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Analytic pulse-sequence construction for exchange-only quantum computation
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We present pulse sequences for two-qubit gates acting on encoded qubits for exchange-only quantum
computation. Previous work finding such sequences has always required numerical methods due to the large
search space of unitary operators acting on the space of the encoded qubits. By contrast, our construction can
be understood entirely in terms of three-dimensional rotations of effective spin- 1

2 pseudospins which allows us
to use geometric intuition to determine the required sequence of operations analytically. The price we pay for
this simplification is that, at 39 pulses, our sequences are significantly longer than the best numerically obtained
sequences.
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I. INTRODUCTION

The ability to adiabatically switch on and off, or “pulse,”
the isotropic exchange interaction JS1 · S2 between pairs
of spin- 1

2 particles is a promising resource for quantum
computation [1]. Such pulsed exchange has been demonstrated
experimentally for electron spins in double quantum dots
[2] as well as cold atoms trapped in optical lattices [3].
The exchange interaction is purely isotropic and so cannot
change the total spin of the system it acts on and thus
cannot be used to carry out arbitrary unitary operations. As
a consequence, if logical qubits are represented by single
spin- 1

2 particles [1] or encoded into the singlet-triplet states
of pairs of spin- 1

2 particles [4], universal quantum compu-
tation requires additional resources beyond exchange (e.g.,
oscillating magnetic [5] or electric [6–9] fields for single-spin
qubits, and gradients in the Zeeman energy for two-spin qubits
[2,10–12]). However, if logical qubits are suitably encoded us-
ing three or more spin- 1

2 particles, then pulsed exchange alone
is a sufficient resource for universal quantum computation
[13,14].

DiVincenzo et al. [15] presented the first explicit scheme
for carrying out universal quantum computation using only
pulsed exchange. In this scheme, each qubit is encoded into the
two-dimensional Hilbert space of three spin- 1

2 particles with
total spin fixed to be 1

2 and polarized along a given direction.
For a linear array of spin- 1

2 particles, arbitrary single-qubit
rotations can then be carried out by performing a sequence
of up to four exchange pulses between nearest-neighbor spins
within a given encoded qubit.

There has been remarkable experimental progress on the
implementation of such three-spin qubits using electron spins
in triple quantum dots [16–20]. A related scheme, based on the
so-called resonant exchange qubit [21], in which the exchange
interactions between spins within the qubit are kept “always
on,” has also recently been demonstrated [22]. These resonant
exchange qubits offer resistance to leakage out of the encoded
qubit space and the possibility for carrying out two-qubit gates
with a single exchange pulse [23]. In this work, we adopt
the three-spin qubit encoding for exchange-only quantum
computation of Ref. [15] and assume that the exchange
interaction between spins is completely switched off except
when pulsing. In this case, two-qubit gates require nontrivial

sequences of many exchange pulses to avoid leakage out of
the encoded space.

By performing a numerical search, DiVincenzo et al.
[15] were able to find a sequence of 19 nearest-neighbor
exchange pulses for a linear array of spins which carries
out a two-qubit gate locally equivalent to a controlled-NOT
(CNOT) gate (i.e., a CNOT gate up to single-qubit rotations)
on two three-spin qubits. This numerically obtained sequence
was later confirmed to be exact [24]. The set of single-qubit
rotations and CNOT gates is a standard universal gate set for
quantum computation, and so these pulse sequences can be
used to perform any quantum algorithm [25].

A key requirement in the CNOT construction of Ref. [15]
is that the total spin of all six spin- 1

2 particles forming the
two encoded qubits acted on by the gate must be 1. As
pointed out in the same reference, for electron spins this
condition can be forced by initializing the qubits in an external
magnetic field. This total spin requirement cannot be relaxed
because if the total spin of all six particles is 0, then the
19-pulse sequence does not result in the same two-qubit
gate and, in fact, leads to leakage out of the encoded qubit
space.

More recently, Fong and Wandzura [26] found a sequence
of nearest-neighbor exchange pulses, again for a linear array
of spins, which performs the same two-qubit gate (also
locally equivalent to CNOT) in both the total spin-0 and total
spin-1 sectors. Remarkably, with 18 pulses, this sequence is
shorter than the 19-pulse sequence of Ref. [15]. Although this
sequence was obtained by numerical minimization of a cost
function using a genetic algorithm, the final result is exact
and has a particularly elegant form consisting of SWAP pulses
that exchange the states of two spins, as well as

√
SWAP and

inverse
√

SWAP pulses. Related two-qubit gate sequences with
fewer pulses (16 and 14) have since been found for geometries
other than linear arrays of spins [27].

In this paper, we construct a family of sequences consisting
of 39 nearest-neighbor exchange pulses on a linear array of
spins which perform entangling two-qubit gates on three-spin
qubits, including a gate which is locally equivalent to CNOT.
The main new feature of our construction is that it can be
carried out purely analytically, requiring at most the solution
of a transcendental equation in one variable. Unlike the 19-
pulse sequence of Ref. [15], but like the 18-pulse sequence of
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Fong and Wandzura [26], the action of our 39-pulse sequences
is independent of the total spin of the two encoded qubits.
Indeed, we point out that any pulse sequence which carries out
a leakage-free two-qubit gate in the total spin-1 sector while
acting on only five of the six spins needed to encode the qubits
(which is the case for our sequences, as well as those found
by Fong and Wandzura [26] and in Ref. [27], but not for the
sequence of Ref. [15] which acts on all six spins) will perform
the same two-qubit gate in the total spin-0 sector. Using such
sequences eliminates the need to initialize encoded qubits in a
magnetic field.

II. HILBERT SPACE AND QUBIT ENCODING

Because the isotropic exchange interaction between pairs of
spin- 1

2 particles is rotationally invariant, any unitary operation
carried out purely by pulsing this interaction can be described
entirely in terms of total spin quantum numbers, with no
reference to Sz quantum numbers.

Figure 1(a) illustrates a notation which exploits this fact.
This notation is inspired by that used in Refs. [28,29]
for non-Abelian anyons when finding braiding patterns for
topological quantum computation, a problem closely related
to that of finding pulse sequences for exchange-only quantum
computation. Here, spin- 1

2 particles are represented by solid
dots enclosed in ovals labeled by the total spin of the enclosed
particles. Any choice of nonintersecting ovals for which each
oval encloses two particles, two ovals, or one of each, amounts
to a basis choice. The basis states correspond to all possible
labelings of ovals consistent with the triangle rule for adding
spin quantum numbers. When referring to these basis states in
the text, we will use parentheses to represent ovals so, e.g., the
state shown in Fig. 1(a) would be written ((( )1( )0)1 )1/2

where the symbol denotes a spin- 1
2 particle. It is always

possible to change bases from one set of ovals to another
by using the appropriate spin recoupling coefficients [30] .
A multispin state with total spin S (i.e., the label of the
oval enclosing all the particles is S) has a (2S + 1)-fold
degeneracy associated with the possible values of the Sz

component. However, as emphasized above, all spin operations
we consider for exchange-only quantum computation are
rotationally invariant, so at no point will it be necessary to
refer to these Sz quantum numbers. In what follows, we will
therefore treat states like or ( )1 as single states in Hilbert

L0 L1
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0
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21/ 1 21/

1 23/

(b)

0 1
21/
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FIG. 1. (Color online) (a) Example state of five spin- 1
2 particles,

where each represents one particle and the number next to each oval
gives the total enclosed spin. (b) Qubit encoding using three spin- 1

2
particles. States with total spin 3

2 are noncomputational states.
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FIG. 2. (Color online) (a) Two three-spin qubits in states a and
b with total spin g = 0 or 1. (b) Relevant spins (circled in blue) and
spin quantum numbers referred to in Sec. III through Sec. VI.

space, even though when the Sz degeneracy is counted, they
are twofold and threefold degenerate, respectively.

