy of a block of L contiguous sites, SvN

L ,
in the ground states of these models will scale logarithmically
for L � 1 as10

SvN
L � ck

3
log2 L. (5)

When the Ji are random, the Hamiltonians (4) can no longer
be solved exactly. However, the RSRG approach of Fisher2 can
be straightforwardly applied for all d �

√
2 with the result

that the ground states all flow to the same infinite randomness
fixed point6,12—one for which the bond strength distribution
is the same as that of the fixed point of the random Heisenberg
chain.2 For this fixed point, Refael and Moore13 have shown
that if nL is the number of valence bonds leaving a given block
of size L [see Fig. 1(c)], then, in the L � 1 limit,

nL � ln L

3
� ln 2

3
log2 L, (6)

where the overbar denotes a disorder average over random
singlet states produced by the RSRG. This logarithmic scaling
is a direct consequence of the inverse-square distribution of
valence bond lengths characteristic of random singlet states.14

Multiplying nL by the entanglement per bond of log2 d then
yields the RSRG result for the asymptotic scaling of the
entanglement entropy for the random ABF models, which is
again logarithmic and has the form6,13

SvN
L � nL log2 d � ln d

3
log2 L. (7)

III. VALENCE-BOND MONTE CARLO

When applying the VBMC method3 to Hamiltonians of
the form (4), the ground state is projected out by repeatedly
applying −H to a particular noncrossing valence-bond state
|S〉. The result of this projection after n iterations is

(−H )n|S〉 =
∑

i1,···,in
Ji1 · · · Jin�

0
i1

· · ·�0
in
|S〉. (8)

The properties of the projection operators shown in Fig. 1(b)
imply that �0

i1
· · ·�0

in
|S〉 = λi1,···,in |α〉, where |α〉 is a non-

crossing valence-bond state with the same norm as |S〉. The
coefficient is given by λi1,···,in = d−m, where m is the number
of times a projection operator acts on two sites that are not
connected by a valence bond when projecting |S〉 onto |α〉.3,15

This projection thus leads to an expression for the ground
state |ψ〉, which becomes exact in the limit of large n (in our
simulations we find it is sufficient to take n = 60N , where N

is the number of sites) and has the form

|ψ〉 =
∑

α

w(α)|α〉, (9)

where w(α) = Ji1 · · · Jinλi1···in . In the simplest form of VBMC,
the valence-bond states |α〉 contributing to |ψ〉 are sampled
with probability w(α) by updating the sequence of projection
operators (i1, · · · ,in) using the usual Metropolis method.3

To use VBMC to calculate the quantum mechanical
expectation value of given operator O, i.e., 〈ψ |O|ψ〉/〈ψ |ψ〉,
it is necessary to project the ground state out of both
the bra and ket states, in which case one samples from

144420-2



VALENCE BOND ENTANGLEMENT AND FLUCTUATIONS IN . . . PHYSICAL REVIEW B 84, 144420 (2011)

“loop” configurations corresponding to the valence-bond state
overlaps 〈α|β〉 with probabilities weighted by w(α)w(β).3

However, using the “one-way” VBMC described above in
which one simply samples from the valence-bond basis it is
possible to calculate a number of interesting quantities that can
be used to characterize the intuitive valence-bond description
of the ground-state wavefunction.

In particular, given an observable O with expectation
values O(α) = 〈α|O|α〉/〈α|α〉 in the noncrossing valence-
bond states |α〉, VBMC can be used to compute the average

〈O〉 =
∑

α w(α)O(α)∑
α w(α)

, (10)

for any state |ψ〉 of the form of Eq. (9), provided w(α) �
0. In what follows, angle brackets will always denote this
average, though it should be noted that 〈O〉 will in general not
be equal to 〈ψ |O|ψ〉/〈ψ |ψ〉, both because the valence-bond
states are nonorthogonal and because the weight factors w(α)
are amplitudes and not probabilities.

IV. VALENCE-BOND ENTANGLEMENT

One quantity that can be calculated naturally by VBMC is
the valence-bond entanglement entropy, SVB

L , which, for the
uniform Heisenberg chain, is defined to be equal to 〈nL〉, the
average number of valence bonds leaving a block of size L.16,17

To generalize SVB
L to the ABF models with d = 2 cos π

k+2 , it is
natural to multiply 〈nL〉 by the asymptotic entanglement per
bond of log2 d. For this choice, provided nL � 1, SVB

L will be
equal to SvN

L for any single valence-bond state. We therefore
take

SVB
L = 〈nL〉 log2 d. (11)

