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Pairing and pair breaking by gauge fluctuations in bilayer composite fermion metals
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We study interlayer pairing of composite fermions in the total ν = 1/2 + 1/2 quantum Hall bilayer as a
possible framework for understanding the experimentally observed transition from a compressible state at large
layer spacing to a bilayer quantum Hall state at small layer spacing in this system. We consider a model in which
the effective interlayer composite fermion pairing interaction mediated by the Chern-Simons gauge fields in the
two layers is singular with both attractive (out-of-phase) and repulsive (in-phase) components diverging at low
frequency. If only the more singular attractive interaction is included the pairing gap obtained by solving the gap
equation is proportional to the inverse of the layer spacing squared. In the so-called local approximation, we find
that when the less singular repulsive interactions are also included the pairing gap still falls off as inverse layer
spacing squared, consistent with recent analyses, but is strongly suppressed to a degree that may account for the
fact that this predicted inverse square dependence is not observed experimentally. The analytically obtained local
approximation solutions are then used as a starting point to numerically iterate the full gap equation to assess the
validity of the approximation in this limit.

DOI: 10.1103/PhysRevB.109.085134

I. INTRODUCTION

The total ν = 1 quantum Hall bilayer consists of two par-
allel two-dimensional electron gases separated by a distance
d and placed in a perpendicular magnetic field B such that
the total electron density of the two layers is that of a single
filled Landau level. For the symmetrically doped case, each
layer has Landau level filling fraction ν = 1/2, and, if in-
terlayer electron tunneling can be ignored, the only coupling
between layers is through the interlayer Coulomb repulsion.
The strength of this interlayer repulsion, relative to the in-
tralayer Coulomb repulsion, is set by the dimensionless ratio
d/l0, where l0 = [h̄c/(eB)]1/2 is the magnetic length.

In the limit of small d/l0 this system forms an incompress-
ible bilayer quantum Hall state in which electrons develop
spontaneous interlayer phase coherence [1]. This state can
be viewed as an exciton condensate formed by electron-hole
pairs in the two layers [2,3]. In the absence of interlayer
tunneling, the transition to this state is predicted to occur
at finite temperature via a Kosterlitz-Thouless transition. In
the opposite limit of large d/l0, the two layers decouple and
the system is presumably well described in terms of two sepa-
rate ν = 1/2 composite fermion metals. In these compressible
states, composite fermions, electrons attached to two fictitious
(Chern-Simons) flux quanta [4–7], move in zero effective
magnetic field and are predicted to experience a fluctuating
effective gauge field. While there has been some speculation
that the correct low-energy description of the resulting com-
pressible state is in terms of Dirac particles [8], we take the
view here that even if this is the case, the effective Halperin,
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Lee, Read description is still essentially correct, provided it is
applied appropriately.

It has been argued recently that the appearance of the
electron-hole exciton condensate in this system may be equiv-
alent to the formation of an interlayer p-wave composite
fermion superconductor [9], a type of interlayer pairing of
composite fermions first studied in Ref. [10]. This view-
point has gained experimental support in the recent work of
Ref. [11] in which quantum Hall states in graphene double
layers separated by atomically thin insulators were studied.
In this work, through measurement of the Coulomb drag re-
sponses (both longitudinal and transverse drag resistivities)
and counterflow responses of the graphene layers at total fill-
ing fraction ν = 1 as a function of temperature, a temperature
vs. d/l0 phase diagram was determined. This phase diagram
showed that in the limit of small d/l0, there is indeed a finite
temperature phase transition into a quantum Hall state, and for
temperatures above this transition there is a wide temperature
range in which interlayer pairs have formed (as evidenced by
the counterflow response), but the system does not have true
long-range order and hence does not show the quantum Hall
effect (as observed in the drag response). This behavior is
characteristic of a crossover from a regime in which tightly
bound pairs form above the Bose-Einstein condensation tem-
perature for these pairs, to a regime, with increasing d/l0 in
which the pairs appear to form at temperatures just above the
critical temperature, as expected for more conventional weak
coupling BCS pairing, and so is at least consistent with the
notion of interlayer pairing.

