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Spin correlations and topological entanglement entropy in a non-Abelian spin-one spin liquid
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We analyze the properties of a non-Abelian spin-one chiral spin liquid state proposed by Greiter and Thomale
[Phys. Rev. Lett. 102, 207203 (2009)] using Monte Carlo. In this state the bosonic v = 1 Moore-Read Pfaffian
wave function is used to describe a gas of bosonic spin flips on a square lattice with one flux quantum per plaquette.
For toroidal geometries there is a three-dimensional space of these states corresponding to the topological
degeneracy of the bosonic Moore-Read state on the torus. We show that spin correlations for different states in
this space become indistinguishable for large system size. We also calculate the Renyi entanglement entropy
for different system partitions to extract the topological entanglement entropy and provide evidence that the
topological order of the lattice spin-liquid state is the same as that of the continuum Moore-Read state from

which it is constructed.
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Introduction. Fractional quantum Hall states are prototyp-
ical examples of topologically ordered states of matter [1]—
states which are not characterized by local order parameters,
but rather by ground state degeneracies on topologically
nontrivial surfaces and fractionalized excitations. These ex-
citations are predicted to be anyons, in most case obeying
(fractional) Abelian statistics, as in the original Laughlin state,
but also, possibly, non-Abelian statistics, as in the Moore-Read
Pfaffian state [2]. Recent work on the non-Abelian case has
been driven not only by its intrinsic interest but also by the
possibility that the resulting non-Abelian anyons could be used
for topological quantum computation [3,4]. This has motivated
the search for possible realizations of states with non-Abelian
topological order beyond fractional quantum Hall states, with
one promising class of such states being the quantum spin
liquids.

The notion of quantum spin liquids, possible ground states
of frustrated quantum antiferromagnets with no conventional
long-range magnetic order, can be traced back to the original
triangular lattice RVB state proposed by Anderson [5]. Ex-
amples of theoretically established Abelian spin liquids which
are total spin singlets and have been shown to be ground states
of explicit local Hamiltonians include an SU (2)-invariant Z,
quantum spin liquid on the kagome lattice [6—10] and the
Abelian chiral spin liquid (CSL) introduced by Kalmeyer
and Laughlin [11,12] for which Hamiltonians have been
constructed in Refs. [13-15].

The Abelian CSL state is a spin-1/2 spin liquid that can
be constructed using a continuum Laughlin wave function for
bosons to describe the amplitudes for spin flips on a lattice. In
this paper we investigate properties of a possible spin-one CSL
state proposed by Greiter and Thomale [16] that is similarly
based on the continuum Moore-Read wave function [2] known
to have non-Abelian topological order with Ising anyon
excitations. Model Hamiltonians for which this state becomes a
ground state in the thermodynamic limit have been constructed
[15,17]. However, to firmly establish that the state itself is,
indeed, a spin liquid with non-Abelian topological order it is
necessary to show that (i) it has exponentially decaying spin
correlations, (ii) it has the expected topological degeneracy,
and (iii) the restriction of bosons to the lattice does not destroy
the non-Abelian topological order of the continuum state.
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Entanglement properties on the cylinder studied in Ref. [17]
have suggested that both the Abelian and non-Abelian CSL
states harbor the same topological order as their continuum
parents. Here, we study the non-Abelian CSL for both planar
and toroidal geometries (the latter being necessary to study
topological degeneracy and related modular properties) and
provide compelling evidence that it is indeed a quantum spin
liquid with exponentially decaying spin correlations and the
same modular S matrix (and hence the same non-Abelian
topological order) as the continuum Moore-Read state.

Non-Abelian CSL state on planar geometry/torus. We begin
by reviewing the spin-one non-Abelian CSL state for planar
geometry proposed by Greiter and Thomale [16]. This state
is constructed using the bosonic Moore-Read state [2] with
filling fraction v = 1 for which the droplet wave function in
the symmetric gauge is
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We work in units with magnetic length equal to 1 for which
the square lattice formed by points with complex coordinates
7= Ny = 2 (n + im) where n and m are integers has one
flux quantum per plaquette. If the bosons are restricted to this
lattice, given the analytic structure of (1) each site can only
have boson occupancies 0, 1, and 2, and, because the filling
factor is v = 1, there will be an average of one boson per
site.
The spin-one CSL state constructed using (1) is [16]

N
W)= > Wizl[[G@)SE.. 8-y, @

where the z;’s are summed over all lattice points 7,,,. Here
G(pm) = (=)D s 3 gauge phase, and the operators
S are renormalized spin-flip operators,

Se = 3(S;+1)8;. 3)

acting on the state | — 1)y = ®5=1|1, — 1), in which a spin-
one in the S, = —1 state (i.e., 0 boson occupancy) sits on each
site. Both the gauge phase and spin-flip operators are chosen so
that | W) becomes a singlet in the thermodynamic limit [16,18].
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A similar state was studied in Ref. [17] that, in the large system
limit, becomes identical to that proposed in Ref. [16] for the
planar geometry.