While SVB
L is easy to compute numerically by VBMC, for a

general superposition of valence-bond states it will not be
equal to SvN

L . Nonetheless, VBMC simulations16–18 of the
uniform AFM Heisenberg chain with N � 100 spins have
shown numerically that SVB

L grows logarithmically with L, in
the same fashion as the von Neumann entanglement SvN

L . To
characterize this log scaling it is convenient to introduce an
effective valence-bond central charge, cVB, defined so that

SVB
L � cVB

3
log2 L, (12)

in the limit L � 1.
In addition to showing log scaling of SVB

L , previous VBMC
simulations of the uniform AFM spin-1/2 Heisenberg chain
have given results consistent with cVB being close to,17 or even
possibly equal to,16 1, the value of the true central charge for
the uniform d = 2 model. However, Jacobsen and Saleur19

were able to determine the exact asymptotic scaling of 〈nL〉
analytically for all d � 2. Their results both confirmed the log
scaling of SVB

L for L � 1 and provided an analytic result for
the coefficient of the log, which yields the following expression
for the valence-bond central charge,

cVB = 6 ln d

π

√
2 + d

2 − d

arccos(d/2)

π − arccos(d/2)
. (13)
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FIG. 2. (Color online) Log-linear plots of valence-bond en-
tanglement SVB

L as a function of conformal distance LC =
(N/π ) sin(Lπ/N ) for uniform (upper panel) and random (lower
panel) models with k = 2,3, and ∞. For uniform models, the solid
lines correspond to the exact asymptotic scaling, which follows from
Ref. 19. For random models, the solid lines show the asymptotic
scaling predicted by the RSRG.13 Results are for periodic chains with
N = 1024 sites. For random chains, we take the disorder strength to
be u = 1 [see Eq. (14)] and results are self-averaged over all blocks
for 50 disorder samples.

In the limit d → 2, this expression gives cVB = 12 ln 2/π2 �
0.843, which is therefore not equal to the true central charge
of 1.

Figure 2(a) shows our VBMC results for SVB
L for k = 2,3,

and ∞ (corresponding to d = √
2,φ and 2, respectively) for

periodic systems with N = 1024 sites. To minimize finite size
effects when L is comparable to N/2, SVB

L is plotted as a
function of the conformal distance LC = (N/π ) sin(πL/N ).
The solid lines show the exact asymptotic scaling found by
Jacobsen and Saleur,19 which clearly agree with our numerical
results for L � 1. Note that for the case k → ∞, it is necessary
to consider fairly large values of L before entering the scaling
regime, whereas for k = 2 and 3, the scaling begins at relatively
small L. This fact may account for the initial numerical
difficulty in determining cVB for d = 2 using small systems
(see, however, Ref. 18). Presumably, the reason that the
finite-size effects become more pronounced as d approaches 2
is because this is a critical value (for d > 2 the uniform models
acquire a gap7).

For random Heisenberg chains, SVB
L was first computed

numerically by Alet et al.16 Following the same procedure
as these authors, we compute SVB

L by determining 〈nL〉 for
particular realizations of disorder and then disorder averaging.
Throughout this paper we assume the random models are
characterized by a flat bond strength distribution centered
around J = 1 of width u,

P (J ) = 1

2u

[(1 + u) − J ]
[J − (1 − u)], (14)
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where u is a measure of disorder strength. For the random
ABF models, we again multiply 〈nL〉 by the entanglement per
bond, and thus take

SVB
L = 〈nL〉 log2 d, (15)

(here again the overbar denotes disorder average). Figure 2(b)
shows log plots of our results for SVB

L for random chains with
strong disorder (u = 1), again for k = 2,3, and ∞ and N =
1024. The solid lines show the scaling predictions based on
the RSRG6,13 for SvN

L , which clearly agree with our numerical
results. As pointed out by Alet et al.,16 the fact that SVB

L and
SvN

L show the same scaling for L � 1 is to be expected if, as
predicted by the RSRG, on long-length scales the ground states
of the random models are dominated by a single valence-bond
configuration.

The log scalings of SVB
L shown in Figs. 2(a) and 2(b) are

summarized in Fig. 3, which shows our VBMC results for
cVB for both uniform and random models and various values
of d corresponding to k → ∞ and k = 2,3,4,5,6. For the
uniform models, Fig. 3 also shows the exact values of cVB [see
Eq. (13)], which follow from the analytic results of Jacobsen
and Saleur19 as well as the true central charges ck of the
ABF models with d = 2 cos π

k+2 .20 For the random models,
the d dependence of cVB is seen to be entirely due to the
entanglement per bond, reflecting the fact that the valence
bond length distribution, which determines the coefficient in
front of the log scaling of 〈nL〉, and which depends on d for
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FIG. 3. (Color online) d dependence of the valence-bond central
charge, cVB, for uniform and random chains, along with the true
central charges for the conformally invariant uniform models with
d = 2 cos π

