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Gauge fluctuations and interlayer coherence in bilayer composite fermion metals
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We study the effect of the Chern-Simons gauge fields on the possible transition from two decoupled composite
fermion metals to the interlayer coherent composite fermion state proposed by Alicea et al. [Phys. Rev. Lett. 103,
256403 (2009)] in a symmetrically doped quantum Hall bilayer with total Landau level filling fraction νtot = 1.
In this transition, interlayer Coulomb repulsion leads to excitonic condensation of composite fermions which
are then free to tunnel coherently between layers. We find that this coherent tunneling is strongly suppressed by
the layer-dependent Aharonov-Bohm phases experienced by composite fermions as they propagate through the
fluctuating gauge fields in the system. This suppression is analyzed by treating these gauge fluctuations within
the random-phase approximation and calculating their contribution to the energy cost for forming an exciton
condensate of composite fermions. This energy cost leads to (1) an increase in the critical interlayer repulsion
needed to drive the transition; and (2) a discontinuous jump in the energy gaps to out-of-phase excitations (i.e.,
excitations involving currents with opposite signs in the two layers) at the transition.
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I. INTRODUCTION

The quantum Hall bilayer with total Landau level filling
fraction νtot = 1 is a particularly rich system for studying
quantum Hall physics [1,2]. In this system two parallel
two-dimensional electron gases, separated by a distance d, are
placed in a perpendicular magnetic field B such that the total
electron density of the two layers is that of a filled Landau
level for a single layer. For the symmetrically doped case,
each layer then has Landau level filling fraction ν = 1/2. If
interlayer electron tunneling can be ignored, the only coupling
between layers is through the Coulomb repulsion. The scale
of this coupling, relative to the scale of interactions within
each layer, is then set by the dimensionless ratio d/l0, where
l0 = [�c/(eB)]1/2 is the magnetic length.

In the limit of small d/l0 (strong interlayer coupling) this
system enters a remarkable bilayer quantum Hall state in which
electrons develop spontaneous interlayer phase coherence [3].
This state can be viewed as an exciton condensate formed
by electron-hole pairs in the two layers [1,2]. In the opposite
limit of large d/l0 (weak interlayer coupling) the correlations
within each layer presumably give rise to two separate
ν = 1/2 composite fermion metals, compressible states in
which physical electrons are represented by new particles,
composite fermions, attached to two fictitious (Chern-Simons)
flux quanta [4–6]. These composite fermions then move in zero
effective magnetic field, forming two Fermi surfaces, one in
each layer [6]. Despite a great deal of experimental [7–14] and
theoretical [15–26] work devoted to studying the crossover
between these two limiting cases, the nature of this crossover
is still poorly understood.

Alicea et al. [27] have made the interesting proposal that
short-range interlayer repulsion in the νtot = 1 bilayer could
lead to a state for intermediate d/l0 in which composite
fermions, rather than physical electrons, undergo excitonic
condensation and thus develop spontaneous interlayer phase
coherence. The starting point for understanding this interlayer
coherent composite fermion state is the large d/l0 limit of two
decoupled composite fermion metals. As d/l0 is decreased,

the interlayer Coulomb repulsion grows and, when strong
enough, can lead to excitonic condensation of composite
fermions. If this occurs, the composite fermions become
liberated from their layers and are able to tunnel coherently
between them, even though physical electrons do not. This
tunneling leads to the formation of well-defined bonding and
antibonding composite fermion bands that are split in energy,
with one composite fermion Fermi surface growing and the
other shrinking. As shown in Ref. [27], the resulting state is
compressible in the in-phase sector and incompressible in
the out-of-phase sector, where excitations in the in-phase
(out-of-phase) sector involve currents with the same (opposite)
sign in the two layers. Incompressibility in the out-of-phase
sector then implies a quantized Hall effect in the counterflow
channel. Despite plausible arguments for the favorability of
this state over a range of d/l0 [27], there is currently no
experimental evidence for it forming in νtot = 1 quantum Hall
bilayers. One purpose of the present work is to provide a
possible explanation for this.

In this paper we study the effect of the gauge fields
associated with the Chern-Simons flux attached to composite
fermions on the transition from two decoupled composite
fermion metals to an interlayer coherent composite fermion
state. These gauge fields lead to strongly fluctuating layer-
dependent Aharonov-Bohm phases experienced by composite
fermions as they propagate through the system, and so it is
natural to suspect they will strongly suppress any interlayer
coherence these composite fermions may have. Here we
find that this is, in fact, the case. Our analysis is based on
treating the fluctuating gauge fields within the random-phase
approximation (RPA) and calculating their contribution to
the energy cost for forming an interlayer coherent composite
fermion state. This energy cost results in a significant increase
in the interlayer repulsion strength required to drive the
transition to this state. In addition, the energy gaps to out-
of-phase excitations, which are found to open continuously
at the transition when gauge fluctuations are ignored, jump
discontinuously at the transition when gauge fluctuations are
included.
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This paper is organized as follows. In Sec. II we review the
bilayer model studied in Ref. [27] and the mean-field theory of
the transition from two decoupled composite fermion metals
to the interlayer coherent composite fermion state. In Sec. III
we argue that gauge fluctuations should play an important role
in determining the nature of this transition and carry out an
RPA analysis of these fluctuations. This analysis allows us to
calculate how the collective modes of the system are affected
by the formation of the interlayer coherent composite fermion
state. We then compute the RPA contribution to the correlation
energy in this state due to gauge fluctuations and analyze
the effect this contribution has on the transition. Finally, our
conclusions are summarized in Sec. IV.

II. SPONTANEOUS INTERLAYER PHASE COHERENCE
OF COMPOSITE FERMIONS

We consider the idealized case of a disorder free, fully
spin-polarized [28], symmetrically doped bilayer with zero
interlayer tunneling and total filling fraction νtot = 1/p, where
p is an integer. Each layer then has even denominator filling
fraction ν = 1/(2p). When these layers are well separated we
assume that each can be described as a composite fermion
metal. In this description physical electrons are represented
as composite fermions with 2p Chern-Simons flux quanta
attached to them [4–6], where the flux attached to particles in
a given layer is seen only by composite fermions in that same
layer [16]. At the mean-field level, the fictitious magnetic field
associated with this flux exactly cancels the applied magnetic
field and the composite fermions in each layer move in a zero
effective magnetic field [6].