A full random-phase approximation (RPA) calculation
of the effective interlayer pairing interaction for composite
fermions in this system [12] shows that within this approxima-
tion the leading pairing instability is in the p-wave channel,
and so may correspond to the experimentally observed
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quantum Hall state as suggested in Ref. [9]. More recently this
result has also been obtained using a modified RPA, which ac-
counts for the renormalization of the composite fermion mass
required by the lowest Landau level projection [13]. This latter
work also provides evidence that this composite fermion pair-
ing approach is equivalent to a third viewpoint (in addition to
the exciton condensate view) in which particle-hole symmetry
of the half-filled Landau level is exploited and the bilayer
system is viewed in terms of pairing of composite electrons
in one layer with composite holes in the second layer [11,14].
All this, along with mounting numerical evidence [15–17] that
suggests these approaches are all equivalent and that interlayer
pairing of composite fermions of the type originally studied
in Ref. [10] may indeed be an appropriate framework for
studying the transition from bilayer composite fermion metal
to bilayer quantum Hall state, motivates the present work.

In this paper, we analyze the effect of both pairing and pair-
breaking gauge fluctuations on bilayer pairing as a function
of layer spacing. We focus on the balanced case and take the
point of view that the system can be described for large layer
spacing as two composite fermion metals whose low-energy
physics is described by the Halperin-Lee-Read theory, with
appropriately renormalized effective mass. We keep only the
most singular interactions in the interlayer Cooper channel,
which have the same form in all angular momentum channels,
and treat the less singular terms, which presumably determine
the pairing symmetry of the gap, phenomenologically. Here
we are not focused on determining the pairing channel with
the leading instability, something which is addressed by more
detailed RPA calculations [12–14], but rather on the question
of how strong the pairing is, to what extent gauge fluctuation
pairing might play a role in it, and how it depends on layer
spacing when both pairing and pair-breaking contributions are
taken into account. The primary tool we use for our analysis
is the so-called local approximation applied to the frequency-
dependent T = 0 gap equation. Within this approximation, we
derive analytic results for the combined effect of pairing and
pair breaking in this system.

The paper is organized as follows. In Sec. II we review
the Halperin, Lee, Read description of the ν = 1/2 + 1/2
bilayer and present our model frequency-dependent inter-
action. Section III then presents a simple example of the
local approximation applied to the T = 0 gap equation due
to both the singular pairing and pair-breaking gauge fluc-
tuations. In Sec. IV we focus on the large layer spacing
limit, obtaining analytic expressions for the T = 0 gap, as
well as the significance of pair-breaking effects. We find
that the latter are characterized by a single pair breaking
parameter and are actually quite large for the parameters
relevant to the bilayer system. Section V then describes our
results for what happens as the short-range, nonsingular in-
teraction strength is varied, and the crossover from the weak
gauge pairing we associate with the large layer spacing limit,
to the strong BCS pairing due to short-range attraction in
some angular momentum channel. In Secs. IV and V we
also compare the results of the local approximation to exact
solutions of the gap equation obtained numerically, verify-
ing the essential validity of the approximation. Finally, in
Sec. VI we review the results of the paper and present our
conclusions.

II. PAIRING AND PAIR-BREAKING
GAUGE FLUCTUATIONS

In what follows we assume that the Halperin, Lee, Read
description of the ν = 1/2 single-layer state adequately cap-
tures the essential low-energy physics of the system. In this
approach, the system is described with a Euclidean-time ac-
tion for the ν = 1/2 + 1/2 bilayer, which, at temperature T ,
has the form S = ∫ β

0 dτ
∫

d2rL(r, τ ) where β = (kBT )−1 and
the Lagrangian density is L = L0 + Lint + LCS with

L0 =
∑

α=↑,↓
ψα

(
∂τ − iaα

0 − 1

2m∗ (∇ − iaα )2

)
ψα, (1)

Lint = 1

2

∑
α,α′=↑,↓

∫
d2r′δρα (r, τ )Vαα′ (r − r′)δρα′ (r′, τ ),

(2)

where ↑,↓ are pseudospin labels for the layers,

V↑↑(r) = V↓↓(r) = e2

εr
, (3)

V↑↓(r) = V↓↑(r) = e2

ε
√

r2 + d2
, (4)

are the interlayer and intralayer Coulomb repulsion, respec-
tively, and

LCS = − i

2πφ̃

∑
α=↑,↓

aα
0 ẑ · (∇ × (aα + eAext )), (5)

is the Chern-Simons action in the Coulomb gauge. Here
ψα is the composite fermion field in layer α =↑,↓, Aext is
the vector potential for the external applied magnetic field
B = ∇ × Aext = ẑ2πφ̃n/e where n is the electron density
in each layer, φ̃ is the number of flux quanta attached to
each composite fermion (φ̃ = 2 for the case total ν = 1 =
1/2 + 1/2 considered here), δρα = ψαψα − n is the number
density fluctuation in layer α, m∗ is the effective mass of the
composite fermions, and (aα

0 , aα ) is the Chern-Simons gauge
field seen by composite fermions in layer α. In the Coulomb
gauge ∇ · aα = 0. The gauge field degrees of freedom in each
layer then consist entirely of the time component, aα

0 , and
transverse component, aα

1 (q, τ ) = ẑ · [q̂ × aα (q, τ )], of the
Chern-Simons gauge fields.