k+2 , in units of log2 d—the entanglement per bond. The
solid red line is the exact result of Jacobsen and Saleur19 for 〈nL〉
(which equals cVB/ log2 d when d = 2 cos π

k+2 ) vs. d for uniform
models, the black squares are the central charges of the ABF models
for different values of k (the dashed line is a guide to the eye), the black
line is the RSRG result cVB/ log2 d = ln 2 for the random models,
and the blue symbols are our VBMC results for uniform and random
models. The inset shows the finite-size extrapolation used to find cVB

for the uniform models with k → ∞ and k = 2. The extrapolation
clearly show the strong finite-size effects for the k → ∞ case with
d = 2.

the uniform case, becomes independent of d when disorder is
included.

V. VALENCE-BOND FLUCTUATIONS

The expectation that for random models the L � 1 scaling
of SVB

L should be the same as that of SvN
L is based on the

assumption that the valence bonds in the ground state of the
model lock into a particular random singlet configuration on
long-length scales. This assumption is in turn based on the
RSRG approach which, although it can be shown to capture
the long distance properties of the fixed point exactly,2 is still
an approximate method. Consequently, it is clearly desirable
to have a direct numerical demonstration that the valence
bonds are indeed locking into a particular random singlet
configuration on long length scales.

To provide such a demonstration, we calculate the fluc-
tuations in nL, a quantity we refer to as the valence-bond
fluctuations. To be precise, we first compute the quantity
〈n2

L〉 − 〈nL〉2 for a particular block of size L and a particular
realization of disorder, and then perform a disorder average.
The quantity we compute is thus

σ 2
L = 〈

n2
L

〉 − 〈nL〉2. (16)

For this choice of averaging σ 2
L has the property that, in an

idealized random singlet phase for which the ground state is
precisely a single noncrossing valence-bond state, σ 2

L would
vanish, even though the number of bonds leaving a given block
would be different for different realizations of disorder.

For the uniform models with d � 2, Jacobsen and Saleur19

have also determined the asymptotic scaling of σ 2
L (in this case

there is, of course, no disorder average). Like 〈nL〉, σ 2
L scales

logarithmically with L for L � 1, with

σ 2
L � b ln L, (17)

and the analytic results of Ref. 19 can again be used to obtain
an exact analytic results for the coefficient, b, as a function
of d,

b = 4

π

√
2 + d

(2 − d)3

2 arccos(d/2) − √
4 − d2

π − arccos(d/2)
. (18)

Figure 4 shows a log-linear plot of our VBMC results for
σ 2

L calculated for the uniform model with k → ∞. A line
corresponding to the exact asymptotic log scaling found by
Jacobsen and Saleur19 is also shown. It is readily seen that
our numerical results agree well with the predicted asymptotic
scaling and can be regarded as further numerical confirmation
of the field-theoretic analysis of Ref. 19. We note that the
log scaling of σ 2

L directly demonstrates the existence of bond
fluctuations on all length scales in the ground state of the
uniform model.

Figure 4 also shows that for small L the valence-bond
fluctuations σ 2

L oscillate strongly as the block length L changes
from even to odd. The origin of this even/odd effect can be
understood by first considering a state in which the bonds
are all of length 1 (i.e., a dimerized state). In this case
there would be two ground states corresponding to the two
distinct dimerizations and the translationally invariant ground
state would be an equal superposition of these two dimerized
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FIG. 4. (Color online) Log-linear plot of the valence-bond
fluctuations σ 2

L as functions of the conformal distance LC =
(N/π ) sin(Lπ/N ) for the case k → ∞. The exact log scaling
obtained by Jacobsen and Saleur is shown by the solid line. For small
L, a strong even/odd effect—explained in the text—can be seen. Here
and throughout values for σ 2

L were computed for all values of L up to
L = 30, and then for L equal to multiples of 15 for L > 30. Results
are for periodic chains with N = 1024 sites.

states. One can readily check that in such a state σ 2
L = 1

when L is even, and σ 2
L = 0 when L is odd. We believe

that the even/odd oscillations apparent in Fig. 4 for small
L are due to the significant contribution of such dimerized
regions (at least on small length scales) to the ground state
wavefunction.