The specific model studied here was introduced in Ref. [27].
In this model it is assumed that the primary role of the Coulomb
interaction within each layer is to induce the formation of the
two composite fermion metals. The only interaction included
explicitly is then an interlayer δ-function repulsion uδ(r1 −
r2), meant to describe the short-range part of the Coulomb
interaction between layers. The Euclidean-time action for this
model at temperature T is S = ∫ β

0 dτ
∫

d2rL(r,τ ), where β =
(kBT )−1 and the Lagrangian density is L = L0 + Lint + LCS,
with

L0 =
∑

α=↑,↓
ψα

[
∂τ − iaα

0 − 1

2m∗ (∇ − iaα)2

]
ψα, (1)

Lint = uψ↑ψ↓ψ↓ψ↑, (2)

and

LCS = − i

2πλ

∑
α=↑,↓

aα
0 ẑ · [∇ × (aα + eAext)]. (3)

Here ψα is the composite fermion field in layer α where
α = ↑,↓ is a pseudospin label for the layers, Aext is the vector
potential for the external applied magnetic field B = ∇ ×
Aext = ẑ2πλn/e, where n is the electron density in each layer,
λ = 2p is the number of flux quanta attached to each composite
fermion (λ = 2 for the case νtot = 1), m∗ is the effective mass
of the composite fermions, and (aα

0 ,aα) is the Chern-Simons
gauge field seen by composite fermions in layer α (here, and
in what follows, we take � = c = 1). LCS is a Chern-Simons

term in the Coulomb gauge for which ∇ · aα = 0. The only
gauge degrees of freedom in each layer are then the time
component aα

0 and (after Fourier transforming to momentum
space) the transverse component aα

1 (q,τ ) = ẑ · [q̂ × aα(q,τ )]
of the Chern-Simons gauge fields. The partition function is
then Z = ∫ ∏

α=↑,↓ DψαDaα
0 Daα

1 e−S .
Integrating out the time components of the Chern-Simons

gauge fields enforces the constraint ∇ × aα = ẑ2πλδρα ,
where δρα = ψ̄αψα − n is the fluctuation of the density in
layer α about its mean value. Gauge field fluctuations in each
layer are thus tied to density fluctuations in that layer. As a
first approximation, if we ignore these fluctuations (and so set
aα

0 = 0 and aα = 0), then at the mean-field level the instability
to the interlayer coherent composite fermion state discussed by
Alicea et al. [27] is a simple Stoner instability. In pseudospin
language the instability is to a pseudospin ferromagnet in
which the layer pseudospins are polarized along a certain
direction in the xy plane. A similar instability to the formation
of spontaneous interlayer coherence for electrons in bilayers
in zero magnetic field was studied in Ref. [29].

This instability can be studied by first carrying out a
Hubbard-Stratonovich transformation. This is accomplished
by multiplying the partition function Z by the constant factor∫

D�e−SHS , where SHS = ∫ β

0 dτ
∫

d2rLHS, with

LHS = c(r,τ )c(r,τ ) (4)

and

c(r,τ ) = 1√
u

�(r,τ ) − √
uψ↓(r,τ )ψ↑(r,τ ). (5)

LHS can then be added to the Lagrangian density for the
interlayer interaction to give

Lint + LHS = 1

u
|�|2 − �ψ↑ψ↓ − �∗ψ↓ψ↑. (6)

At the mean-field level we take the Hubbard-Stratonovich
field � to be uniform in space and constant in time. � is
then the order parameter for the interlayer coherent composite
fermion state and acts as a fixed effective interlayer tunneling
amplitude for composite fermions (see Fig. 1). Without loss of
generality we take � to be real and positive in what follows.

d

B = 4 n/e

FIG. 1. (Color online) Symmetrically doped νtot = 1 quantum
Hall bilayer (the case λ = 2 in the text). Layers are labeled by
pseudospin indices ↑ and ↓. d is the layer spacing and B = 4πn/e

is the external magnetic field, where n is the electron density in each
layer (� = c = 1). The filling factor in each layer is ν = 1/2 and
electrons are represented as composite fermions bound to two flux
quanta, as shown in the top layer. The interlayer coherent composite
fermion state proposed in Ref. [27] is characterized by a nonzero
interlayer tunneling amplitude � for composite fermions even though
there is no interlayer tunneling for electrons.
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The system is then diagonalized by the following change
of variables to fields which describe composite fermions in
symmetric (S) and antisymmetric (A) interlayer states,

ψS = (ψ↑ + ψ↓)/
√

2, (7)

ψA = (ψ↑ − ψ↓)/
√

2. (8)

After this transformation the mean-field Lagrangian density
becomes

LMF = �2

u2
+ ψS

(
∂τ − � − 1

2m∗ ∇2

)
ψS

+ψA

(
∂τ + � − 1

2m∗ ∇2

)
ψA. (9)

Fourier transforming from real space to momentum space then
yields the dispersions of the symmetric and antisymmetric
bands, which are simply those of noninteracting particles
shifted by ±�:

ES
k = Ek − �, (10)

EA
k = Ek + �, (11)

where Ek = k2/(2m∗).
Because of this splitting, the Fermi surfaces for symmetric

and antisymmetric composite fermions have different Fermi
wave vectors. If we define EF = k2

F /(2m∗) to be the Fermi
energy when � = 0 then the two Fermi wave vectors for � <

EF are

kS
F = kF

(
1 + �

EF

)1/2

, (12)

kA
F = kF

(
1 − �

EF

)1/2

. (13)

As � increases from 0 the Fermi energy is initially fixed
at EF . There are then two Fermi surfaces, and kS

F increases
while kA

F decreases until, when � = EF and for � > EF , the
Fermi energy is given by 2EF − �, kA

F = 0 and there is only
a single Fermi surface with Fermi wave vector kS

F = √
2kF .

The density of states for the symmetric and antisymmetric
bands and the corresponding Fermi surfaces when � = 0,
0 < � < EF , and � > EF are shown in Fig. 2.

Upon integrating out the composite fermion fields while
keeping � fixed and taking the T → 0 limit of the free energy
F = −β−1 lnZ one obtains the following expression for the
ground state energy density as a function of � measured with
respect to the energy density of the system when � = 0:

ES(�)

ν0E
2
F

=
⎧⎨
⎩

(
1
g

− 1
)

�2

E2
F

, � < EF ,(
1
g

− 1
)

�2

E2
F

+ (
�
EF

− 1
)2

, � > EF .
(14)

Here ν0 = m∗/(2π ) is the density of states per band and
g = um∗

2π
= uν0 is a dimensionless coupling constant. The two

cases in (14) correspond to either having two Fermi surfaces
(� < EF ) or a single Fermi surface (� > EF ). The fact that
the energy density is a purely quadratic function of � for
� < EF is due to the flat density of states for free particles in
two dimensions.