The partition function for this system is then Z =∫ ∏
α=↑,↓ DψαDψαDaα

0 Daα
1 e−S . Integrating out aα

0 enforces
the constraint

δρα = 1

2πφ̃
ẑ · ∇ × aα, (6)

which describes attaching φ̃ quanta of Chern-Simons flux to
the composite fermions. Using (6) the density fluctuations
in (2) can be replaced with transverse gauge fields and the
resulting action is purely quadratic in the fermions. The RPA
is then carried out by integrating out these fermions and ex-
panding the resulting effective action to second order in the
gauge fields. The result of this procedure is an effective action
SRPA = S+

RPA + S−
RPA, where

S±
RPA = 1

2

∑
ωn ,q

μ,ν=0,1

a±
μ

∗(q, iωn)D±−1
μν (q, iωn)a±

ν (q, iωn). (7)
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Here

a+
μ = (a↑

μ + a↓
μ)/

√
2, (8)

a−
μ = (a↑

μ − a↓
μ)/

√
2, (9)

ωn are bosonic Matsubara frequencies, a±
0 (q, iωn) and

a±
1 (q, iωn) = ẑ · [q̂ × a±(q, iωn)] are, respectively, the time

and transverse components of the gauge fields, and D±−1
μν is

the inverse of the gauge propagator matrix.
The result for the gauge field propagators D±

μν (q, ω) can
be computed analytically for all q and ω = iωn within the
RPA [12,18]. Here, as in Refs. [10,19], we focus on the
low-energy long-wavelength fluctuations. In this limit, the
dominant interactions are mediated by the in-phase and out-
of-phase transverse gauge fluctuations [19]. For φ̃ = 2 and in
the large layer spacing limit the result is

D−
11(q, ω) � 1

e2

4πε
dq2 + 1

4π l0
|ω|
q

, (10)

D+
11(q, ω) � 1

e2

4πε
q + 1

4π l0
|ω|
q

. (11)

The out-of-phase gauge fluctuations are seen to be more
singular than the in-phase gauge fluctuations at long wave-
lengths and low frequencies. This is a consequence of the fact
that the transverse gauge field fluctuations are directly tied
to density fluctuations, and out-of-phase density fluctuations
are stronger and hence more singular than in-phase density
fluctuations due to the interlayer Coulomb repulsion.

In addition to being more singular, the out-of-phase fluctu-
ations mediate a strong attractive interaction in the interlayer
Cooper channel for composite fermions. This is because the
out-of-phase gauge fields couple to composite fermions in the
two layers as if they had opposite charge [19]. The in-phase
fluctuations, on the other hand, while less singular, are repul-
sive in the Cooper channel and so suppress pairing.

More concretely, the in-phase and out-of-phase transverse
gauge fields mediate a current-current interaction between
composite fermions in the interlayer Cooper channel of the
form [19]

V ±
eff (k, k′, ω) = ± |k × k′|2

m∗2|k − k′|2 D±
11(|k − k′|, ω). (12)

We are concerned here mainly with the strength of the net
interlayer pairing mediated by these gauge fluctuations, and
in particular the interplay between the singular pairing due
to out-of-phase fluctuations and less singular pair breaking
due to in-phase fluctuations. This problem can be viewed
as a generalization of the classic problem of determining
the superconducting transition temperature and energy gap
for a BCS superconductor taking into account the interplay
between the slow phonon mediated pairing, and the fast pair
breaking due to Coulomb repulsion [20].

The physics of such interplay between attractive and repul-
sive interactions with differing dynamics is naturally studied
using the frequency-dependent gap equation [21,22]. The
starting point for this approach is the one-loop self-consistent
equation for the anomalous self-energy of Gor’kov [23]. Upon
integrating on momentum and making the so-called Fermi
surface approximation, the pairing interactions mediated by
the in-phase and out-of-phase transverse gauge fluctuations
in the interlayer angular momentum l Cooper channel are

characterized by frequency-dependent coupling constants of
the form [10], (see also Ref. [24] for a systematic derivation),

λ±(ω) = ± m∗

2π
〈V ±

eff (k, k′, ω)eilθk,k′ 〉k,k′∈FS, (13)

where the angle brackets indicate a Fermi surface average over
k and k′ and the factor of m∗/(2π ) is the density of states at
the Fermi level. The ±1 factor here is chosen so that positive
λ+ corresponds to a repulsive interaction, and positive λ−
corresponds to an attractive interaction. Note that here, and
in all that follows, we work at T = 0 and have analytically
continued to imaginary frequency.