When this construction is generalized to the torus the CSL
states are again of the form (2), but there is now a three-
dimensional space of states corresponding to the threefold
topologically degeneracy of the bosonic Moore-Read states
on the torus. For a rectangular L, x L, system in the Landau
gauge this space is spanned by the states [19,20]
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o0
ﬁS(Z"C) — (_1)5 Z e[inr(n+a)2+27ri(n+u)(z+b)] (5)

n=—00

are the four Jacobi theta functions where the parameters
(a,b) take the values (1/2,1/2),(1/2,0),(0,0),(0,1/2), for
6 = 1,2,3,4, respectively, and §=1 only for § = 1, otherwise
§ = 0. The parameter 7 is determined by the ratio of the
system lengths © =iL,/L.. As above, the lattice of points
Z = Num = /270 (n + im) has one flux quantum per plaquette,
and, again, when bosons are confined to this lattice the allowed
occupancies are 0, 1, and 2. Finally, for even by even lattices
the center-of-mass term F©)(Z), where Z = Y1, z;, is taken
to be

F(Z) = 9441(Z/L| 1), ©)

to ensure the wave function is periodic for each boson on the
lattice with period L, (Ly) in the x (y) direction.

The torus CSL states are again constructed using (2) but
with W replaced by one of the three W, states defined above
and with a new gauge factor G(z;) with G(1,,.,) = (— 1)@
which takes into account the change from symmetric to
Landau gauge. On the torus, the resulting CSL states |\¥,)
are exact singlets, even for finite systems [18]. This procedure
generalizes the Abelian CSL construction on the torus due
to Laughlin [21]. These torus Abelian states were studied
by Monte Carlo similar to that used here in Ref. [22]. A
general prescription for constructing torus CSL states based on
conformal field theory, which includes the non-Abelian case
relevant here, was given in Ref. [23].

We have carried out Monte Carlo calculations for both the
droplet and torus CSL states. In all cases the Pfaffian becomes
singular when two bosons occupy the same site. However,
the wave function remains finite, because the corresponding
Jastrow factor “cancels” the divergence of the Pfaffian. In
our simulations we treat this singular case by replacing the
relevant Jastrow factor and Pfaffian element with 1 for any
doubly occupied site, thus correctly reproducing the limiting
value of their product.

Correlations. Figure 1 shows spin correlation functions
(So - S,,) and (S3S;; ) for the droplet CSL where O is the droplet

center and n, = x/+/2m is the number of lattice spacings along
the x direction. Results are shown for N = 100 and 180 bosons
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FIG. 1. Spin correlation functions (So - So4s,) and (S5S5,, )
versus n, (lattice spacings in x direction) for droplet CSL states
with N = 100 and 180 bosons (0 is the droplet center). The left inset
shows a logarithmic plot of [(So - So4,, )| With linear fit yielding a
correlation length of £ = 1.35 & 0.14. The right inset shows the spin
correlation functions (S; - S;y,,) and (S;S;,, ) for the three states
|W,) on a toroidal lattice of size 16 x 16. The spin correlations in
these states are indistinguishable within errors.

and it is evident that the correlations for the different system
sizes agree. Note that (SSS,%) ~ %(So -S,,,) consistent with
the approximate singlet nature of the droplet CSL. We find the
absolute value of the spin correlation functions follow a simple
exponential law, |(So - S,,,)| o< e/, even at short distance,
consistent with the expectation that the spin-one CSL can be
viewed as a gapped spin liquid. From our numerics we obtain
a spin correlation length of £ = 1.35 4= 0.14 lattice spacings
(see Fig. 1 left inset).

Figure 1 also shows spin correlation functions for all three
CSL states |W,) on the torus for a 16 x 16 lattice. Our
results confirm that for a large enough system these correlation
functions coincide for all three states within errors (see Fig. 1
right inset), and also agree with the droplet correlations. We
note that this is not the case for small system sizes. For
example, for the simple case of a 2 x 2 torus all correlation
functions can be obtained analytically for all three states
with clearly distinguishable results [see Supplemental Material
(SM) [24]].