For random models, the RSRG approach2 shows that on
long-length scales the bonds lock into a random singlet state.
At the same time, on short-length scales (if disorder is weak)
it is natural to expect that the bonds will fluctuate strongly, as
they do in the uniform models. This implies the existence of
crossover-length scale ξ , which characterizes the transition
from the uniform regime to the random-singlet regime of
these models with increasing L. One can then expect the
valence-bond fluctuations σ 2

L to not differ much from their
value for the uniform models when L � ξ , but for L � ξ

the fluctuations σ 2
L should saturate. This saturation is due

to the fact that, once the block size L becomes much larger
than the crossover-length ξ , the bond fluctuations occurring
outside of a distance ξ from the two boundaries of the block
will not change the number of bonds leaving the block and
hence will not contribute to the valence-bond fluctuations.

Figure 5 shows log-linear plots of our results for σ 2
L for

the case k → ∞ (corresponding to the Heisenberg chain,
with d = 2), k = 3 (corresponding to the golden chain, with
d = φ), and k = 2 (corresponding to the critical transverse
field Ising model, with d = √

2) for both uniform and random
models. For the random models, the Ji are taken to be
distributed according to Eq. (14), where u is a measure of
disorder strength. It can be observed from Fig. 5 that the
valence-bond fluctuations σ 2

L for the random models saturates,
regardless of how weak the disorder is, on a finite-length scale
ξ , which grows as u decreases.

The observation of this saturation, which indicates a finite
crossover-length scale ξ beyond which the valence bonds
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FIG. 5. (Color online) Log-linear plots of valence-bond fluctua-
tions as a function of conformal distance LC = (N/π ) sin(Lπ/N ),
for both uniform and random chains for k → ∞ (upper panel), k = 3
(middle panel), and k = 2 (lower panel). For uniform chains, these
fluctuations grow logarithmically with LC in agreement with the
analytic results of Ref. 19 (solid red lines), indicating that bonds
are strongly fluctuating on all length scales. For random chains the
fluctuations saturate beyond a given finite length scale ξ , signaling the
formation of a random singlet phase in which the bonds have locked
into a particular random singlet configuration on long-length scales.
The parameter u (defined in the text) is a measure of the disorder
strength and the results clearly show that the saturation-length
scale grows with decreasing u. Results are for periodic chains with
N = 1024 sites and for random models are self-averaged over all
blocks for 100 disorder samples.

effectively lock into a random singlet configuration, together
with the log scaling of 〈nL〉, which indicates a power-law dis-
tribution of valence bond lengths, provides a direct numerical
proof of random singlet phase formation in these models.

VI. CROSSOVER LENGTH SCALE

As described in the previous section, the saturation of
σ 2

L with increasing L for disorder of any strength u implies
the existence of a finite fluctuation-length scale ξ , which
characterizes the transition from the resonating regime with
L � ξ to the saturation regime with L � ξ . This length scale
ξ is essentially the crossover-length scale from the uniform
regime to the disordered regime, which has been studied in
the literature both analytically and numerically for a number
of models.21–24
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For k → ∞ and k = 2, analytic results for the dependence
of ξ on u can be obtained for the case of weak disorder21 by
mapping the model (4) onto disordered Luttinger liquids.22 For
k → ∞, the model (4) corresponds to an isotropic spin-1/2
Heisenberg chain that, via a Jordan-Wigner transformation,
can be mapped onto a 1D interacting spinless Fermi gas with
a particular interaction strength. Similarly, for the case k = 2,
the model (4) corresponds to the 1D transverse field Ising
model, and a pair of independent but identical 1D transverse
field Ising models can be mapped onto a spin-1/2 XX model,
which can in turn be mapped onto a (in this case free)
1D spinless Fermi gas. The resulting predictions21,22 for the
scaling of the crossover-length scale ξ with disorder strength u

for these two cases are that ξ ∼ u−1 for k → ∞ and ξ ∼ u−2

for k = 2. Numerical results for ξ , based on scaling analyses of
the spin-spin correlation function23,24 and the spin stiffness24

of the Heisenberg chain (using quantum Monte Carlo) and
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FIG. 6. (Color online) (Left) Scaling plots of the valence-bond
fluctuations (with the saturation value σ 2

∞ subtracted out), σ 2
L − σ 2

∞,
for k → ∞, k = 3, and k = 2 and various disorder strengths u. In
these plots, the x axes are rescaled by choosing the disorder-dependent
crossover length ξ so that the data for different u collapse onto a single
curve when plotted vs. LC/ξ , where LC = (N/π ) sin(Lπ/N ). The
solid lines show the predicted log scaling for the uniform models.19

The values of ξ determined by this scaling procedure are summarized
on Table I. (Right) Log-log plots of the crossover-length scale ξ as a
function of u for k → ∞, k = 3, and k = 2. Solid lines represent the
power-law scaling determined from the data: ξ ∼ u−1 for k → ∞,
ξ ∼ u−1.55 for k = 3, and ξ ∼ u−1.8 for k = 2.

the XX chain (by exact diagonalization) have shown results
consistent with these weak disorder renormalization group
predictions.