To carry out exchange-only quantum computation, it is
necessary to use suitably encoded logical qubits [13]. The
basis states for the three-spin qubit encoding of Ref. [15] are
shown in Fig. 1(b). In this encoding, the logical qubit states
are those with total spin 1

2 , with the logical |0L〉 and logical
|1L〉 corresponding, respectively, to the states for which two of
the particles are in a singlet or a triplet. The choice of the two
particles whose total spin determines the state of the logical
qubit is, of course, purely a basis choice. The price one pays for
this qubit encoding is that there is a noncomputational state,
denoted |NC〉 in Fig. 1(b), in which the total spin of the three
particles is 3

2 .
Transitions from the computational space to the noncom-

putational space are known as leakage errors. When carrying
out single-qubit rotations by pulsing the exchange interaction
within a given encoded qubit, the total spin of that qubit is
unchanged and there are no leakage errors. However, carrying
out two-qubit gates requires some pulses that act on spins from
each qubit. Such pulses alter the total spin of each encoded
qubit and thus induce transitions into the noncomputational
space. It is therefore a nontrivial problem to determine pulse
sequences which carry out leakage-free entangling two-qubit
gates.

Figure 2(a) shows two logical qubits each of which has
total spin 1

2 , so the total spin of all six spin- 1
2 particles, labeled

g, can be either 0 or 1. In our construction, we assume these
spins form a linear array and only consider nearest-neighbor
exchange pulses. The choice of qubit bases in the figure is
convenient for our two-qubit gate construction. The full Hilbert
spaces of the g = 0 and 1 sectors are five and nine dimensional,
respectively, where, as described above, we ignore the Sz

degeneracy. The set of unitary operators acting on this space is
then SU(5) ⊕ SU(9), once irrelevant overall phase factors are
removed. The number of independent parameters appearing
in these unitary operators are 24 = 52 − 1 (for g = 0) and
80 = 92 − 1 (for g = 1). It is because of the enormous size
of these high-dimensional search spaces that all previous
work finding pulse sequences for two-qubit gates has been
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numerical, even when the result has the elegant form of the
Fong-Wandzura sequence.

An outline of our analytic approach to constructing pulse
sequences is illustrated in Fig. 2(b). After establishing the
fundamental resource (the exchange interaction between two
spin- 1

2 particles), we consider the Hilbert spaces of three
spins, four spins, and finally five spins. At each stage of our
construction, we work with a restricted set of operations which
allows us to work entirely in effective Hilbert spaces which are
at most two dimensional, i.e., that of a spin- 1

2 pseudospin. The
space of operations is then that of simple three-dimensional
rotations and this allows us to use geometric intuition to
analytically determine the required pulse sequences.

Our construction results in a controlled-phase (CPhase) gate
which is diagonal in the ab basis for the two qubits shown in
Fig. 2(a) and which applies a phase factor of e−iφ to the state
with ab = 11 while multiplying the states ab = 00,01, and 10
by 1. We are able to set φ to any desired phase and the case
φ = π yields a gate which is locally equivalent to CNOT. Two
examples of the resulting pulse sequences, which consist of 39
pulses and either one or two single-qubit rotation pulses, are
given in Sec. VII.

III. TWO SPINS

We begin our construction by considering an exchange
pulse between two nearest-neighbor spins [e.g., the spins
circled in Fig. 2(b) in the diagram labeled “Sec. III”]. The
effect of such a pulse generated by applying the Hamiltonian
JS1 · S2 for duration t , measured in units of 1/J (� = 1),
is illustrated in Fig. 3 [31]. The matrix representation of the
resulting unitary operation in the ( )a basis with a = {0,1},
i.e., the singlet-triplet basis where, as described in the previous
section, we ignore the Sz degeneracy, is

U2(t) = e−it(S1·S2+ 3
4 )

=
(

1
e−it

)
= e−it/2eit ẑ·σ/2. (1)

Here, σ = (σx,σy,σz) is the Pauli vector and the additive
constant 3

4 in the exponent gives a convenient choice for the
irrelevant overall phase factor. If we view the states ( )0 and
( )1 as the ↑ and ↓ states, respectively, of a pseudospin, then
this operation is a z-axis rotation in pseudospin space through
the angle t multiplied by a phase factor.

Our convention throughout will be that positive pseudospin
rotation angles correspond to left-handed rotations about the
given axis [i.e., a rotation through angle t about an axis n̂

t 2/ˆ2/
2

1
)( zitit

ti ee
e

tU
x

z
ẑ

a

FIG. 3. (Color online) Exchange pulse between two spin- 1
2 par-

ticles, represented by a double arrow labeled by the pulse duration t

defined in the text, which produces the operation U2(t). In the basis
a = {0,1}, the matrix representation of U2(t) is a z-axis rotation in
pseudospin space with ↑ = ( )0 and ↓ = ( )1.

corresponds to the SU(2) operation U = eit n̂·σ/2]. The duration
of each pulse is positive and can always be taken to be in the
range 0 < t < 2π . For the inverse of an exchange pulse of
duration t we pulse for duration s = 2π − t .

IV. THREE SPINS

Figure 4 shows the action of two different nearest-neighbor
exchange pulses on the Hilbert space of three spin- 1

2 particles
[e.g., the three spins circled in Fig. 2(b) in the diagram labeled
“Sec. IV”]. As described in Sec. II, the choice of labeled
ovals corresponds to a particular basis choice. The three-spin
basis shown in Fig. 4 consists of the states (( )a )c where
ac = 0 1

2 ,1 1
2 , and 1 3

2 . For clarity, when referring to vertically
aligned spins in a given figure, the convention is that topmost
in the figure corresponds to leftmost in the text.

Matrix representations of the unitary operations produced
by the exchange pulses are also shown in Fig. 4. These matrices
are expressed in the (( )a )c basis with ac = {0 1

2 ,1 1
2 |1 3

2 } and
consist of a 2 × 2 block acting on the total spin c = 1

2 sector
and a phase factor multiplying the c = 3

2 state.
We describe the two-dimensional c = 1

2 sector in terms
of a pseudospin with ↑ = (( )0 )1/2 and ↓ = (( )1 )1/2.
The unitary operations shown in Fig. 4 are then pseudospin
rotations about two different axes. Pulsing the exchange
interaction between the top two spins results in an operation
that is diagonal in a and hence is a rotation about the z axis. In
the (( )a )1/2 basis with a = {0,1}, the matrix representation
of this operation is the same as that given in (1).

Likewise, the matrix representation of an exchange pulse
between the bottom two spins (see Fig. 4) in the ( ( )a′)1/2

basis with a′ = {0,1} is

U
c=1/2
2,a′ (t) =

(
1

e−it

)
= e−it/2eit ẑ·σ/2. (2)

Here, the notation U
c=1/2
2,a′ indicates the matrix representation

of U2 (in this case the unitary operation produced by pulsing
the exchange interaction between the bottom two spins) in the

it

tiit

e
ee 2/ˆ2/ 1n 3/2

t

t
it

tiit

e
ee 2/ˆ2/ z

x

z
ẑ

z

x
1n̂

a

c
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c

FIG. 4. (Color online) Nearest-neighbor exchange pulses (de-
noted U2 in the text) and their matrix representations in the ac =
{0 1

2 ,1 1
2 |1 3

2 } basis. Each 3 × 3 matrix is block diagonal, consisting of
a 2 × 2 sector with c = 1

2 and a one-dimensional sector with c = 3
2 .