FIG. 2. (Color online) Density of states and Fermi surfaces for
the symmetric and antisymmetric composite fermion bands when
(a) � = 0, (b) 0 < � < EF , and (c) � > EF . Here ρS and ρA

are, respectively, the densities of states for the symmetric and
antisymmetric band and EF is the Fermi energy for � = 0. The
Fermi energy remains fixed and equal to EF for 0 < � < EF and is
equal to 2EF − � for � > EF . Expressions for kS

F and kA
F are given

in the text.

At this level of approximation the Stoner instability occurs
when g = 1, as shown in Fig. 3. For g < 1 the energy density
ES(�) is minimized for � = 0. At the critical point, g = 1 and
ES(�) is independent of � for � < EF . Then, for g = 1 + ε,
the order parameter minimizing ES(�) jumps from � = 0 to
� = EF , signaling the formation of an exciton condensate
of composite fermions with 〈ψ̄↑ψ↓〉 
= 0, and establishing
the interlayer coherent composite fermion state. We see that

FIG. 3. (Color online) Energy density as a function of the order
parameter � for different values of the coupling constant g showing
the mean-field Stoner instability to the interlayer coherent composite
fermion state. Here g = 1 is the critical value of the coupling constant
and the plots are for g = 0.9,1, and 1.1.
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the transition is directly to a fully polarized pseudospin
ferromagnet, i.e., a state in which all composite fermions
are in the symmetric band. This is a consequence of the
purely quadratic behavior of ES(�) for � < EF due to the
flat density of states described above. Note that for g = 1 + ε

the energy gap for interband particle-hole excitations is zero;
when � = EF there are zero energy excitations with wave
vector q = √

2kF in which a composite fermion is promoted
from the Fermi surface of the symmetric band at kS

F = √
2kF

to the bottom of the (empty) antisymmetric band at k = 0. For
� > EF an energy gap �q=√

2kF
opens for these q = √

2kF

interband excitations where

�q=√
2kF

= 2(� − EF ). (15)

For g > 1, the Stoner energy ES(�) is minimized when � =
gEF and so this gap opens continuously at the transition as
�q=√

2kF
= 2(g − 1)EF .

The simplified model considered here is best viewed as an
effective low-energy theory for a bilayer composite fermion
metal. Here and in what follows we take this model at face
value, particularly because, as we will see in the next section,
the RPA analysis of gauge fluctuations can be carried out
essentially analytically. Following Alicea et al. [27] we can use
the renormalized effective mass m∗ � 6/(e2l0) from Ref. [30]
for λ = 2. This effective mass is set by the intralayer Coulomb
interaction energy (the only energy scale in the lowest Landau
level) and is independent of the bare band mass of the electrons.
If, also following Alicea et al. [27], we take u � (e2/d)(πl2

0) to
roughly model the short-range part of the interlayer Coulomb
interaction, then the dimensionless coupling constant is g �
3l0/d and the critical layer spacing for the Stoner instability is
(d/l0)c � 3.

III. EFFECT OF GAUGE FLUCTUATIONS

The Stoner instability analysis described in the previous
section does not take into account the effect of fluctuations
in the Chern-Simons gauge fields attached to the composite
fermions. There are good reasons for thinking these fluctua-
tions will be important. Fluctuations in these gauge fields lead
to fluctuations in the Aharonov-Bohm phases experienced by
composite fermions. Because these fluctuations are different in
the two layers, any interlayer phase coherence these composite
fermions may have will quickly be lost as a they propagate
through this wildly fluctuating “gauge sea.”

This effect can be seen clearly by introducing in-phase (a+)
and out-of-phase (a−) gauge fields [16],

a+
μ = (a↑

μ + a↓
μ)/

√
2, (16)

a−
μ = (a↑

μ − a↓
μ)/

√
2. (17)

Figure 4 shows the effect fluctuations in a+ and a− have
on a composite fermion as it propagates through the bilayer.
Assume the composite fermion starts in either a symmetric
state ψS or antisymmetric state ψA (Fig. 4 shows the ψS case).
As this composite fermion moves, in-phase gauge fluctuations
result in the same Aharonov-Bohm phase regardless of which
layer the composite fermion is in. Thus these fluctuations
do not suppress interlayer coherence; a composite fermion

FIG. 4. (Color online) Effect of in-phase and out-of-phase gauge
fluctuations on a composite fermion as it propagates through the
bilayer starting in the symmetric band. In-phase gauge fluctuations
are tied to in-phase density fluctuations, represented schematically
in green. These fluctuations give the propagating composite fermion
a layer-independent Aharonov-Bohm phase φ. This phase does not
affect interlayer coherence and leads only to intraband scattering
within the S and A bands. Out-of-phase gauge fluctuations are
likewise tied to out-of-phase density fluctuations, shown in red.
These fluctuations give the propagating composite fermion opposite
Aharonov-Bohm phases ±φ in the two layers. These fluctuations
strongly inhibit interlayer phase coherence and lead to interband
scattering between the S and A bands.

that starts in either the symmetric or antisymmetric band will
stay in that band as it scatters off of fluctuations of a+. By
contrast, the out-of-phase gauge fluctuations give opposite
Aharonov-Bohm phases to composite fermions in layer ↑
and layer ↓. Fluctuations in a− therefore strongly suppress
interlayer coherence and lead to interband scattering between
the symmetric and antisymmetric bands. It is interesting to note
that while fluctuations in a− suppress interlayer coherence of
composite fermions in the particle-hole channel, these same
fluctuations are known to enhance interlayer BCS pairing of
composite fermions in the particle-particle channel [16,17].

The suppression of interlayer coherence by a− fluctuations
is similar to the suppression of BCS pairing of composite
fermions in a single-layer ν = 1/2 system studied in Ref. [31].
The main result of this earlier work was the observation that,
while in an ordinary BCS transition any attractive interaction
strength, however small, is sufficient for a pairing instability to
occur, when the effect of the gauge fluctuations are included a
finite interaction strength is required to induce a transition. This
resistance to pairing can be understood as a consequence of
singular pair breaking due to the strongly fluctuating effective
magnetic field seen by the composite fermions [31]. The role
of similar gauge fluctuations in preventing the Kohn-Luttinger
pairing instability of the Fermi surface in three dimensions
has been studied in Ref. [32] (in the context of high-density
quantum chromodynamics) and, more recently, in Ref. [33].
The Stoner instability studied here differs from BCS paring in
that a finite coupling strength is required for the transition to
occur even in the absence of gauge fluctuations. However, as
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we will see below, the inclusion of gauge fluctuations leads
to similar qualitative changes in the nature of the transition.
Thus the model studied here provides another example of
the nontrivial effect gauge fluctuations can have on phase
transitions in dense Fermi systems.