It is possible to determine the dependence of ξ on u by
performing a scaling analysis of the valence-bond fluctuations
σ 2

L. To do this, we first subtract the large L saturated value of
the fluctuations (limL→∞ σ 2

L = σ 2
∞) obtained by extrapolating

the data shown in Fig. 5 and attempt to collapse the data by
assuming a scaling function f and a u-dependent ξ for which

σ 2
L(u) − σ 2

∞(u) = f

[
LC

ξ (u)

]
. (19)

For each value of u, ξ (u) is chosen so that data for σ 2
L − σ 2

∞
collapse onto a single curve, with the center of the crossover
regime being LC/ξ � 1. Note that to avoid the even-odd effect
pointed out earlier for small L we only use odd values of L, and
to minimize finite-size effects for large L we use the conformal
distance LC in the scaling analysis.

Results of carrying out this analysis for the cases k → ∞,
k = 3, and k = 2 are shown on the left side of Fig. 6. The
VBMC results for σ 2

L − σ 2
∞ can be seen to be well collapsed

onto a particular scaling function f (LC/ξ ), according to the
definition Eq. (19). The values we obtain for ξ for these
models corresponding to various disorder strength u are given
in Table I.

On the right side of Fig. 6, log-log plots of the crossover-
length scales ξ as a function of the disorder strength u are
shown. The exponents characterizing the divergence of ξ

are determined by fitting the data to the power law u−η

(solid lines). For k → ∞, we find η � 1, consistent with the
weak-disorder renormalization group prediction21,22 of η = 1.
For k = 2, we find η � 1.8, which is somewhat less than
the predicted value of η = 2. One possible reason for the
poorer agreement in this case is that for k = 2, the length
scale ξ is significantly larger than for k → ∞ for a given
disorder strength, and it may therefore be necessary to study
larger system sizes in order to enter the scaling regime for the
valence-bond fluctuations.

For the case k = 3, for which the model (4) corresponds to a
disordered golden chain, we find the exponent η � 1.55. Note
that for this system (with d = φ), and, in fact, for all cases for
which d �= 2,

√
2, there is no simple mapping of Hamiltonian

(4) to a disordered 1D Luttinger liquid. It is therefore not
possible to apply the same weak-disorder renormalization
group analysis to these models that can be used to obtain
the exponent η for d = 2 and d = √

2. To the best of our

TABLE I. Crossover-length scale ξ extracted from the scaling
analysis of the valence-bond fluctuations σ 2

L for different disorder
strengths u for k → ∞, k = 3, k = 2.

u k → ∞ k = 3 k = 2

0.250 70 215 390
0.375 51 145 195
0.500 37 87 140
0.625 29 65 102
0.750 21 48 66
1.000 11 24 32
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knowledge, there are no known analytic results for η or for
these more general models, and we believe our result for k = 3
represents the first numerical calculation of such an exponent.

VII. CONCLUSIONS

In this paper, we have presented the results of a VBMC
study of both uniform and random Hamiltonians of the form
(4). Both the valence-bond entanglement entropy SVB

L and
the valence-bond fluctuations σ 2

L were calculated for these
models. For uniform models, both these quantities were found
to scale logarithmically with L and our results agreed well with
analytic results obtained through a field-theoretic analysis by
Jacobsen and Saleur.19 For random models, SVB

L was also found
to scale logarithmically with L, consistent with predictions
based on the RSRG,6,13 while σ 2

L was found to saturate once
L exceeded a disorder-dependent crossover-length scale ξ ,
signaling the expected locking of the valence bonds into
a particular random singlet configuration on long length
scales.

By performing a scaling analysis of the valence-bond
fluctuations, we were able to determine the dependence of ξ on

disorder strength. For the cases k → ∞ (spin-1/2 Heisenberg
model) and k = 2 (transverse field Ising model), our results
were consistent with those based on a weak-disorder renor-
malization group approach21,22 as well as previous numerical
work,23,24 although for the case k = 2, we may not have
fully entered the scaling regime. An appealing feature of
our bond-fluctuation-based approach is that it can be used to
determine ξ for any value of k, not just k → ∞ and k = 2 for
which the model (4) can be mapped onto 1D Luttinger liquids
(the starting point for the weak-disorder renormalization group
approach). For example, we have determined for the first time
the crossover length scale ξ and the corresponding exponent
η � 1.55 for the model (4) with k = 3, which corresponds to
the disordered golden chain.
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