In the c = 1
2 sector, the pulses produce rotations about either ẑ or n̂1

for a pseudospin where ↑ = (( )0 )1/2 and ↓ = (( )1 )1/2.
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a′ basis in the sector with total spin c = 1
2 . To find the matrix

in the original (( )a )1/2 basis we perform the basis change

(( )a )1/2 =
∑
a′

F1,aa′ ( ( )a′)1/2, (3)

where the matrix elements

F1,aa′ = 〈( ( )a′)1/2|(( )a )1/2〉 (4)

are recoupling coefficients for three spin- 1
2 particles with total

spin 1
2 . F1,aa′ can be expressed as a 2 × 2 matrix which

transforms from the a′ = {0,1} basis to the a = {0,1} basis,

F1 =
(−1/2

√
3/2√

3/2 1/2

)
= f̂1 · σ , (5)

where f̂1 = (
√

3/2,0, −1/2). The action of pulsing the ex-
change interaction between the bottom two spins in the
(( )a )1/2 basis with a = {0,1} is then

U
c=1/2
2,a (t) = F1U

c=1/2
2,a′ (t)F1 = e−it/2eit n̂1·σ/2, (6)

where F1 = F1
†. The rotation axis n̂1 = 2f̂1(f̂1 · ẑ) − ẑ makes

an angle cos−1 n̂1 · ẑ = − 2π
3 with the z axis, as shown in Fig. 4.

The c = 3
2 sector consists of a single state which can be

expressed equivalently either as (( )1 )3/2 or ( ( )1)3/2.
Consulting (3) for the case a = 1 we see that both exchange
pulses of duration t shown in Fig. 4 multiply this state by a
phase factor of e−it . Thus, the ac = 1 3

2 diagonal element of
the corresponding matrix representations is e−it .

Figure 5 shows a key three-pulse sequence used throughout
our construction. The resulting unitary operation is denoted
U3. This pulse sequence is designed so that the matrix
representation of U3 is diagonal in the (( )a )c basis, as shown
in Fig. 5 [up to an irrelevant overall phase factor, chosen so
that the state (( )1 )1/2 is multiplied by 1]. This allows us
to treat the Hilbert space with a = 0 and 1 separately, while
at the same time generating a phase difference of φ between
the states (( )1 )1/2 and (( )1 )3/2. This phase difference is
central to our construction, and in what follows we will often
write U3 as a function of this phase U3(φ).

=
t

t

t
)(3U

i

ti

e

e
U 1)(3

2
ˆˆ
1

2
tan
2

tan
1nz

tt

tt

/ 2

2

t
0

(t)

FIG. 5. (Color online) Sequence of three exchange pulses for
U3(φ), a diagonal operation in the (( )a )c basis, shown for
ac = {0 1

2 ,1 1
2 |1 3

2 }. U3(φ) introduces a phase difference φ between
the states (( )1 )1/2 and (( )1 )3/2. The graph of φ vs t shows that
an arbitrary phase φ can be generated by choosing t appropriately.

1n̂

ẑ(a)

t
(c)

t

tt(b)

FIG. 6. (Color online) Actions of the three rotations in the c = 1
2

pseudospin sector of the three-pulse sequence for U3 shown in Fig. 5
on the vector ẑ. (a) The first pulse of duration t rotates ẑ about the n1

axis to a vector on the yellow cone. (b) The second pulse of duration
t̄ rotates the resulting vector about the z axis on the green cone.
(c) Provided t̄ is chosen [by solving (7)] so that after the first two
rotations the resulting vector is on the intersection of the green and
yellow cones, the third pulse of duration t will rotate the vector about
the n1 axis back to ẑ. Because ẑ is unchanged by this sequence, the
resulting rotation is about the z axis.

In the c = 1
2 sector, the pulse sequence for U3 carries

out three pseudospin rotations about first the n1, then z, and
again the n1 axis through angles t , t̄ , and t , respectively. This
sequence is chosen so that it results in a net rotation about the
z axis, and hence is diagonal in the (( )a )1/2 basis. To find
the relation between t and t̄ we determine the condition under
which the vector ẑ is unchanged under these three rotations.
The yellow cone in Fig. 6(a) shows the set of vectors that
ẑ can be transformed into after rotations about the n1 axis
by the first pulse. For a particular choice of the first rotation
angle t , the green cone in Fig. 6(b) then displays the set of
possible outcomes of the second rotation, this time about the
z axis. The third rotation, again about the n1 axis, must bring
the transformed vector back to ẑ. Figure 6(c) shows both that
there is only one nonzero choice for the second rotation angle
t̄ , and that the final rotation angle must again be t . It is a simple
geometric exercise to show that the rotation angles t̄ and t are
related by

tan
t

2
tan

t̄

2
= 1

ẑ · n̂1
= −2. (7)

Furthermore, Fig. 6 clarifies that the t,t̄ ,t sequences are the
only nontrivial sequences of three rotations that result in an
effective z-axis rotation.

The sequence t,t̄ ,t produces the phase difference

φ = t + t̄ − π (8)

between the (( )1 )1/2 and (( )1 )3/2 states. As a function
of the pulse length t , the phase φ varies monotonically from
0 to 2π (see Fig. 5). Thus, to produce U3(φ) for a desired
φ, one need only solve for t and t̄ using (7) and (8). For a
given φ there are two solutions, one with 0 � t < π � t̄ <

2π , and another with t ↔ t̄ so that 0 � t̄ < π � t < 2π . The
total duration of the t,t̄ ,t sequence with t < t̄ is shorter than
the sequence with t > t̄ , and we refer to the former as the
short sequence and the latter as the long sequence. The only
difference between the U3(φ) operations produced by the short
sequence and long sequence is the value of the phase factor
e−it̄ applied to the single state with a = 0, (( )0 )1/2. In our
two-qubit gate construction we will see that the only effect the
choice of this phase factor has is to determine the single-qubit
rotations needed to bring the final gate to an exact CPhase
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form. We are thus free to use either the short or long sequence
for each U3 that appears in our construction (see Sec. VII)
[32].

V. FOUR SPINS

In this section, we turn to the four spins highlighted in
Fig. 2(b) (labeled “Sec. V”), (( )a( )b)d where a and
b determine the states of the two logical qubits shown in
Fig. 2(a).

The full Hilbert space of four spin- 1
2 particles (as usual,

not counting the Sz degeneracy) is six dimensional with one
two-dimensional sector (total spin 0), one three-dimensional
sector (total spin 1), and one one-dimensional sector (total spin
2). We reduce the nontrivial Hilbert space to that of a single
spin- 1

2 pseudospin by restricting ourselves to the use of the two
operations shown in Fig. 7. One operation is the U3 sequence
described in Sec. IV acting on the top three spins, the other is
a simple exchange pulse U2 between the bottom two spins.

Throughout our entire two-qubit gate construction (exclud-
ing single-qubit rotations), the top two spins with total spin
labeled a, referring to Fig. 7, will only be acted on by U3

operations. Because this operation is diagonal in the (( )a )c
basis, the value of a is conserved and we can treat the cases
a = 0 and 1 separately. For the case a = 0, the top three spins
are always in the state (( )0 )1/2. It follows that U3 acts as
the identity times a phase factor on all states with a = 0 in
the full Hilbert space of the two encoded qubits. Provided we
keep track of this a = 0 phase (which will depend on whether
we use the long or short sequence for U3) as it accumulates
we are free to focus on the case a = 1 for which U3 acts
nontrivially on a two-dimensional Hilbert space. At the end of
our construction, the a = 0 phase factor can always be set to 1
by a single-qubit rotation acting on the left qubit in Fig. 2(a).

b

b

b

d

it

itit

it

e
ee

e
2/ˆ2/ z

z

x

x

z
ẑ

2n̂it

/itit/

e
ee 2ˆ2 2

1
n

d
d

t

1a

tU3

FIG. 7. (Color online) Two operations, a simple exchange pulse
[U2(t)] and U3(t), acting on the Hilbert space of four spins. Both
operations conserve a and act trivially on states with a = 0. This
allows us to focus on the case a = 1 by replacing the two spins
with total spin a by an effective spin-1 particle represented by .
The matrix representations of U2(t) and U3(t) are then given in the
bd = {10|01,11|12} basis. In the d = 1 sector, U2(t) and U3(t) carry
out rotations about ẑ and n̂2, respectively, for a pseudospin where
↑ = ( ( )0)1 and ↓ = ( ( )1)1.

Since we need only consider the case a = 1 in what follows
we can represent the top two spins as a single spin-1 particle,
as shown in Fig. 7. The basis states can then be written as

(( )a=1( )b)d → ( ( )b)d , (9)

where the symbol represents the effective spin-1 particle.
This replacement of two spin- 1

2 particles by one spin-1 particle
is a key step in our construction.