One difference between the droplet and torus CSL states,
noted above, is that the droplet only becomes an exact singlet
in the thermodynamic limit. We can see this explicitly by
noting that for a singlet state the onsite correlations must satisfy
(SPS7) = 3(S7S7) = (87 S7) = 1(S?) = 2. For the case of
a CSL droplet with four bosons we find that, at the droplet cen-
ter, (S555) ~ 0.72and 1 (577, ™) ~ 0.86(0.42). However,
for droplets of 20 bosons or more, all three correlations have
nearly converged to the singlet value of % In contrast, for the
torus our numerics confirm that, even for small system sizes,
the expectation values (S7S;) and %(Si+ (_)Si_(H) are precisely
% on all sites. The fact that the value of these onsite correlation
functions provide a nontrivial test of the singlet nature of the
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FIG. 2. Normalized overlaps |(W@)|Wa3)| and [(W;|W3)| for
square-shaped systems versus number of lattice sites N =
4,16,36,64,100,144. The inset shows logarithmic plots of
(W12 W23)| and [(W,|W3)| versus N with linear fits showing
[(W12)|Wa3)) | becomes exponentially smaller with a decay factor of
¢ =0.05 £ 0.01, while | (¥ |W¥3)| decreases with ¢ = 0.095 = 0.001.

spin-one CSL can be contrasted with the spin-1/2 case for
which (S7S7) is always equal to }1.

Orthogonality. To establish that the three torus CSL
states |W,) (henceforth assumed normalized) span a three-
dimensional space we have calculated their overlap matrix for
several square-shaped lattices of sizes 2 x 2,...,12 x 12. In
all cases we find the overlap matrix has full rank. Moreover,
the off-diagonal matrix elements go to zero exponentially as
e ¢N where N is the number of lattice sites, with £ = 0.05 &
0.01(0.095 £ 0.001) for [(¥;|W3)| (|(¥;|¥2)] and [(V2|W3)]),
as shown in Fig. 2. Thus, the three states become orthogonal
in the thermodynamic limit. More details are given in the SM
[24].

The transformation properties of theta functions under
modular transformations imply that, for square-shaped sys-
tems, Ry2|W13) = |W31) and Ry p|Wr) = |W2), where Ry »
generates a /2 rotation in the plane. We therefore expect
(W |W,)| = [(W,|W3)| for any square-shaped system as the
numerical results in Fig. 2 confirm. These symmetry properties
are also apparent in the 2 x 2 spin correlation functions given
in Table I in the SM [24].

Entanglement entropy. The three states |¥,) become or-
thogonal and possess indistinguishable spin correlations in the
thermodynamic limit. This threefold topological degeneracy
is consistent with the natural hypothesis that the spin-one
CSL state, like the bosonic Moore-Read state on which it is
based, is described by SU(2), Chern-Simons theory [25,26].
To provide further evidence that this is the case we turn to the
entanglement entropy.

The Renyi entropy of order n associated with a partitioning
of the system into aregion A and its compliment B is defined as
Sy = —ﬁln Tr(p)}), where py = Trg|W) (V] is the reduced
density matrix of region A. Ground states of gapped local
Hamiltonians exhibit a boundary law scaling which can
generically be written in two dimensions for simply-connected
regions A as S,(pa) = a,Ls —y + - --. The leading term is
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FIG. 3. (a) Example regions A, B, C, and D, used in the Levin-
Wen construction to isolate the TEE. (b) 12 x 6 torus with dashed
lines indicating an example region for which the Renyi entropy S is
calculated when partitioning the toroidal system into two cylinders.

proportional to L4, the boundary length of region A, while
the second term, —y, is the topological entanglement entropy
(TEE), characteristic of topological phases [27,28].

In a topologically ordered state the TEE is determined by
the total quantum dimension D, y = InD, where D is defined
through the quantum dimension d; of the quasiparticles of

>, d?. For the
spin-one CSL, based on the continuum bosonic Moore-Read
state, we expect the SU(2), quantum dimensions of 1, 1,2
for which D =2 and y = 1In2.