In the low-energy limit, and in the limit of large layer
spacing, one finds,

λ−(ω) = 8

3
√

3

1

β2/3

(
l0
d

)2/3∣∣∣ω0

ω

∣∣∣1/3
+ l.s.t., (14)

λ+(ω) = 2

π

1

β
ln

∣∣∣ω0

ω

∣∣∣ + l.s.t., (15)

where ω0 = e2/(εl0) sets the typical Coulomb energy scale
of the problem within the lowest Landau level, β = e2l0m∗/ε
is a dimensionless parameter, which we take to be of order 1
to account for the required renormalization of the composite
fermion mass to a scale set by the Coulomb repulsion, with
m∗ ∼ ε/(e2l0), and l.s.t. = less singular terms.

Here the integer l appearing in the eilθk,k′ factor in (13),
where θk,k′ is the angle between the vectors k and k′, is
the angular momentum pairing channel. The leading singular
contributions to λ+ and λ− are independent of l due to the fact
that the gauge field mediated interactions are singular at small
q. All the l dependence in the couplings appears in the less
singular terms.

III. GAP EQUATION AND LOCAL APPROXIMATION

The simplest approach to analyzing the essential physics of
this bilayer pairing is to solve the T = 0 frequency-dependent
gap equation for this problem (again, here ω and � are imag-
inary frequencies),

�(ω) = 1

2

∫
d�λ(ω − �)

�(�)√
�2 + |�(�)|2

. (16)

Here �(ω) is the frequency dependent part of the gap
function, where �(k, ω) = eilθk,x̂�(ω) is the full k and (imag-
inary) ω dependent gap function on the Fermi surface for
l-wave pairing, and λ(ω) is the frequency-dependent effective
interaction, including contributions described in Sec. II. Pre-
cisely this problem was studied numerically in Ref. [24]. Here
we focus on understanding the nature of the pairing and the
interplay between the pairing and pair-breaking gauge fluctu-
ations. To this end, it is useful to have approximate analytic so-
lutions, which can provide some physical insight into the be-
havior of the system, in addition to exact numerical solutions.

Specifically, we are interested in solving (16) for the case

λ(ω) = (λ−(ω) − λ+(ω) − V0)�(|ω| − �), (17)

where

λ−(ω) = α−
∣∣∣ω0

ω

∣∣∣γ , (18)

λ+(ω) = α+ log
∣∣∣ω0

ω

∣∣∣. (19)
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From this point on, λ−(ω) and λ+(ω) will correspond to the
expressions given in (18) and (19).

We view the parameters α−, α+ and V0 as effective param-
eters. To be concrete, and for simplicity, we take the cutoff �

to be ω0. For the out-of-phase pairing fluctuations the cutoff
can be taken to infinity because the power-law falloff λ−(ω)
with increasing frequency leads to a convergent integral in the
gap equation [10]. While physically we expect the attractive
interaction mediated by the out-of-phase gauge fluctuations to
be cut off at an energy scale set by the interlayer Coulomb en-
ergy scale e2/(εd ), we note that as long as the pairing energy
gap is smaller than this cutoff, which is certainly the case for
large layer spacing, the actual choice of cutoff does not matter.
For the in-phase pair-breaking fluctuations we do expect the
natural cutoff to be set by the effective Fermi energy of the
composite fermions and the choice made here is appropriate.

From the RPA result described in Sec. II we see that for the
bilayer we have γ = 1/3, and in the large layer spacing limit
α− � (l0/d )2/3, α+ � 1, and ω0 � e2/(εl0) [19]. Here V0 is
a nonsingular term that represents the short-range interaction
and which will depend on the angular momentum channel.
We make no attempt to calculate V0, which depends on details
beyond the most singular terms in λ±, from first principles but
rather we treat it as a semiphenomenological parameter. The
rest of the calculations described in this paper focus on finding
approximate and exact solutions of (16) for the interaction
(17) and determining how these solutions depend on α−, α+,

and V0.
We now apply the local approximation introduced in

Ref. [25] to the gap equation (16). The term local approxi-
mation refers to the fact that this approximation makes the
gap equation, in some sense, local in energy/frequency space
and thus similar to the manifestly local renormalization group
(RG) approach to Cooper pairing of, e.g., Refs. [9,26], in
which infinitesimal shells of momentum modes around the
Fermi surface are systematically integrated out. In Ref. [25],
the local approximation was used to forge a link between
such RG approaches and the more conventional Eliashberg
approach of solving the frequency-dependent gap equation.
Here we take the point of view that the local approximation
can also simply be viewed as a useful mathematical tool
that allows us to obtain approximate analytic solutions of the
gap equation. The added benefit that the resulting differential
equations are analogous to the RG flow equations of Refs. [26]
and [9] is then useful to develop intuition about the space
of solutions that solving the problem exactly through direct
numerical simulation does not provide.