The a = 1 Hilbert space, spanned by a spin-1 and two spin-
1
2 particles, is four dimensional, with two one-dimensional
sectors (total spin d = 0 and 2) and one two-dimensional sector
(total spin d = 1). The effective two-dimensional d = 1 sector
can be viewed in terms of a pseudospin where ↑ = ( ( )b=0)1

and ↓ = ( ( )b=1)1. As shown in Fig. 7, pulsing the exchange
interaction between the bottom two spins for a time t then
results in a z-axis rotation through angle t of this pseudospin.

The action of U3 on this two-dimensional Hilbert space is
first seen most clearly in the (( )c )d=1 basis with c = { 1

2 , 3
2 }.

Consulting Fig. 5 for the case a = 1, we have

Ud=1
3,c (t) =

(
1

e−it

)
= e−it/2eit ẑ·σ/2. (10)

This operation acts like a nearest-neighbor exchange pulse
between our effective spin-1 particle and its neighboring
spin- 1

2 particle. However, here the parameter t is not a pulse
duration, but rather the value of the phase difference U3(t)
produces between the states (( )1/2 )1 and (( )3/2 )1, and
is best viewed as an “effective” pulse time.

If we change back to the ( ( )b)1 basis, U3 becomes a
pseudospin rotation about an axis n̂2. To determine n̂2 we again
need to carry out a basis change using the relevant recoupling
coefficients, this time for one spin-1 particle and two spin- 1

2
particles with total spin 1:

( ( )b)1 =
∑

c

F2,bc(( )c )1, (11)

where F2,bc = 〈(( )c )1|( ( )b)1〉. The matrix

F2 =
(−1/

√
3

√
2/3√

2/3 1/
√

3

)
= f̂2 · σ (12)

then changes bases from (( )c )1 with c = { 1
2 , 3

2 } to ( ( )b)
with b = {0,1}, where f̂2 = (

√
2/3,0, −1/

√
3). The action of

U3(t) on the d = 1 sector in the original basis is then

Ud=1
3,b (t) = F2U

d=1
3,c (t)F2 = e−it/2eit n̂2·σ/2, (13)

where the rotation axis n̂2 = 2f̂2(f̂2 · ẑ) − ẑ makes an angle
cos−1 n̂2 · ẑ = cos−1 − 1

3 with the z axis, as shown in Fig. 7.
Finally, note that for the sectors with total spin d = 0 and

2 the change of bases is trivial: ( ( )b=1)0 = (( )c=1/2 )0

and ( ( )b=1)2 = (( )c=3/2 )2. Consulting Fig. 5, we see
that U3(t) multiplies the states with d = 0 and 2 by 1 and e−it ,
respectively, while from (1) the exchange pulse U2(t) acting
on the bottom two spins multiplies both states by e−it . The
resulting full matrix representations of U2(t) and U3(t) are
given in Fig. 7.

At the next level of our construction we will need an
operation which is diagonal in the ( ( )b)d basis. This will
allow us to treat the Hilbert space with b = 0 and 1 separately.
The simplest way to produce such a diagonal operation would
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be to pulse the exchange interaction between the bottom two
spins with total spin b (see Fig. 7). However, such a pulse will
merely correspond to a single-qubit rotation, and therefore
is not useful for our two-qubit gate construction. One way
to produce a diagonal operation which is not equivalent to a
single-qubit rotation would be to employ the same three-pulse
strategy used in Sec. IV. In this case, the rotation axis n̂2

is different [and so the right-hand side of (7) is 1/n̂2 · ẑ =
−3 instead of 1/n̂1 · ẑ = −2], but the geometric argument
summarized in Fig. 6 still shows that any three-pulse sequence
which produces a diagonal matrix must be of the same t,t̄ ,t

form as U3. In Appendix A, we show that this construction
does indeed produce a diagonal operation in the ( ( )b)d
basis, but cannot directly be used to produce the required phase
differences at the next level of our construction. Nevertheless,
the existence of this three-operation construction does point the
way to alternate two-qubit gate constructions, also discussed
in Appendix A.

Given that three operations are not sufficient, we turn to
sequences with five operations (sequences with four operations
are equivalent to sequences with three operations up to a
single-qubit rotation). Figure 8 shows such a sequence that
produces a diagonal operation which will be useful at the
next level of our construction. The sequence has the form
U4(φ) = U3(t4)U2(t4)U3(φ)U2(s4)U3(s4), where s4 = 2π − t4
so that U2(s4) = U2(t4)−1 and U3(s4) = U3(t4)−1 in the a = 1
Hilbert space. Thus, in this space, U4(φ) = SU3(φ)S−1 where
S = U3(t4)U2(t4). Written in this way, it is clear that U4(φ)
is the result of a carrying out a similarity transformation
on the U3(φ) operation at the center of the sequence. In
the two-dimensional d = 1 sector, this transformation can
be understood geometrically as a rotation generated by
U3(t4)U2(t4), two pseudospin rotations about first the z axis
and then the n2 axis, both through angle t4. These rotations
act on n̂2, the rotation axis of U3(φ), and are designed to
diagonalize U3(φ) in the ( ( )b)1 basis by rotating n̂2 to ẑ.

The transformation of the rotation axis of U3(φ) from n̂2

to ẑ is illustrated in Fig. 8. Rotating n̂2 (ẑ) about the z axis

= 
4s

i

i

e
e

U
1

1

)(4

3U43 sU 43 tU
4U

4t

ẑ
4t

2n̂

4t

FIG. 8. (Color online) Sequence of exchange pulses (U2) and U3

operations acting on four spins resulting in the operation U4(φ). The
sequence is constructed so that the matrix representation of U4(φ) is
diagonal in the ( ( )b)d basis, shown for bd = {10|01,11|12}. The
two-step similarity transformation that diagonalizes the d = 1 block
of U3(φ) in this basis is illustrated by the two intersecting cones where
t4 = 2π/3 and, for the inverse operation, s4 = 2π − t4 = 4π/3.

(n2 axis) results in the rotated vector lying somewhere on the
green (yellow) cone. The rotation angle t4 is chosen so that
n̂2 is first rotated about the z axis to where the two cones
intersect. This is then followed by a rotation about the n2 axis
through the same angle so that the final rotated vector is ẑ. It
is straightforward to calculate the required rotation angle

t4 = cos−1 n̂2 · ẑ
n̂2 · ẑ + 1

= 2π

3
. (14)

Due to this similarity transformation U4(φ) = SU3(φ)S−1,
the matrix representation of U4(φ) in the d = 1 sector in the
( ( )b)1 basis with b = {0,1} is a z-axis rotation

Ud=1
4,b (φ) = e−iφ/2eiφẑ·σ/2 =

(
1

e−iφ

)
. (15)

The full matrix representation of U4(φ) in all sectors is shown
in Fig. 8. Since in the one-dimensional sectors with bd = 10
and 12 the similarity transformation U4(φ) = SU3(φ)S−1 has
no effect on U3(φ), the corresponding elements are 1 and e−iφ ,
respectively (see Fig. 7).

Let us summarize what we have achieved at this point and
what still needs to be done to construct an entangling two-
qubit gate. The operation U4(φ) multiplies the only ab = 10
state ( ( )b=0)d=1 by 1 while multiplying two of the three
ab = 11 states ( ( )1)d=1, 2 by the phase factor e−iφ . If this
operation also multiplied ( ( )1)d=0 by the same phase factor,
the action of U4(φ) would be to apply a CPhase gate (up to
the single-qubit rotation needed to eliminate the a = 0 phase
discussed above) on the two encoded qubits in Fig. 2(a) in
which the state ab = 11 acquires a phase factor e−iφ while the
states ab = 00,01,10 are multiplied by 1. However, this is not
the case because U4(φ) multiplies ( ( )1)d=0 by 1. This is
consistent with the result of the theorem proved in Appendix B
which shows that any sequence of exchange pulses acting
on only four spins cannot result in a leakage-free entangling
two-qubit gate. To achieve such a gate, we need to consider
pulse sequences which act on one more spin.