To analyze the effect of gauge fluctuations on the interlayer
coherent composite fermion state within the RPA we begin
with the full action defined in Sec. II, integrate out the fermions
for fixed constant �, and expand the resulting effective action
to second order in a+ and a−. This expanded action decouples
into in-phase and out-of-phase sectors [31], and has the form
SRPA = S+

RPA + S−
RPA where

S±
RPA = 1

2

∑
ωn

∑
q

×
∑
μ=0,1
ν=0,1

a±
μ

∗(q,iωn)D±−1
μν (q,iωn; �)a±

ν (q,iωn). (18)

Here, as in Sec. II, a±
0 (q,iωn) and a±

1 (q,iωn) = ẑ · [q̂ ×
a±(q,iωn)] are, respectively, the time and transverse compo-
nents of the gauge fields,

D±−1(q,iω; �) =
(
K±

00(q,iω; �) iq/(2πλ)

−iq/(2πλ) K±
11(q,iω; �)

)
(19)

is the inverse of the 2 × 2 matrix formed by the gauge
field propagators evaluated on the imaginary frequency
axis D±

μν(q,iωn) = 〈a±
μ

∗(q,iωn)a±
ν (q,iωn)〉, where 〈· · · 〉 =

Z−1
∫

Daα
0 aα

1 · · · e−SRPA , and ωn = 2nπ/β is the nth bosonic
Matsubara frequency.

The functions K±
00(q,iω; �) and K±

11(q,iω; �) appearing in
the expression for D±−1 are obtained by evaluating the Feyn-
man diagrams shown in Fig. 5. The vertices in the bubble dia-
grams for K±

00 and K±
11 correspond, respectively, to the density

ρ± = ρ↑ ± ρ↓ and transverse paramagnetic current (in mo-
mentum space) j±

p,1(q,τ ) = ẑ · {q̂ × [jp,↑(q,τ ) ± jp,↓(q,τ )]},
where jp,α(q,τ ) = 1

2m∗
∑

k(2k + q)ψ̄α(q + k,τ )ψα(k,τ ), in
the in-phase (+) and out-of-phase (−) sectors. We then find

K±
μν(q,iω; �) = �±

μν(q,iω; �) − δμ,1δν,1
n

m∗ , (20)

where n = k2
F /(4π ) is the electron density per layer,

�+
μν(q,iω; �) = 1

2

[
�SS

μν(q,iω; �) + �AA
μν (q,iω; �)

]
, (21)

and

�−
μν(q,iω; �) = 1

2

[
�SA

μν (q,iω; �) + �AS
μν (q,iω; �)

]
. (22)

Here

�
αβ

00 (q,iω; �) =
∫

d2k

(2π )2

f
(
Eα

k+q

) − f
(
Eβ

k

)
iω − Eα

k+q + Eβ

k

, (23)

�
αβ

11 (q,iω; �) =
∫

d2k

(2π )2

(
q̂ × k
m∗

)2 f
(
Eα

k+q

) − f
(
Eβ

k

)
iω − Eα

k+q + Eβ

k

,

(24)

�
αβ

10 = �
αβ

01 = 0, the indices α and β can be either S or A,
and ES

k and EA
k are the shifted energy dispersions given in (10)

S

S

0a

A

A

+0a

S

S

1a

A

A

+1a +

In-Phase

S A

+

S

A

0a

A

S

A

+0a

S

A

1a

S

+1a +

Out-of-Phase

1,pj 1,pj

1,pj 1,pj

00K

11K

00K

11K
S A

+

FIG. 5. (Color online) Feynman diagrams for K±
00(q,ıω; �) and

K±
11(q,iω; �). S and A label composite fermion propagators (blue)

in the symmetric (+) and antisymmetric (−) bands, respectively.
In-phase gauge fields (green) lead to intraband scattering (S ↔ S),
(A ↔ A), while out-of-phase gauge fields (red) lead to interband
scattering (S ↔ A) (see Fig. 4). The seagull diagrams only contribute
to K±

11 where they give the diamagnetic contribution −n/m∗.

and (11). At T = 0 the integrals (23) and (24) can be performed
analytically to give closed-form expressions for K±

00 and K±
11

(see Appendix).
There is a qualitative change in the � dependence of K±

00
and K±

11 when � = EF [here, as in Sec. II, EF = k2
F /(2m∗)

is the Fermi energy when � = 0]. As noted in Sec. II, for
� < EF there are two Fermi surfaces and for � > EF there
is one Fermi surface. In the latter case the antisymmetric band
is empty and, at T = 0, the Fermi function f (EA

k ) = 0 for
all k. Thus, while the out-of-phase functions K−

00 and K−
11

continue to evolve with � for � > EF due to virtual transitions
from the symmetric band to the antisymmetric band, the in-
phase functions K+

00 and K+
11, which only involve intraband

transitions, become � independent for � > EF .
Using the RPA action (18) we can study the effect that

introducing the order parameter � has on the collective
modes of the system. These modes naturally decouple into
in-phase and out-of-phase sectors and their dispersions are
determined by the poles of the gauge field propagators after
analytic continuation to the real frequency axis. These poles
occur when the determinant of the inverse of the matrix
formed by the analytically continued gauge field propagators
D±−1(q,ω; �) ≡ D±−1(q,iω → ω + iε; �) vanishes, and are
thus obtained by solving the equation

det D±−1 = K±
00(q,ω; �)K±

11(q,ω; �) − q2

(2πλ)2
= 0 (25)
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in the in-phase (+) and out-of-phase (−) sectors. Here
K±

00(q,ω; �) = K±
00(q,iω → ω + iε; �) and K±

11(q,ω; �) =
K±

11(q,iω → ω + iε; �) are, respectively, the bare density and
transverse-current response functions in these two sectors.

When � = 0, the two layers are decoupled and the bare
response functions, and hence the collective mode dispersions,
are the same in the in-phase and the out-of-phase sectors.
In the limit ω � vF q, these response functions are given
approximately by

K±
00(q,ω; 0) � −EF

2π

q2

ω2
, (26)

K±
11(q,ω; 0) � −EF

2π
, (27)

which can be expressed in a more familiar form using the fact
that EF /(2π ) = n/m∗. The solution to (25) in the q → 0 limit
then yields modes with frequency,

ω± � λEF , (28)

in the in-phase (ω+) and out-of-phase (ω−) sectors. Note
that λEF = eB/m∗ is the cyclotron frequency for particles
of mass m∗, consistent with with Kohn’s theorem [34,35],
and indicating that these modes are the q → 0 in-phase and
out-of-phase cyclotron modes [6].