The first step in the local approximation is to linearize the
gap equation,

�(ω) = 1

2

∫
|�|>|�(0)|

d�λ(ω − �)
�(�)

|�| . (20)

Taylor expanding λ(� − ω) inside the integral in the follow-
ing way,

λ(� − ω) =
{

λ(ω) − �λ′(ω) + · · · , |�| < |ω|
λ(�) − ωλ′(�) + · · · , |�| > |ω| (21)

and keeping just the first term, we obtain a linear integral
equation, which upon successive derivatives with respect to ω

can be shown to be mathematically equivalent to the following
second-order linear differential equation,

d

dω

(
�′(ω)

λ′(ω)

)
− �(ω)

ω
= 0, (22)

with boundary conditions

�′(ω)|ω=�0 = 0, (23)

and

d

dω

(
�(ω)

λ′(ω)

)∣∣∣∣
ω=�

= 0. (24)

This second-order linear differential equation can be con-
verted into a nonlinear first-order differential equation by
introducing the V function,

V (ω) = −λ′(ω)
�(ω)

�′(ω)
. (25)

If we further introduce a flow parameter,

l = ln
�

ω
, (26)

the differential equation can be converted to the following,

dV

dl
= −dλ

dl
− V 2. (27)

The UV boundary condition becomes,

V (�) = −λ(�), (28)

and the IR boundary condition becomes,

lim
ω→�(0)

V (ω) = −∞, (29)

where �(0) is the zero frequency gap.
The frequency-dependent gap function �(ω) is then sim-

ply given by the following,

ln � = −
∫

λ′

V
dω, (30)

where we keep the right-hand side as an indefinite integral be-
cause the integration constant is just a multiplicative constant
in �.

In Ref. [25] the V function was explicitly constructed to
be analogous to the BCS coupling, which flows within the
RG approach to −∞ at the energy scale corresponding to
the energy gap. As noted above, here we use the properties
of the V function and the local approximation primarily as
a mathematical tool to analyze the solution space of the gap
equation (16) for our model λ(ω).

For the case λ(ω) = λ−(ω) − α+ log | ω
ω0

| − V0 the flow
equation can be written

dV

dl
= −γ λ− + α+ − V 2. (31)

Given that the local approximation was constructed in
Ref. [25] to provide a link between the RG and gap equa-
tion approaches, it is not surprising that this equation is
mathematically analogous to the RG equation obtained in
Ref. [9] by applying the non-Fermi liquid pairing RG of
Ref. [26] to the bilayer system. It immediately follows that
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FIG. 1. V, λ− flow diagrams for the case α+ = 0.2 and α+ = 0.4.
In each diagram the top red trajectory corresponds to the large layer
spacing limit solution, the lower red trajectory corresponds to the
crossover from gauge pairing to BCS pairing, as defined in the text,
and the solid black curves connect V = +√

α+ with V = −√
α+ at

λ− = 0, following the curve V 2 = α+ − γ λ−, along which dV
dl = 0.

the general conclusions regarding interlayer pairing that these
equations implied in Ref. [9] also hold for the present analysis.

To further this connection, we supplement (31) with the
equation,

dλ−
dl

= γ λ−, (32)

which follows directly from the definition of λ− given in
(18). Equations (31) and (32) then form a system of coupled
first-order differential equations for which the solutions can
be visualized by flow diagrams in the V, λ− plane. These
diagrams, two of which are shown in Fig. 1, allow us to
analyze the solutions of this equation in ways that are not
immediately apparent starting with the gap equation (16). For
that reason, in what follows we will focus first on the local
approximation. Later we will compare the exact numerical
result with the local approximation results in order to verify
that, while there are some quantitative differences, the local
approximation appears to capture the qualitative behavior of
this problem well.

Before proceeding we note some features of this flow di-
agram, which will play important roles in what follows. The

UV boundary condition

V (ω0) = −α− + V0; λ−(ω0) = α−, (33)

gives us a starting point in the flow diagram corresponding to
the point where the flow parameter is l = ln ω0

ω
= 0. We see

that in the limit of large layer spacing, for which α− � 1, pro-
vided V0 > −√

α+, the solution always flows to the trajectory,
which starts at the point (V, λ−) = (+√

α+, 0). This gives a
universal form for V (ω) in this limit, the details of which are
discussed in Sec. IV.