VI. FIVE SPINS

We now turn to the final stage of our CPhase gate construc-
tion which involves five spins. These spins are highlighted in
Fig. 2(b) (labeled “Sec. VI”) in the (( )a(( )b )e)f basis
with a and b determining the state of the two encoded qubits
shown in Fig. 2(a).

The full Hilbert space of five spin- 1
2 particles is ten-

dimensional and breaks into a five-dimensional sector (total
spin 1

2 ), a four-dimensional sector (total spin 3
2 ), and a

one-dimensional sector (total spin 5
2 ). With reference to Fig. 2,

note that because the total spin of all six spin- 1
2 particles

encoding two logical qubits can only be either g = 0 or 1, the
one-dimensional f = 5

2 sector is not relevant for our two-qubit
gate construction.

We use the two operations U3 and U4 shown in Fig. 9
to construct the CPhase gate, where U3 now acts on the
bottom three spins and U4 on the top four spins. In addition to
conserving a, for the reasons given in Sec. V, these operations
also conserve b. For the case b = 0 the top four spins are always
in the state ( ( )0)1 and the bottom three spins are always in
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FIG. 9. (Color online) Two operations U3(t) and U4(t) acting on the Hilbert space of five spins. Both operations are diagonal in a and b

and act trivially on states with a = 0 and b = 0. We are thus able to replace the pairs of spins inside the ovals with total spin a and b by
effective spin-1 particles. The matrix representations of U3(t) and U4(t) are then given in the ef = { 1

2
1
2 , 3

2
1
2 | 1

2
3
2 , 3

2
3
2 } basis. In either sector, with

f = 1
2 or 3

2 , the operations perform rotations in a pseudospin space with ↑f = ( ( )1/2)f and ↓f = ( ( )3/2)f . The rotation axes in the
f = 1

2 sector are ẑ [for U3(t)] and n̂2 [for U4(t)], as shown. In the f = 3
2 sector, U3(t) rotates about ẑ and U4(t) is proportional to the identity.

the state (( )0 )1/2. From Fig. 8 we then see that U4 acts as
the identity and, from the discussion in Sec. V, U3 acts as the
identity times a phase factor (which depends on whether we
use the short or long sequence) on all states with b = 0 in the
full Hilbert space of the two encoded qubits. As for the a = 0
phase factor discussed in Sec. V, if we keep track of this b = 0
phase factor we are free to focus entirely on the case b = 1.
The b = 0 phase factor can then be set to 1 by a single-qubit
rotation acting on the qubit on the right in Fig. 2(a). The only
nontrivial case is thus ab = 11. To construct a CPhase gate,
we need to multiply this state with a phase factor of e−iφ .

We exploit the fact that ab = 11 is the only nontrivial case
by working in the reduced Hilbert space of five spin- 1

2 particles
in which the two spins labeled a and the two spins labeled b

are both replaced by effective spin-1 particles

(( )a=1(( )b=1 )e)f → ( ( )e)f , (16)

as also shown in Fig. 9. The effective Hilbert space is
then that of one spin- 1

2 and two spin-1 particles and has
two two-dimensional sectors for f = 1

2 and 3
2 (again, as

shown above, we need not consider the f = 5
2 sector). In

both sectors, we define a pseudospin ↑f = ( ( )e=1/2)f and
↓f = ( ( )e=3/2)f .

The matrix representations of U3 and U4 in the ( ( )e)f
basis are shown in Fig. 9. Referring to Fig. 5 for the case a = 1,
we see that in this basis U3 performs a pseudospin rotation
about the z axis in both the f = 1

2 and 3
2 sectors. The action

of U4 is most easily seen in the (( )d )f basis where, from
Fig. 8 for the case b = 1, we know the matrix representation
in the f = 1

2 sector and the df = {0 1
2 ,1 1

2 } basis is

U
f =1/2
4,d (t) =

(
1

e−it

)
= e−it/2e−it ẑ·σ/2; (17)

and in the f = 3
2 sector and the df = {1 3

2 ,2 3
2 } basis is

U
f =3/2
4,d (t) =

(
e−it

e−it

)
= e−it1. (18)

To determine the action of U4 on the f = 1
2 sector in the

( ( )e)f basis, we once again perform a basis change

( ( )e)1/2 =
∑

d

F3,ed (( )d )1/2, (19)

where F3,ed = 〈(( )d )1/2|( ( )e)1/2〉. The corresponding
2 × 2 matrix is the same as F2 (a fact which can be understood
using the symmetries of the Wigner 6j symbol, see, e.g.,
Ref. [33]), and generates a basis change from the d = {0,1}
basis to the e = { 1

2 , 3
2 } basis,

F3 =
(−1/

√
3

√
2/3√

2/3 1/
√

3

)
= f̂2 · σ . (20)

It follows that

U
f =1/2
4,e (t) = F3U

f =1/2
4,d (t)F3 = e−it/2eit n̂2·σ/2, (21)

where n̂2 is the same rotation axis found in Sec. V. Since in
the f = 3

2 sector U4 is proportional to the identity, it will be
left unchanged by the basis change to the ( ( )e)3/2 basis

U
f =3/2
4,e (t) = U

f =3/2
4,d (t) = e−it1. (22)

At this point, we are ready to complete our two-qubit gate
construction. To do this, we need to produce a sequence of
operations acting on five out of the six spins forming the
two encoded qubits in states a and b [see Fig. 2(a)] which
applies a phase factor of e−iφ to the state with ab = 11. To
see what is required, note that the two-qubit state |1L〉|1L〉 can
be expressed as (( )1/2( )1/2)g where g equals 0 or 1. It is
straightforward to expand these states as follows:

(( ) 1
2
( ) 1

2
)0 = ( ( ( ) 1

2
)f = 1

2
)0, (23)

(( ) 1
2
( ) 1

2
)1 = −1

3
( ( ( ) 1

2
)f = 1

2
)1

+2
√

2

3
( ( ( ) 1

2
)f = 3

2
)1, (24)

where in (24) we have used the recoupling coefficients F4, 1
2 f =

〈( ( )f )1|(( )1/2 )1〉 where F4, 1
2

1
2

= − 1
3 , F4, 1

2
3
2

= 2
√

2/3.
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FIG. 10. (Color online) (a) Sequence of operations U3 and U4 acting on five spins resulting in the operation U5(φ). The sequence is
constructed so that the matrix representation of U5(φ) is diagonal in the ( ( )e)f basis, shown for ef = { 1

2
1
2 , 3

2
1
2 | 1

2
3
2 , 3

2
3
2 }. The two-step

similarity transformation which carries out this diagonalization is illustrated by the two intersecting cones, where t5 = cos−1( 1
4 ) and s5 =

2π − t5. (b) CPhase gate consisting of U5(φ) acting on five spins of two encoded qubits together with two exchange pulses of times ta and tb
that carry out two single-qubit rotations which depend on the particular choice of short or long U3 sequences.

Here, the rightmost in the definition of F4 represents the
rightmost qubit in the state ( )1/2 in (24). To apply a phase
factor of e−iφ to both states on the left-hand sides of (23)
and (24), it is clearly necessary to apply this same phase factor
to the five-spin states ( ( )1/2)1/2 and ( ( )1/2)3/2. We
therefore need to find a sequence of operations that produces
an operation diagonal in the ( ( )e)f basis.

The simplest such diagonal operation is produced by a
single action of the operation U3. However, U3 is a single
qubit operation which, as can be seen from Fig. 9, only
applies a trivial phase factor of 1 to the states ( ( )1/2)f =1/2

and ( ( )1/2)f =3/2. It is then natural to again try to apply
the three-operation construction U4(t)U3(t̄)U4(t) of Sec. IV.
However, as in Sec. V, this construction is incapable of
producing the required operation. Direct calculation shows
that it is impossible to produce an operation for which
the same nontrivial phase factor is applied to the states
( ( )1/2)f with f = 1

2 and 3
2 . Performing four operations,

i.e., a sequence of the form U3U4U3U4, is equivalent to
U4U3U4 because the final U3 operation is a single-qubit
rotation. We must therefore consider a sequence of at least
five operations, and the explicit construction presented in the
following shows that five is indeed enough.