When � 
= 0, in the ω � vF q limit the leading con-
tributions to the in-phase response functions given above
are unchanged. As a consequence, the energy of the in-
phase cyclotron mode at q = 0 is also unchanged, again
consistent with Kohn’s theorem, although the leading O(q2)
contribution to the dispersion [obtained by solving (25) using
the expressions given in the Appendix for K+

00 and K+
11 which

include the O(q4) and O(q2) contributions, respectively] is
modified as follows:

ω+2 �
⎧⎨
⎩

λ2E2
F + 4

(
E2

F + �2
)

q2

k2
F

, � < EF ,

λ2E2
F + 8E2

F
q2

k2
F

, � > EF .
(29)

The out-of-phase response functions, however, are signif-
icantly altered. In the |ω − 2�| � vF q limit we find for
� < EF ,

K−
00(q,ω; � < EF ) � 2m∗

π

�2

4�2 − ω2
, (30)

K−
11(q,ω; � < EF ) � EF

2π

ω2

4�2 − ω2
, (31)

and for � > EF ,

K−
00(q,ω; � > EF ) � 2m∗

π

EF �

4�2 − ω2
, (32)

K−
11(q,ω; � > EF ) � EF

2π

ω2 − 4�(� − EF )

4�2 − ω2
. (33)

The long wavelength pole in these response functions at
ω = 2� corresponds to the q → 0 interband transition from
the symmetric band to the antisymmertic band. Using these
response functions [including O(q2) contributions omitted
above but given in the Appendix] to solve (25) we find two

out-of-phase collective modes in the long wavelength limit,
one low-energy mode, and one high-energy mode.

For � < EF the low-energy mode is gapless with linear
dispersion,

ω−
1 �

(
2

3
�2 + 8

�2

λ2

)1/2
q

kF

. (34)

This mode couples to the composite fermions as an effective
gapless out-of-phase photon. Even when the order parameter
� is finite, provided it is less than EF in magnitude, this
mode remains gapless. This is due to the fact that the q → 0
limit of the bare out-of-phase static transverse current response
function is limq→0 K−

11(q,ω = 0; � < EF ) = 0. Thus there is
no out-of-phase Meissner effect for composite fermions when
� < EF . This in turn implies the system is compressible to
out-of-phase density perturbations (which appear to composite
fermions as an out-of-phase magnetic field). This lack of an
out-of-phase Meissner effect for � < EF can be traced back
to the flat density of states, which, as noted above, is also the
reason the Stoner energy density ES(�) is a purely quadratic
function of � for � < EF .

For � > EF , there is an out-of-phase Meissner effect for
composite fermions, with limq→0 K11(q,ω = 0; � > EF ) =
− EF

2π�
(� − EF ). This leads to a gap opening up in the out-of-

phase photon dispersion. For this dispersion we find

ω−
1 �

[
�2

q=0 +
(

2E2
F − 4

3
�EF + 8

�2

λ2

)
q2

k2
F

]1/2

, (35)

where the q = 0 energy gap is

�q=0 = 2[�(� − EF )]1/2. (36)

We note that the transition to the interlayer coherent state
is always to a state with � � EF (both at the Stoner level,
for which � jumps to EF at the transition as described in
Sec. II, and when gauge fluctuations are included, for which
� jumps to a value larger than EF , see below). The transition
is therefore always to a state which is incompressible in the
out-of-phase sector, and thus behaves like a quantum Hall state
in the counterflow channel. This, together with compressibility
in the in-phase sector, is the hallmark of the interlayer coherent
composite fermion state [27].

For � 
= 0 the layers are coupled and Kohn’s theorem no
longer holds for the out-of-phase cyclotron mode. For both
� < EF and � > EF we find the dispersion of this mode
diverges as q → 0, with

ω−
2

2 �
⎧⎨
⎩2λ2�2 k2

F

q2 + λ2E2
F + 8�2, � < EF ,

2λ2�EF
k2
F

q2 + λ2E2
F + 4�2 + 4�EF , � > EF .

(37)

The collective modes described above, along with the
continuum of particle-hole excitations in the in-phase and
out-of-phase sectors, are illustrated in Fig. 6. This figure shows
the regions in q and ω space where the analytically con-
tinued gauge field propagators D±

μν(q,ω; �) = D±
μν(q,iω →

ω + iε; �), evaluated for the case λ = 2, have nonzero
imaginary part for different values of �. For � = 0 the
layers are decoupled and the excitations are identical in the
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FIG. 6. (Color online) Regions in q,ω space where the imaginary parts of the RPA gauge field propagators (after analytic continuation
to the real frequency axis) are nonzero, showing the particle-hole continuum and collective mode excitations in the in-phase (top row) and
out-of-phase (bottom row) sectors for different values of the order parameter �. For � = 0, the excitation spectra are identical in both sectors
and show the usual particle-hole continuum and the q → 0 cyclotron mode. For � = 0.5EF , in the in-phase sector the spectrum is only
slightly changed (with the particle-hole continuum broadening in q due to the growing symmetric Fermi surface), while in the out-of-phase
sector the particle-hole continuum is significantly modified, and both a diverging and a gapless collective mode can be seen as q → 0. For
� = EF , the point at which the antisymmetric Fermi surface vanishes, in the in-phase sector the spectrum is again only slightly changed, and
in the out-of-phase sector the low-energy collective mode is still gapless and the particle-hole continuum touches the ω = 0 axis at the point
q = √

2kF . For � = 1.5EF , in the in-phase sector the spectrum is identical to the case � = EF (as it is for all � > EF ), and in the out-of-phase
sector the particle-hole continuum and low-energy collective mode are now fully gapped (as they are for all � > EF ). Results are for λ = 2.

two sectors, consisting of the usual particle-hole continuum
and the cyclotron mode. For 0 < � < EF , in the in-phase
sector the particle-hole continuum, which consists entirely of
intraband excitations, grows broader in q due to the increasing
size of the symmetric Fermi surface, but is otherwise only
mildly affected, and the cyclotron mode is likewise only
slightly modified. By contrast, in the out-of-phase sector the
particle-hole continuum, which consists entirely of interband
excitations, is altered significantly and both the diverging out-
of-phase cyclotron mode and gapless out-of-phase “photon”
mode described above can be seen. For � > EF the in-phase
excitations are independent of � (due to the fact that there
is only one Fermi surface), while the out-of-phase excitations
continue to evolve, with gaps appearing both in the interband
particle-hole continuum at q = √

2kF [�q=√
2kF

, see (15)] and
the out-of-phase photon mode at q = 0 [�q=0, see (36)].