We see that if α− is kept small, but V0 is varied in such
a way that it becomes more and more negative, eventually,
once V0 < −√

α+, there will be an abrupt crossover to a
pairing phase with a much bigger energy gap. We view this
crossover as being between a gauge-pairing phase, in which
the pairing interaction is dominated by long-wavelength low-
frequency gauge fluctuations, to a paired state that is much
closer to a conventional BCS superconductor with the pairing
due primarily to a short-range nonsingular attractive V0. It is
natural to take the flow trajectory, which starts at (V, λ−) =
(−√

α+, 0) as the crossover point, for which V (ω) flows ini-
tially to 0, just touching this value, before flowing to −∞
indicating the formation of a paired state. This crossover is
further discussed in Sec. V.

Aside from providing a link to the RG approach, one ap-
pealing feature of the local approximation is that it allows us
to obtain essentially analytic results for �(ω) and its depen-
dence on α−, α+, and V0. In addition to being of value in their
own right, these approximate �(ω) solutions can be used as
starting points to iterate the exact gap equation, which we find
then rapidly converges. By performing such numerical itera-
tion we are able to compare the analytic local approximation
results with the results of actually solving the gap equation.

IV. LARGE LAYER SPACING LIMIT

In this section, we examine the limit of large layer spacing
more closely. As noted above, in this limit α− � 1, and the
flow in Fig. 1 begins asymptotically close to the λ− = 0 line.
In the limit of large layer spacing, we expect the coupling V0

to be very small in magnitude, but we see here that if V0 <

−√
α+, the flow changes drastically, reflecting the crossover

from gauge pairing to more BCS-like pairing (discussed in the
next section).

This V0 = −√
α+ unstable fixed point for α− = 0 corre-

sponds to the phase transition between the unpaired and paired
state as a function of V0 when α− = 0. In this case, we are
simply analyzing the problem of BCS pairing due to an attrac-
tive nonsingular V0 interaction, in the presence of marginally
singular pair breaking due to λ+. This singular pair breaking
leads to a qualitative change in the usual BCS pairing prob-
lem. A well-known feature of BCS pairing is that it occurs for
any attractive interaction strength. But here, because of the
singular pair breaking due to the in-phase gauge fields, there
is a critical interaction strength needed, as shown earlier in
Refs. [26,27], with the flow equations appearing here closely
related to those in Ref. [26].

As α− becomes finite, this phase transition becomes a
crossover. Again, if the layer spacing is large we expect V0

to be negligibly small, but as the layers are brought together
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FIG. 2. Log of the ratio of zero frequency gap with pair breaking
to that without pair breaking as a function of the pair-breaking
parameter

√
α+/γ 2 for different values of γ . Local approximation

results are shown for γ = 1/3 (green line) and 1/6 (blue line), as
well as the limit γ → 0 (dashed line). Exact numerical results for
γ = 1/3 are also shown.

the variation of V0 can lead to a crossover, which may cor-
respond to the experimental observation of a gap turning on
continuously as d/l0 is decreased below a critical value of
order 1. First we consider the α− � 1 limit, and assume that
V0 > −√

α+. In this case, the flow diagram makes clear that
the solution flows to the trajectory that starts at the point λ− =
0, V0 = +√

α+. We therefore continue to see scaling behavior
even with α+ present. For the universal scaling curve, one can
find V (ω) and use it to analytically obtain the zero frequency
gap �(0), as well as �(ω) using (30). The procedure for
finding V (ω) for this case is described in the Appendix.

To address the question of how effective the in-phase gauge
fluctuations are for pair breaking, we show in Fig. 2 the ratio
of the zero frequency gap with α+ present to that in the ab-
sence of pair breaking for different values of γ within the local
approximation, as well as numerical results for the γ = 1/3
case. It is apparent from this figure and is shown explicitly in
the Appendix, that in the limit of small γ , the zero frequency
gap has the form

�(0) = e
(−2.566··· )

√
α+
γ 2 �(α+=0)(0), (34)

where

�(α+=0)(0) =
(

0.6917 · · ·
γ

)1/γ

α
1/γ
− ω0 (35)

is the zero frequency gap in the absence of pair breaking.
From these expressions, we see that in the absence of pair

breaking, for which α+ = 0, for γ = 1/3 and α− ∼ (l0/d )2/3

we have �(α+=0)(0) ∼ ω0(l0/d )2, which is the well-known re-
sult that �(0) is proportional to inverse layer spacing squared
for this case [10]. When α+ is now turned on, we can iden-
tify a pair-breaking parameter