The sequence shown in Fig. 10(a) is designed to
multiply the two states ( ( )1/2)f =1/2, 3/2 by the same
phase factor of e−iφ . The sequence has the form U5(φ) =
U4(s5)U3(t5)U4(φ)U3(s5)U4(t5) where s5 = 2π − t5 so that
U4(s5) = U4(t5)−1 and U3(s5) = U3(t5)−1 in the ab = 11
Hilbert space. Similar to U4 in Sec. V, in this space the U5

construction has the structure of a similarity transformation
U5(φ) = SU4(φ)S−1 with S = U4(s5)U3(t5). In both the f =
1
2 and 3

2 sectors, this similarity transformation can be visualized
as a series of pseudospin rotations.

Again referring to Fig. 9 for the case of f = 3
2 , U4(φ) is

equal to the identity times e−iφ . This immediately implies that
in this sector the similarity transformation has no effect. Thus,
in the f = 3

2 sector, U5(φ) equals U4(φ) and, in particular,
multiplies the state ( ( )1/2)3/2 by e−iφ .

To understand the action of U5(φ) on the f = 1
2 sector, note

that in this sector U4(φ) is a pseudospin rotation about the axis
n̂2. In order for U5(φ) to multiply the state ( ( )1/2)1/2 by

e−iφ , the similarity transformation carried out by S in this
sector must be chosen so that it rotates n̂2, the rotation axis
of U4(φ), to −ẑ. As shown in Fig. 10, S consists of a rotation
about the z axis through the angle t5 (green cone) followed
by a rotation about the n2 axis through the angle s5 = 2π − t5
(yellow cone). It is straightforward to show that if we choose

t5 = cos−1 n̂2 · ẑ
n̂2 · ẑ − 1

= cos−1 1

4
, (25)

then, under these rotations, n̂2 is first rotated to the intersection
of the green and yellow cones, and then rotated to −ẑ.

The outcome of this transformation in the f = 1
2 sector of

U5(φ) in the ( ( )e)1/2 basis with e = { 1
2 , 3

2 } is

U
f =1/2
5,e (φ) = e−iφ/2eiφ(−ẑ)·σ/2 =

(
e−iφ

1

)
. (26)

Thus, the state with (( )a=1(( )b=1 )1/2)1/2 is multiplied by
a phase factor of e−iφ . As shown above, in the f = 3

2 sector
U5(φ) is proportional to the identity and multiplies the state
(( )a=1(( )b=1 )1/2)3/2 by the same phase factor of e−iφ .
So, the action of U5(φ) is to multiply all states with g = 0 and
1 on the right-hand sides of (23) and (24) by e−iφ .

The resulting operation is thus locally equivalent to a
CPhase gate. To complete the gate construction, we need only
determine the single-qubit rotations needed to set the a = 0
phase factor, discussed in Sec. V, and the b = 0 phase factor,
discussed above, to 1. The value of these phase factors depends
on whether we use short sequences or long sequences for the
U3 operations throughout the construction. Whatever the value
of these phase factors, they can be set to 1 by performing
single-qubit rotations corresponding to the two pulses shown
in Fig. 10(b).

Before proceeding, we point out that any sequence of
exchange pulses that acts on only five spins (which we take to
be the five rightmost in Fig. 2 with total spin f ) and that carries
out a leakage-free two-qubit gate in the total spin g = 1 sector,
must carry out the same gate in the total spin g = 0 sector. This
is because (i) any such sequence conserves f ; and (ii) for both
g = 0 and 1 the two-qubit basis states with ab = 00,01,10,

and 11 all have nonzero projection onto the f = 1
2 sector.
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[For g = 0, f is fixed to be 1
2 . For g = 1, when a = 0, f

is also fixed to be 1
2 , and, when a = 1, the expansion (24),

together with a similar expansion for the case b = 0 with
the same recoupling coefficients, implies nonzero projection
onto the f = 1

2 sector.] Any operation produced by a pulse
sequence which acts on the five rightmost spins will then have
identical matrix representations in two two-qubit subspaces
with the same ab basis choice: one in the g = 0 sector, which
lives entirely in the f = 1

2 sector, and another in the g = 1
sector, after projection onto the f = 1

2 sector. Therefore, if
this sequence produces a leakage-free two-qubit gate in the
g = 1 sector, it will produce the same leakage-free two-qubit
gate in the g = 0 sector. This observation is consistent with
the fact that the Fong-Wandzura sequence [26] and related
sequences in Ref. [27], as well as our sequences, act on only
five spins, while the sequence of Ref. [15] acts on six.

VII. FULL PULSE SEQUENCES

Figure 11 shows two explicit pulse sequences for CPhase
gates obtained by unpacking the U4 and U3 operations in
Fig. 10 and replacing them with sequences of exchange pulses.
To do this unpacking, each U3 operation, including those
within each U4 operation, is replaced by three-pulse sequences
found by solving (7) and (8) (see Sec. IV). To determine the
pulse times for the entire sequence, it is necessary to solve these
equations for U3(x) when x = t4,t5,s4,s5 (see Secs. V and VI),

as well as x = φ where φ is the phase which characterizes the
CPhase gate. The two sequences shown in Fig. 11 correspond
to different choices for the two possible three-pulse sequences
that can be used to carry out each U3 operation, the short
sequence and the long sequence.

In Fig. 11(a), U3(t4) and U3(t5) are taken to be short
sequences, while U3(s4) and U3(s5) are taken to be long
sequences. For this choice U3(s4) = U3(t4)−1 and U3(s5) =
U3(t5)−1 in the full Hilbert space, not just in the ab = 11
subspace. As a consequence, from the palindromic form of
the full sequence, it is apparent that the a = 0 phase factors
contributed by those U3 operations which act on the two spins
in the state a cancel, save that due to the single U3(φ) in the
center of the sequence for U4(φ), which is itself at the center
of the sequence for U5(φ). This phase factor is eliminated by
the single-qubit rotation carried out by the single red pulse at
the end of the sequence. The b = 0 phase factors contributed
by U3(s5) and U3(t5) in Fig. 10(a) cancel completely and there
is no need for a single-qubit rotation on the qubit in the state
b. All of the pulse times are fixed except for the four pulses
shown in red: three in the center, with times labeled t , t̄ , and t ,
which carry out U3(φ), and the one at the end of the sequence
mentioned above of time t̄ which removes the a = 0 phase
factor. The pulse times, including those for the φ-dependent red
pulses when φ = π , are given explicitly in the figure caption.