It is apparent that the order parameter � has a much
stronger effect on the out-of-phase gauge propagators than
on the in-phase gauge propagators. This is consistent with our
expectation that it is the out-of-phase gauge fluctuations which
strongly suppress the formation of the interlayer coherent
composite fermion state. To analyze this suppression we use
an approach introduced by Ubbens and Lee [36] to study BCS
pairing of spinons in an effective gauge-theory description

of the t-J model. In this approach we calculate the gauge
fluctuation contribution to the correlation energy within the
RPA in the presence of the order parameter �. While this
calculation does not go beyond mean-field theory in �, which
we continue to assume is constant in time and independent of
position, it does go beyond the composite fermion mean-field
theory by including Gaussian fluctuations of the gauge fields.

Integrating out the gauge fields in (18) and taking the T →
0 limit of the free energy we obtain the following contribution
to the energy density of the in-phase and out-of-phase gauge
fluctuations,

E±
CS(�) = 1

2

∫ ∞

−∞

dω

2π

∫
d2q

(2π )2
ln detD±−1(q,iω; �). (38)

The change in energy density due to introducing the order pa-
rameter �E±

CS(�) = E±
CS(�) − E±

CS(0) can then be expressed
as the following integral over dimensionless variables q̄ =
q/kF and ω̄ = ω/EF :

�E±
CS(�)

ν0E
2
F

= 1

π

∫ ∞

0
dω̄

∫ ∞

0
q̄dq̄

× ln
q̄2 − (2πλ)2K̄±

00(q̄,ω̄; �̄)K̄±
11(q̄,ω̄; �̄)

q̄2 − (2πλ)2K̄±
00(q̄,ω̄; 0)K̄±

11(q̄,ω̄; 0)
, (39)
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where �̄ = �/EF and, as in Sec. II, ν0 = m∗/(2π ) is the
density of states per layer and EF = k2

F /(2m∗) is the Fermi
energy for � = 0. Here we have used the fact that K±

00 and K±
11

can be expressed as

K±
00(q,iω; �) = m∗K̄±

00(q̄,iω̄,�̄), (40)

K±
11(q,iω; �) = k2

F

m∗ K̄
±
11(q̄,iω̄; �̄), (41)

where K̄±
00 and K̄±

11 are dimensionless functions of q̄, ω̄, and
�̄. Using the analytic expressions for K±

00 and K±
11 given in

the Appendix, we need only to numerically perform a single
two-dimensional integral to determine �E+

CS(�) or �E−
CS(�)

for a given value of � and λ.
Before presenting the results of this full integration, it is

instructive to analyze the behavior of �E+
CS(�) and �E−

CS(�)
in the � → 0 limit. In both cases the integrand in (39) can
be Taylor expanded to second order in � using our analytic
expressions for K±

00 and K±
11. For �E+

CS(�) the integral over q

and ω can then be carried out to yield a finite coefficient of the
O(�2) contribution. Performing this integration numerically
for λ = 2 we find

�E+
CS(�)

ν0E
2
F

� −0.57
�2

E2
F

. (42)

Thus the in-phase gauge fluctuations contribute a term to
the total energy which is analytic in � and, because it
is negative, favors the formation of the interlayer coherent
composite fermion state. While it is not possible to analytically
determine the λ dependence of �E+

CS(�), even in the small
� limit, if we expand the integrand in (39) to second order
in both λ and � and carry out the integration we find that
�E+

CS(�)/(ν0E
2
F ) � −0.14λ2�2/E2

F for small λ. The fact
that the magnitude of this contribution grows with increasing
λ is consistent with λ being a measure of the strength of the
gauge fluctuations in the system.

By contrast, when the integrand in (39) for �E−
CS(�) is

expanded to second order in � and integrated over q and
ω the coefficient of the O(�2) term diverges, indicating that
�E−

CS(�) is not analytic in �. We find that this divergence
arises from the q̄ � 1 region of the q,ω integration. The
leading nonanalytic behavior in �E−

CS(�) can then be isolated
by expressing the integral (39) as a sum of two integrals,
one where q is integrated from 0 to a cutoff qc and a second
where q is integrated from qc to infinity. Regardless of the
value of the cutoff qc the second integral will be analytic in
� and contribute a term of O(�2) to the energy. The leading
nonanalytic behavior of �E−

CS(�) for small � is thus contained
in the first integral. For this integral, rather than expanding the
integrand, we can expand the argument of the logarithm in the
integrand, first to second order in � and then in powers of q.
After doing so, using the expressions for K−

00 and K−
11 from the

Appendix, we find

�E−
CS(�)

ν0E
2
F

� 1

π

∫ ∞

0
dω̄

∫ qc

0
q̄dq̄ ln

(
1 + 2λ2

λ2 + ω̄2

�̄2

q̄2

)
.

(43)

FIG. 7. (Color online) RPA contribution to the correlation energy
density from in-phase (green) and out-of-phase (red) gauge fluctua-
tions, and their total (blue) as a function of the order parameter �.
Results are for λ = 2.

The ω̄ integration in (43) can be performed to obtain

�E−
CS(�)

ν0E
2
F

�
∫ qc

0
q̄dq̄

[(
2λ2�̄2

q̄2
+ λ2

)1/2

− λ

]
. (44)

This integral has a clear physical meaning; it is the difference
in the zero-point energies associated with the out-of-phase
cyclotron mode ω−

2 for the case � 
= 0 (which diverges as
q → 0) and � = 0 (which remains finite as q → 0). The
singular contribution to (44) can be found by carrying out the
q̄ integration to leading logarithmic accuracy with the result

�E−
CS(�)

ν0E
2
F

� λ
�2

E2
F

∣∣∣∣ln �

EF

∣∣∣∣ , (45)

which is asymptotically exact in the � → 0 limit for all
values of λ. Because it is singular, this positive energy cost
for introducing a nonzero � will always dominate the total
energy of the system for small enough �, regardless of the
value of the coupling constant g. This reflects the fact that the
out-of-phase gauge fluctuations strongly inhibit the formation
of the interlayer coherent composite fermion state. Note that,
like �E+

CS(�), �E−
CS(�) grows in magnitude with increasing

λ, again consistent with λ being a measure of the strength of
the gauge fluctuations in the system.