We proceed by calculating the n = 2 Renyi entropy using
the replica method [29]. Details are given in the SM [24].
One way to isolate the TEE is to employ the Levin-Wen
[27] construction [see Fig. 3(a)], where the area-dependent
part cancels from a superposition of four entropies: —2y =
(Sapcp — Sapc) — (Sapc — Sac). Tocombat large error bars,
we employed the reweighting scheme of Ref. [30] (see SM
[24]). We first choose a relatively small system of size 6 x 6
and Levin-Wen regions A, B,C and D as shown in Fig. 3(a),
resultinginy = 1.16 + 0.08(1.14 £ 0.08,1.04 £ 0.07) for the
states | Wy 3)). The value is above the theoretically expected
In2 & 0.69, but upon increasing the system size to 8 x 8§,
with regions A(C) of size 1 x 6 and B(D) of size 3 x 2, we
find y = 0.91 & 0.32 for |¥;), consistent with y approaching
In2 in the thermodynamic limit. This is also consistent with
the result for y obtained numerically in Ref. [17] using a
bicylindrical cut of a CSL state on the cylinder with open
boundary conditions.

To identify the modular S matrix associated with the
topological field theory describing the CSL state we follow
Ref. [31] and let |E;) denote the y direction Wilson loop
eigenstates associated with quasiparticle of quantum dimen-
sion d; fori = 1,2,3. The overlap matrix V;; = (&;|Rz2|&;)
between the (normalized) bases {|E;)} and {R;2|E;)} (the £
direction Wilson loop states) is then related to the modular S
matrix by V = D'SD, where D is a diagonal matrix of phases
Dj; = €'® corresponding to the phase freedom of choosing
| ;). It follows that the eigenvalues Ry, are the same as those
of the modular S matrix.

As noted above, for square-shaped systems, R; |V 3) =
[W3.1) and Ry/2|W2) = |Wy). This, together with the fact that
the |\W,,) states become orthogonal for large systems, implies
the eigenvalues of Ry, are {1,1, —1}. The S matrix for
SU(2), Chern-Simons theory has the same set of eigenvalues

the underlying topological field theory: D =
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FIG. 4. S, versus the length of the cylindrical region A for square-
shaped systems for the three CSL states |W, ). On a 6 x 6 lattice, two
wave functions, |W; ), have identical S, within error bars. For an
8 x 8 lattice, S, is the same for all three ground states within error
bars.

and is the only such rank 3 S matrix [32]. Thus, if the
spin-one CSL is described by a topological field theory it
must have quasiparticles with quantum dimensions d;, = 1
and d3 = V2.

To connect this observation to our numerics, we note that
for such a topologically ordered state the TEE becomes state
dependent when S, is calculated on the torus over a (non-
simply-connected) cylindrical region of length n, such as that
shown in Fig. 4(b) [26,31], with S, = —y’ + L 4, where

y =2y + 1n(Zp§/d}> : )
J

Here, p; = |cj|2 where |W,) = Zj cj|&;). We have nu-
merically calculated S, for all three torus CSL states on
square-shaped lattices up to size 8 x 8. The results are shown
in Fig. 4. We observe first that S, saturates as n, increases [for
n, < %L,C / (\/E )], consistent with these states being possible
ground states of a gapped Hamiltonian. Further we find that
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for large enough systems S, is the same for all three states
|W,), and thus y’ is as well.

The observation that y’ is state independent for the |, )
states, together with the requirement that the eigenvectors
with eigenvalue —1 of the known S matrix for SU(2),
[26,32,33] (for the the phase choice ®; =0 for j = 1,2,3),
(181) = 1E2))/2 — |E3)/v/2, and of Rep, (1¥1) — [¥3))/V/2,
must be the same (up to a phase), constrains us to make the
identification,

L
V2

where (|W,),|Wp)) = (|W1),1¥3)) or (|W3),[W)). For both
choices it is readily seen that if quasiparticles with d; , = 1
are associated with |E;,) and the non-Abelian excitation
with d; = /2 is associated with |E3), (7) does indeed yield
y’ = In2 for all three states |¥, ). Our numerical observation
that ' is the same for the states |W,) is thus consistent with
these states being identified as a basis for the three-dimensional
topological Hilbert space of an SU(2), Chern-Simons theory
on the torus.

Conclusion. In this paper, we investigated several properties
of a spin-one CSL on the square lattice. Spin correlations were
found to decay exponentially, and, for the torus, become indis-
tinguishable for the states |\W,,) for large systems. We further
found these states become orthogonal in the thermodynamic
limit.

A Levin-Wen construction was used to determine the
TEE of the CSL with results consistent with —In2 in the
thermodynamic limit. In addition, based purely on symmetry,
we argued that the modular S matrix of the CSL (if it exists)
must be the same as that for the bosonic Moore-Read state.
These observations, together with the observation that for large
enough systems the cylindrical entropies for the states |\, ) are
all the same, are consistent with the spin-one CSL exhibiting
the non-Abelian topological order of SU(2), Chern-Simons
theory.
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