√
α+/γ 2, which serves as a

dimensionless measure of the effect of the pair breaking due
to these out-of-phase gauge fluctuations. This result makes
physical sense and reflects the fact that for smaller γ , and
hence less singular pairing fluctuations, the pair breaking is
more effective. It further shows for the physically relevant
case of α+ ∼ 1 and γ = 1/3 pair breaking is quite strong. The
observation that this pair breaking is so strong, despite the

FIG. 3. �(ω) vs. ω for α+ = 0, 0.2, 0.4. Results are shown for
the local approximation, as well as the exact solution of the gap
equation obtained by iterating the gap equation, starting with the
local approximation solution. Both the local approximation and exact
results show the sign change in �(ω) when α+ > 0, characteristic of
the combination of pairing and pair breaking with different frequency
dependencies as discussed in the text.

fact that the pair-breaking fluctuations are less singular than
the pairing fluctuations, may account for the fact that the
predicted inverse layer spacing squared dependence of the
energy gap is not seen experimentally. While, as a matter of
principle, for a perfectly clean sample at low enough tem-
perature, a paired state may always form even at large layer
spacing, in practice disorder will suppress the transition once
the layer spacing is large enough that the pairing gap becomes
comparable to the disorder width.

Figure 3 shows the frequency-dependent gap �(ω) for
various values of α+ in the small α− limit. Results are shown
both for the local approximation and the exact numerical
solution, obtained by using the local approximation as a start-
ing solution and iterating the gap equation. We note that the
difference in scales on the ω/�(0) axes of these figures (and
subsequent comparisons of local approximation and exact
results) may be partly due to the fact that the local approxima-
tion underestimates �(0). For example, for γ = 1/3, when
α+ = 0, the local approximation result given in (35) yields
�(0) � 8.935α3

−ω0, while the exact result, which can easily
be obtained numerically is �(0) � 25.44α3

−ω0. Apart from
this scale change, the results show that the effect of the
singular pair-breaking term on the frequency dependence of
the energy gap is significant. It leads to a change in sign in
�(ω) which, in the local approximation, occurs when the
V trajectory on the flow diagram passes through 0. Such a
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sign change is similar to that which occurs in other pair-
ing systems with a combination of attractive and repulsive
contributions to the effective coupling, each having different
frequency dependencies—in our case fast pair-breaking in-
phase fluctuations and slow pairing out-of-phase fluctuations.
The possible physical consequences of this sign change have
recently been discussed in Ref. [22] (see also Ref. [28]) in the
context of taking Coulomb repulsion into account in conven-
tional BCS theory [20] (in that case the Coulomb repulsion is
fast and the pairing due to phonons slow). This zero in �(ω),
corresponds to a dynamical vortex in its analytic structure on
the imaginary axis of the type discussed in Ref. [22]. As in
that case, upon analytic continuation, this implies the real and
imaginary parts of the gap must (in general separately) change
sign for some finite frequencies on the real axis. While this
vanishing of the real and imaginary parts of the gap may be
experimentally observable for electronic superconductors as
discussed in Ref. [22], it is less clear how this could be ob-
served in the present case given that the particles undergoing
pairing are composite fermions, which are highly nonlocal
objects when viewed in terms of physical electrons. Nonethe-
less, we believe the appearance of a dynamical vortex in this
pairing problem can be viewed as a singular version of that
discussed in Refs. [22,28].

V. CROSSOVER FROM GAUGE PAIRING TO BCS PAIRING

The significant effect of in-phase pair breaking discussed
above suggests the following scenario for the formation of an
observable bilayer quantum Hall state using the model inter-
action (17). The nonsingular parameter V0, which unlike α+
and α− depends on the angular momentum channel l , can be
viewed as a semiphenomenological parameter that describes
the short-range part of the interlayer interaction and can be
used to drive a crossover from the gauge pairing (V0 irrelevant)
regime to BCS (V0 driven) pairing regime. We identify the
crossover from these two different families of flow trajectories
as the trajectory that starts at the point V0 = −√

α+, λ− = 0
and just touches the V = 0 axis without crossing it (bottom
red flow in both diagrams shown in Fig. 1).