Results for numerically performing the full integral (39)
for the case λ = 2 are shown in Fig. 7. This plot shows
the dependence of the in-phase �E+

CS(�) and out-of-phase
�E−

CS(�) contributions to the energy on �, as well as their
sum �ECS(�) = �E+

CS(�) + �E−
CS(�). For � < EF the in-

phase contribution is negative and decreases with increasing
�, consistent with the small � behavior found above, and
confirming that this contribution favors the formation of an
interlayer coherent composite fermion state. The out-of-phase
contribution is significantly larger in magnitude than the in-
phase contribution and increases with increasing �, indicating
that this contribution strongly suppresses the formation of the
interlayer coherent composite fermion state, again consistent
with the above small � analysis. Note that for � > EF the
in-phase contribution becomes independent of �, because the
in-phase response functions do not change once � exceeds EF ,
while the out-of-phase contribution continues to grow. Thus,
for all values of �, the out-of-phase contribution dominates
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FIG. 8. (Color online) Total energy density obtained by adding
the Stoner [ES(�)] and gauge field [�ECS(�)] contributions, plotted
as a function of the order parameter � for coupling strengths
g = 0.9gc, gc, and 1.1gc, where gc � 2.9 is the critical value of the
coupling constant. Results are for λ = 2.

and the total gauge field contribution to the energy density
�ECS(�) grows monotonically with increasing �.

The total energy density for the system is obtained by
adding the RPA gauge fluctuation contribution to the Stoner en-
ergy found in Sec. II to give ETotal(�) = ES(�) + �ECS(�).
Figure 8 shows ETotal(�) plotted as a function of � for
different values of the dimensionless coupling constant g as the
system undergoes a first-order phase transition from decoupled
bilayers (� = 0) to the interlayer coherent composite fermion
state (� 
= 0) for the case λ = 2. For a given g the order
parameter is found by minimizing the energy as a function
of �. When gauge fluctuations are included, as the coupling
constant g is increased from 0, the energy is minimized
by a nonzero � at the critical value g = gc � 2.9, which
should be compared to the critical value g = 1 for the Stoner
analysis when gauge fluctuations are ignored (see Fig. 3). If
we assume the relation g � 3l0/d holds this implies that the
gauge fluctuations have shifted the critical layer spacing from
(d/l0)c ∼ 3 down to (d/l0)c ∼ 1 which, we note, is below
the critical layer spacing for the νtot = 1 bilayer quantum
Hall state, theoretical estimates of which range from d/l0 �
1.3 [3,19] to d/l0 � 1.6 [22]. This shifting down of (d/l0)c
may account for the fact that the interlayer coherent composite
fermion state has not yet been observed experimentally.

In addition to increasing the coupling strength required to
produce the transition to the interlayer coherent composite
fermion state, the gauge fluctuations lead to a qualitative
change in the nature of this transition. This change is seen
in the dependence of the energy gaps in the out-of-phase
sector when the transition occurs, both for the interband
particle-hole excitations at q = √

2kF [�q=√
2kF

∝ (� − EF )
for � − EF > 0, see (15)] and for the long wavelength
out-of-phase photon mode at q = 0 [�q=0 ∝ (� − EF )1/2 for
small � − EF > 0, see (36)]. As shown in Sec. II, when
gauge fluctuations are ignored the value the order parameter
takes immediately after the transition at g = 1 is � = EF .
The order parameter then grows continuously for g > 1
and the out-of-phase energy gaps open continuously. When
gauge fluctuations are included, not only does the critical
coupling constant increase from g = 1 to gc � 2.9 for λ = 2,
but the value the order parameter takes immediately after

FIG. 9. (Color online) (a) q,ω plot showing the energy dispersion
of the low-energy collective mode and particle-hole continuum in
the out-of-phase sector immediately after the transition into the
interlayer coherent composite fermion state at g = gc � 2.9, where
� � 2.1EF . The energy gaps in the collective mode at q = 0
(�̄q=0 = �q=0/EF ) and in the particle-hole spectrum at q = √

2kF

(�̄q=√
2kF

= �q=√
2kF

/EF ) are indicated. (b) Energy gaps �q=0 and
�q=√

2kF
as a function of the coupling constant g. Results are shown

both for the simple Stoner analysis of Sec. II where the gaps (with
superscript 0) open continuously at the transition, and for when the
gauge fluctuation contribution to the energy is included where the
gaps (without superscript 0) jump discontinuously at the transition.
Results are for λ = 2.

the transition occurs increases from � = EF to � � 2.1EF .
Figure 9(a) shows the excitation spectrum in the out-of-phase
sector for � � 2.1EF . Because � > EF this spectrum is fully
gapped, both at q = 0 and q = √

2kF . Thus we see there is
a discontinuous jump in �q=0 and �q=√

2kF
at the transition

when gauge fluctuations are included. Figure 9(b) shows plots
of �q=0 and �q=√

2kF
as a function of g. Results are shown

both for the case when gauge fluctuations are ignored and
the gaps open continuously at the Stoner critical coupling
g = 1, and when gauge fluctuations are included and the
gaps jump discontinuously at the increased critical coupling
gc � 2.9. We believe the result that gauge fluctuations lead
to a discontinuous jump in the out-of-phase energy gaps
at this transition is likely to be valid beyond the level of
the RPA calculation presented here. Thus, if a transition to
an interlayer coherent composite fermion state is observed,
the measurement of such a jump would provide indirect
experimental evidence for the presence of gauge fluctuations
in the system.
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IV. CONCLUSIONS

We have studied the effect of fluctuations in the Chern-
Simons gauge fields on the possible formation of the interlayer
coherent composite fermion state proposed in Ref. [27] in a
symmetrically doped νtot = 1 quantum Hall bilayer. Scattering
from these gauge fields leads to layer-dependent fluctuations
in the Aharonov-Bohm phase experienced by composite
fermions as they propagate through the bilayer, strongly
suppressing any interlayer phase coherence these composite
fermions may have. This suppression manifests itself through
the appearance of a contribution to the ground state energy
from gauge fluctuations which is logarithmically singular in
the order parameter characterizing interlayer coherence, and
which grows monotonically as this order parameter increases
from zero.