In Fig. 11(b), we continue to take each U3(t4) and U3(t5) to
be short sequences, but now also take each U3(s4) and U3(s5)
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FIG. 11. (Color online) Two full pulse sequences of 39 pulses plus single-qubit rotations for the CPhase gate construction shown in
Fig. 10(b): (a) a 40-pulse sequence (with one single-qubit rotation); and (b) a 41-pulse sequence (with two single-qubit rotations) of slightly
shorter total duration obtained by swapping pulse labels s1 ↔ s̄1 and s2 ↔ s̄2. Red pulses depend on the phase φ which determines the CPhase
gate, and black pulses are independent of φ. Ignoring single-qubit rotations, the pulse times which do not depend on φ are t4 = 2π/3, s4 = 4π/3,
as well as t1 = 1.340 04 and t2 = 0.864 63 [obtained by solving for the short sequences for U3(t4) and U3(t5 = cos−1( 1

4 )), respectively, see
Sec. IV], together with those obtained from the relations tan(ti/2) tan(t̄i/2) = −2 and t̄i + s̄i = ti + si = 2π for i = 1,2. The times t and t̄

depend on φ and are found by solving for the short or long sequence for U3(φ). In (a), a single pulse of duration t̄ brings the final gate to CPhase
form, whereas in (b), two pulses acting on both qubits are required, with pulse durations ta = 4.114 99 + t̄ (mod 2π ) and tb = 2.730 45. For
φ = π , the CPhase gate carried out by these pulse sequences is locally equivalent to CNOT and, if we choose the short sequence for the central
U3(φ = π ), we find t = 1.910 63 and t̄ = 4.372 55.
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to be short sequences. The resulting full sequence then has
slightly shorter total duration than that shown in Fig. 11(a)
provided all pulses are performed in parallel when possible.
Switching to only short sequences amounts to swapping the
pulses of length si with those of length s̄i for i = 1 and 2 in
Fig. 11(a). The price of this rearrangement is that we lose the
phase factor cancellations which occurred in the first sequence.
Because of this, two single-qubit rotations corresponding to the
two pulses at the end of the sequence, rather than just one, are
needed to eliminate the a = 0 and b = 0 phase factors. One
pulse acts on the two spins in the state a for time ta which
depends on φ through t̄ , and the second pulse acts on the
two spins in the state b for time tb which is independent of
φ. Both ta (as a function of t̄) and tb are given in the figure
caption.

Our 39-pulse sequence is significantly longer than both the
19-pulse DiVincenzo et al. [15] sequence (which only carries
out a gate locally equivalent to CNOT in the total spin g = 1
sector) and the 18-pulse Fong and Wandzura [26] sequence
(which, like our sequence, carries out a gate locally equivalent
to CNOT in both the total g = 0 and 1 sectors) as well as the
related 16- and 14-pulse sequences for geometries other than
linear arrays [27]. Nevertheless, we believe our two-qubit gate
construction is of interest because it introduces new methods
for finding pulse sequences acting on large Hilbert spaces by
effectively reducing the size of this Hilbert space at each stage
of the construction.

VIII. CONCLUSIONS

We have presented an analytic construction of pulse
sequences for exchange-only quantum computation which
carry out entangling, leakage-free two-qubit gates on qubits
encoded using three spin- 1

2 particles. The resulting pulse
sequences, while far from the most efficient, have the unique
property that they can be understood in simple geometric terms
despite the enormous size of the space of unitary operators
acting on the full Hilbert space of the six spin- 1

2 particles
needed to encode two qubits. The essential idea behind our
construction is that this Hilbert space can be built up, spin
by spin, in such a way that at each level, from two spins,
to three, then four, and finally five spins, we are able to
reduce the relevant effective Hilbert spaces to either trivial
one-dimensional sectors or two-dimensional sectors which can
be visualized in the language of spin- 1

2 pseudospins.
Because each level of our construction can be understood

in terms of effective spin- 1
2 pseudospins, we are able to work

out the required pulse sequences analytically, without having
to resort to numerical minimization of a cost function (as in
Ref. [15]), the use of genetic algorithms (as in Ref. [26]),
or any other numerical method. In addition, because our
construction is analytic it allows us to envision alternate
pulse sequences for carrying out two-qubit gates, some of
which are discussed in Appendix A. We believe this general
approach of iteratively constructing pulse sequences acting on
large Hilbert spaces by effectively reducing the size of the
Hilbert space at each level of iteration may have wider appli-
cability for constructing useful pulse sequences for quantum
computation.
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APPENDIX A: ALTERNATE U4 CONSTRUCTION

In Sec. V, we introduced the operation U4, which was
then used as a building block of U5 in our full CPhase gate
construction. As shown in Fig. 7, the operation U4 was, itself,
constructed out of a sequence of three U3 operations and two
U2 operations.

As emphasized in Sec. V, an important feature of U4 is
that it is diagonal in the (( )a=1( )b)d → ( ( )b)d basis
(as in the main text, is an effective spin-1 particle which
here corresponds to the two spin- 1

2 particles with total spin
a = 1 shown in Fig. 7). It is natural to ask if we can use the
three-pulse sequence of Sec. IV to construct an alternate U4

operation which is also diagonal in this basis, but which only
requires two U3 operations and a single exchange pulse U2.
The answer is yes, but, as shown below, the resulting operation
cannot be directly used in our CPhase gate construction.

Figure 12 shows this alternate U4 construction. We denote
the resulting operation Ũ4. As in Sec. V, the only two-
dimensional sector in the ( ( )b)d basis is that with d = 1
and we again define a pseudospin with ↑ = ( ( )0)1 and ↓ =
( ( )1)1. As shown in Fig. 7, the operations U3 and U2 are
then pseudospin rotations about the n̂2 and ẑ axes, respectively.

The specific three-operation sequence U3(t)U2(t̄)U3(t) used
to construct Ũ4 is found using the same geometric construction
used for U3 in Sec. IV. The only difference is that the two
rotation axes make a different angle than in the U3 construction.
This alters the right-hand side of (7) with 1/n̂1 · ẑ = −2
replaced by 1/n̂2 · ẑ = −3, as shown in Fig. 12. Nevertheless,
provided this modified form of (7) is satisfied, the resulting
operation will still be a z-axis pseudospin rotation, and hence
diagonal in the ( ( )b)d basis.

Direct calculation gives the full matrix representation for
Ũ4 shown in Fig. 12. For our construction, the crucial phase
difference is that between the bd = 01 and the bd = 11
diagonal matrix elements (see below), which we denote θ , and
which is related to t and t̄ through the relation θ = t − t̄ + π ,
also given in the figure caption.

To see why the phase difference θ is important,
consider the construction of U5 in Sec. VI. The se-
quence of operations used in this construction is U5(φ) =
U4(s5)U3(t5)U4(φ)U3(s5)U4(t5). In this sequence, the two
outermost U4 operations [U4(t5) and U4(s5)] perform rotations
about the axis n̂2 through the angles t5 = cos−1 1/4 and
s5 = 2π − t5, respectively, on the pseudospin space with
↑f = ( ( )1/2)f and ↓f = ( ( )3/2)f for f = 1

2 (referring
to Fig. 9). As shown in Sec. VI, the pseudospin rotation
angle produced by U4 in the f = 1

2 sector is equal to the
phase difference between the bd = 10 and 11 diagonal matrix
elements which, in Fig. 8, is denoted φ. This phase can be
set to any desired value since it is determined by the phase
φ which appears in the central U3(φ) operation. As noted in
Sec. VI, in the f = 3

2 pseudospin space the central U4(φ)
operation is proportional to the identity and so is unchanged
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FIG. 12. (Color online) Sequence of two U3(t) operations and one exchange pulse U2(t̄), which produces the four-spin operation Ũ4(θ ).
The sequence is based on the same geometric principle as that for U3 (see Sec. V and Fig. 5). The matrix representation of Ũ4(θ ) is diagonal
in the ( ( )b)d basis, shown for bd = {10|01,11|12}, and induces a phase difference θ between the states with bd = 10 and 11. To use Ũ4 in
the construction of U5 (see Sec. VI), it would be necessary to choose t and t̄ so that θ = t5 = cos−1 1/4 and s5 = 2π − t5. However, the graph
of θ vs t shows that this cannot be achieved with a single Ũ4 operation.

by the similarity transformation construction which produces
U5(φ).

Unfortunately, we cannot directly replace each of the two
outer U4 operations in the U5 construction with Ũ4 operations.
To do so, it would be necessary to choose t and t̄ so that
θ = t5 (and θ = s5 = 2π − t5); however, as shown in Fig. 12,
in contrast to φ for U4, the range of achievable θ values does
not include t5 (or s5). Note that we do not consider replacing
the central U4 with Ũ4 because, in our construction, it is crucial
that this operation be proportional to the identity in the f = 3

2
sector, and this is not the case for Ũ4.