If the gauge field contribution to the energy is ignored,
the transition from two decoupled single-layer composite
fermion metals to an interlayer coherent composite fermion
state with increasing interlayer coupling is a simple Stoner
instability, and the energy gaps to out-of-phase excitations
open continuously from zero at the transition. When the gauge

field contribution to the energy is included there are two main
effects: (1) the interlayer coupling strength required to drive
the transition grows substantially (contrast Fig. 8 with Fig. 3);
and (2) the out-of-phase energy gaps jump discontinuously
from zero to a finite value at the transition (see Fig. 9). The first
effect may account for the fact that the interlayer coherent state
has not yet been observed experimentally in νtot = 1 bilayers.
The second effect suggests that if such a transition were to
be observed, the detection of a discontinuous jump in the
out-of-phase energy gaps would provide indirect experimental
evidence for the presence of gauge fluctuations in the system.
Of more general interest, we believe that the model studied
here provides a novel example of the qualitative effects that
gauge fluctuations can have on quantum phase transitions in
dense Fermi systems.

ACKNOWLEDGMENTS

The authors thank Yafis Barlas and Yong Baek Kim for
helpful discussions. This work was supported by US DOE
Grant No. DE-FG02-97ER45639.

APPENDIX: CALCULATION OF K±
00 AND K±

11

To determine K±
00 and K±

11 using (20) we need to evaluate �±
00 and �±

11 which are defined in (21) and (22) in terms of the
integrals (23) and (24). Using these expressions we find that

�+
00(q,iω; �) = − 1

2

[
F1

(
q,iω; kS

F

) + F1
(
q,−iω; kA

F

) + F1
(
q,iω; kA

F

) + F1
(
q,−iω; kS

F

)]
, (A1)

�+
11(q,iω; �) = − 1

2

[
F2

(
q,iω; kS

F

) + F2
(
q,−iω; kA

F

) + F2
(
q,iω; kA

F

) + F2
(
q,−iω; kS

F

)]
, (A2)

�−
00(q,iω; �) = − 1

2

[
F1

(
q,iω − 2�; kS

F

) + F1
(
q,−iω + 2�; kA

F

) + F1
(
q,iω + 2�; kA

F

) + F1
(
q,−iω − 2�; kS

F

)]
, (A3)

�−
11(q,iω; �) = − 1

2

[
F2

(
q,iω − 2�; kS

F

) + F2
(
q,−iω + 2�; kA

F

) + F2
(
q,iω + 2�; kA

F

) + F2
(
q,−iω − 2�; kS

F

)]
. (A4)

Here kS
F and kA

F are given by (12) and (13) for � < EF and kS
F = √

2kF and kA
F = 0 for � > EF . As in the main text, kF and

EF = k2
F /(2m∗) are the Fermi wave vector and Fermi energy for � = 0, respectively. The functions F1 and F2 are given by

F1
(
q,γ ; kα

F

) =
∫

|k|<kα
F

d2k

(2π )2

1

γ − Ek+q + Ek
= m∗f1

[
q

kα
F

,
1

2

(
γ

Eα
− q2

kα
F

2

)]
(A5)

and

F2
(
q,γ ; kα

F

) =
∫

|k|<kα
F

(
q̂ × k
m∗

)2
d2k

(2π )2

1

α − Ek+q + Ek
= kα

F
2

m∗ f2

[
q

kα
F

,
1

2

(
γ

Eα
− q2

kα
F

2

)]
, (A6)

where Eα = kα
F

2/(2m∗); and f1 and f2 are given by the dimensionless integrals

f1(y,z) = 1

(2π )2

∫ 1

0
xdx

∫ 2π

0
dθ

1

z − xy cos θ
(A7)

and

f2(y,z) = 1

(2π )2

∫ 1

0
xdx

∫ 2π

0
dθ

x2 sin2 θ

z − xy cos θ
, (A8)

which can be carried out analytically with the results

f1(y,z) = 1

2πy

z

y

[
1 −

(
1 − y2

z2

)1/2 ]
(A9)
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and

f2(y,z) = 1

4πy

z

y

{
1 − 2

3

z2

y2

[
1 −

(
1 − y2

z2

)3/2
]}

, (A10)

where y is real and the branch cuts in the complex z plane of the (· · · )1/2 and (· · · )3/2 expressions are taken along the real axis
between the points z = ±y.

Taken together the above results give closed-form analytic expressions for K±
00 and K±

11 which give, in turn, an analytic
expression for the integrand in (39). It is then only necessary to carry out a single two-dimensional numerical integral over q and
ω to obtain �E+

CS or �E−
CS for a given value of � and λ.

With the branch cuts specified for f1 and f2 it is straightforward to analytically continue K±
00 and K±

11 to the real frequency axis
to obtain the bare density and transverse-current response functions: K00(q,ω; �) = K00(q,iω → ω + iε; �) and K11(q,ω; �) =
K11(q,iω → ω + iε; �). These functions can then be used to find the collective mode dispersions by solving (25). To find these
dispersions, including the O(q2) terms in ω+ and ω−

1 , and the O(q0) term in ω−
2 we need the following expressions for K±

00 and
K±

11 valid for small q. For the in-phase response functions, when � < EF and ω � kF q/m∗,

K+
00(q,ω; � < EF ) � −EF

2π

q2

ω2
− 3

(
E2

F + �2
)

4πm∗
q4

ω4
, (A11)

K+
11(q,ω; � < EF ) � −EF

2π
− E2

F + �2

4πm∗
q2

ω2
. (A12)

For � > EF the value of � in the above expressions is simply replaced by EF ,

K+
00(q,ω; � > EF ) � −EF

2π

q2

ω2
− 3E2

F

2πm∗
q4

ω4
, (A13)

K+
11(q,ω; � > EF ) � −EF

2π
− E2

F

2πm∗
q2

ω2
. (A14)

For the out-of-phase response functions, when � < EF and |ω − 2�| � kF q/m∗, we have

K−
00(q,ω; � < EF ) � 2m∗

π

�2

4�2 − ω2
+ EF

2π

(12�2ω2 + ω4)

(4�2 − ω2)3
q2, (A15)

K−
11(q,ω; � < EF ) � EF

2π

ω2

4�2 − ω2
− 32�6 − 12�2

(
3E2

F + �2
)
ω2 − 3

(
E2

F + �2
)
ω4

12m∗π (4�2 − ω2)3
q2. (A16)

And for � > EF ,

K−
00(q,ω; � > EF ) � 2m∗

π

EF �

4�2 − ω2
+ EF

2π

(16�3EF − 16�4 + 12�EF ω2 + ω4)

(4�2 − ω2)3
q2, (A17)

K−
11(q,ω; � > EF ) � EF

2π

4(�EF − �2) + ω2

4�2 − ω2
+ E2

F (32�3EF − 48�4 + 24�EF ω2 + 3ω4)

6m∗π (4�2 − ω2)3
q2. (A18)
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