However, we can replace each outer U4 operation with
products of two Ũ4 operations. This is because, as can be
seen in Fig. 12, the continuum of achievable θ values includes
t5/2 (and s5/2). Thus, there is a continuum of products of
the form Ũ4(θ2)Ũ4(θ1) where θ1 + θ2 = t5 (and θ1 + θ2 = s5)
which will perform the required pseudospin rotations in the
f = 1

2 sector for our U5 construction. Since each Ũ4 operation
is realized through a sequence of the form U3U2U3, the product
of two Ũ4 operations will always have the form U3U2U3U2U3,
where the two central U3 operations are combined into a
single U3. These Ũ4(θ2)Ũ4(θ1) product operations thus contain
precisely the same number of pulses as the U4 operations
constructed in Sec. V and can be used to construct a continuum
of full 39-pulse sequences (plus two pulses for single-qubit
rotation) which carry out CPhase gates.

APPENDIX B: FOUR SPINS ARE NOT ENOUGH

Here, we show that any sequence of exchange pulses which
carries out a leakage-free, entangling two-qubit gate on two
three-spin qubits, independent of whether the total spin of all
six particles is 0 or 1, must act on at least five spins [34].

To do this, it is convenient to consider logical qubits
encoded using four spins rather than just three. This four-spin
encoding is shown in Fig. 13(a) (the noncomputational states
are those for which the total spin of the four spin- 1

2 particles is
1 or 2). Figure 13(b) shows two adjacent four-spin qubits, and
illustrates the fact that if we remove the two outermost spins
the remaining three spins in each logical qubit have total spin
1
2 and are therefore precisely the three-spin qubits used in our
main construction. Thus, any pulse sequence which performs a
two-qubit gate on two three-spin qubits regardless of whether
their total spin is 0 or 1 must carry out the same two-qubit gate

on two four-spin qubits when acting on the six central spins in
Fig. 13(b).

It follows that the Fong-Wandzura sequence, as well as our
sequences, can be used to carry out two-qubit gates on pairs
of four-spin qubits. We note that a 34-pulse sequence which
produces a two-qubit gate locally equivalent to CNOT for
two four-spin qubits was also found numerically in Ref. [35]
using methods similar to those used in Ref. [15]. However,
this sequence acts on all eight spins used to encode the two
qubits and thus cannot be used to carry out two-qubit gates for
three-spin qubits.

Now consider an operation produced by exchange pulses
which only act on the four central spins, i.e., those circled
by the dashed line labeled by the total enclosed spin d, in
Fig. 13(c). We denote the resulting unitary operation U (4). If
we assume that U (4) carries out a leakage-free two-qubit gate,
then it is clear that U (4) must be diagonal in the (( )a( )b)d
basis. If this were not the case, then either a, b, or both would
change after carrying out U (4). As a result, one or both of the
four-spin qubits would undergo a transition to a state in which
the two pairs of spins within the qubit have different total spin
values. Since any such four-spin state cannot have total spin
0, this transition would lead to leakage out of the encoded
four-spin qubit space shown in Fig. 13(a).

Since U (4) is diagonal in the (( )a( )b)d basis, it must
give each encoded two-qubit state in the ab basis a phase

b 0

0L0 0 0 0L1 1 1(a)

(b)

a 0a b 0b
d

(c)

1/2a1/2 0

FIG. 13. (Color online) (a) Qubit encoding using four spin- 1
2

particles. (b) Two four-spin qubits in states a and b, expressed in a
basis which shows that if the outer two spins are ignored the remaining
spins form two three-spin qubits as in Fig. 2(a). (c) The same four-spin
qubits with a dashed oval enclosing the four central spins labeled by
total spin d . In the text, we show that no sequence of exchange pulses
acting only on these four central spins can result in an entangling
two-qubit gate.
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factor eiφab . For the two-qubit states with ab = 00,01, and
10, the value of the total spin d is fixed to be 0, 1, and 1,
respectively, and so the corresponding phase factors are single
elements in the matrix representation of U (4). However, for
the case ab = 11 the value of d can be either 0, 1, or 2.
Moreover, states with all three d values have nonzero overlap
with two four-spin qubits in the ab = 11 state. To see this,
first express this state ((( )a=1( )a=1)0(( )b=1( )b=1)0)0

as (( )0( )0)0 (where, as in the main text, is an effective
spin-1 particle). This state can then be expanded in basis states
with well-defined d quantum numbers as follows:

(( )0( )0)0 = ( ( ( )0)1)0

= 1

3
( (( )d=0 )1)0 − 1√

3
( (( )d=1 )1)0

+
√

5

3
( (( )d=2 )1)0, (B1)

where we have used the recoupling coefficients F5,0d =
〈(( )d )1|( ( )0)1〉 where F5,00 = 1

3 , F5,01 = −1/
√

3,

and F5,02 = √
5/3. Since these coefficients are nonzero for

all possible values of d, the phase factor eiφ11 produced by
U (4) for the state ab = 11 must be the same for d = 0, 1,
and 2.

The above discussion shows that in the (( )a( )b)d
basis with abd = {000,110|011,101,111|112}, the matrix
representation of U (4) must have the form

U (4) =

⎛
⎜⎜⎜⎜⎜⎝

eiφ00

eiφ11

eiφ01

eiφ10

eiφ11

eiφ11

⎞
⎟⎟⎟⎟⎟⎠ . (B2)

It is straightforward to show that the two-qubit gate produced
by U (4) is locally equivalent to a controlled rotation through the
angle φ = φ00 − φ01 − φ10 + φ11. The requirement that U (4)

produce an entangling two-qubit gate is then

φ00 − φ01 − φ10 + φ11 �= 0 (mod 2π ). (B3)

We denote the determinant of U (4) in a subsector of total
spin d as det U (4)|d . Equations (B2) and (B3) then imply the
following condition on U (4):

det U (4)|d=0 det U (4)|d=2

det U (4)|d=1
�= 1. (B4)

If U (4) is the result of a series of N exchange pulses, it has the
form

U (4) = UN (tN ) · · · U2(t2)U1(t1). (B5)

Here, Un(tn) = exp(−iHntn) is the time evolution operator of
the nth pulse, where Hn = Si(n) · Sj (n) + 3

4 is the Hamiltonian
of the Heisenberg exchange interaction between spins i and j

with the constant added for convenience.
Since the determinant of a product of operators is equal

to the product of the determinants of those operators, the
requirement that the condition (B4) hold for the sequence (B5)
implies that

det Un|d=0 det Un|d=2

det Un|d=1
�= 1 (B6)

for at least one of the Un operations. Given that det Un =
det e−itnHn = e−itnTr Hn , this condition can be translated into a
condition on the trace of the Hamiltonian of a single pulse. If
we denote the trace of Hn within a sector of total spin d as
Tr Hn|d , then (B6) implies that at least one Hamiltonian Hn

pulsed in (B5) must satisfy the condition

Tr Hn|d=0 − Tr Hn|d=1 + Tr Hn|d=2 �= 0. (B7)

However, for Hn = Si(n) · Sj (n) + 3
4 where spins i(n) and j (n)

label two of the four central spins in Fig. 13(c), one finds that
Tr Hn|d=0 = 1, Tr Hn|d=1 = 2, and Tr H |d=2 = 1. Thus, we
see that

Tr Hn|d=0 − Tr Hn|d=1 + Tr Hn|d=2 = 1 − 2 + 1 = 0. (B8)

It immediately follows that any pulse sequence consisting
of exchange pulses between two of the four central spins in
Fig. 13(c) cannot produce an operation of the form (B2) and
thus cannot produce a leakage-free, entangling two-qubit gate.

Lastly, we point out that if the trace condition (B8) holds for
two operators H1 and H2, it trivially also holds for their sum
H1 + H2. It immediately follows that our result that acting
on only four spins is not sufficient to carry out an entangling
two-qubit gate holds not just when the exchange interaction is
pulsed in series, but also when it is pulsed in parallel (e.g., when
operations of the form e−it(S1·S2+S2·S3) are included). This also
follows from the fact that such parallel operations can always
be approximated, to any required accuracy, by sequences of
operations carried out in series, as shown in Ref. [14].
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