As the layers are brought together the coupling α− be-
comes larger, and we can imagine that the parameter V0

becomes negative enough, i.e., provides strong enough non-
singular pairing, to drive this crossover. We further assume
that the leading instability occurs within the appropriate
p-wave channel, as suggested by more detailed RPA cal-
culations [12,13]. It is natural to suppose that, within the
framework of the model discussed here, this is precisely what
happens when the transition from bilayer composite fermion
metal to paired state is observed in experiment.

An example of such a crossover is sketched in the
α+ = 0.5 flow diagram shown in Fig. 4, with the initial
flow conditions α− = 0.3 and V0 being tuned through the
crossover from gauge pairing to BCS pairing (green arrow).
The dependence of the corresponding energy gap �(0) on
V0 is shown in Fig. 5, both for the local approximation
and for the numerically obtained exact solutions of the gap
equation. Both solutions show a steep increase in �(0)
as the crossover occurs, though the value of V0 for the

FIG. 4. V, λ− flow diagrams for the case α+ = 0.5 and γ = 1/3.
The green arrow shows initial states for the case keeping α− = 0.3
and varying V0 so that it passes through the crossover from the
gauge-pairing regime (above the red curve), in which pairing is
dominated by long-wavelength low-energy gauge fluctuations, and
strongly suppressed by pair-breaking fluctuations, to the BCS pairing
regime (below the red curve), in which pairing is dominated by an
attractive nonsingular pairing interaction.

crossover is, of course, different for the approximate and exact
solutions.

We can take the crossover value for V0 to be that value
for which the trajectory in the flow diagram just touches
the V = 0 axis. It is for this value that the sign change
in the gap function just disappears, signaling a crossover
from strongly suppressed gauge pairing to more BCS-
like pairing, which, as V0 becomes more negative, will
lead to a substantial gap persisting all the way up to the
cutoff ω0.

Within the local approximation, this crossover value of
V0 corresponds to the trajectory, which starts at λ− = 0
and V0 = −√

α+. These solutions can be found analytically
within the local approximation (see Appendix) and then
used following (30) to find the crossover form of �(ω), and
are shown for the local approximation in Fig. 6. Note that
these gap functions no longer change sign, but simply touch
the � = 0 axis at some finite imaginary frequency. Results
are also shown in Fig. 6 for the numerically obtained exact
solution of the gap equation, where we again take our criteria
for the crossover value of V0 to be that which corresponds

FIG. 5. �(0) vs. V0 for α+ = 0.5 and α− = 0.3 for the local
approximation result obtained analytically and for the exact solution
obtained numerically. The local approximation results correspond to
the trajectory shown in green in Fig. 4.

085134-7



DENG, MENDOZA, AND BONESTEEL PHYSICAL REVIEW B 109, 085134 (2024)

FIG. 6. �(ω) vs. ω for α+ = 0.2, 0.4 at the crossover from gauge
paring to BCS pairing. Results are shown for the local approxi-
mation, as well as the exact solution of the gap equation obtained
by iterating the gap equation, starting with the local approximation
solution. All results are for α− = .1. For the local approximation
results V0 = −.252657 for α+ = .2 and V0 = −.493164 for α+ = .4.
For the exact results V0 = −.28 for α+ = .2 and V0 = −.6316 for
α+ = .4

to �(ω) just touching zero, without changing sign. For the
exact solution, it was necessary to adjust V0 and α−, since the
critical value of the transition is not determined analytically
by the local approximation. Nonetheless, we see qualitative
agreement between the crossover gap functions for both the
local approximation and the gap equation, suggesting that
the local approximation captures the essential behavior of the
solutions of (16) for the model interaction (17).

VI. CONCLUSIONS

In this paper, we have analyzed the solution to the
T = 0 gap equation for a model frequency-dependent
interaction meant to describe the total ν = 1/2 + 1/2 bi-
layer quantum Hall state starting from the limit of large
layer spacing. The effective interaction contains a singu-
lar attractive interlayer pairing interaction, a less singular
repulsive interlayer pairing interaction, and a nonsingular
coupling, which we expect to depend on details of the
system and also determine the pairing channel. Using the
local approximation we obtain essentially analytic approx-
imate solutions of the gap equation, illustrating the very
strong pair-breaking effect of the less singular in-phase
gauge fluctuations. We then argue that within this inter-
layer pairing scenario, the experimentally observed transition
from two compressible bilayers to an incompressible bi-
layer quantum Hall state may reflect a crossover from
a gauge-pairing regime to a more conventional BCS-type
pairing.
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APPENDIX: FLOW EQUATION SOLUTIONS

1. Large layer spacing limit

Equations (31) and (32) can be combined to give a single
nonlinear first-order differential equation

γ λ−
dV

dλ−
= −γ λ− + α+ − V 2. (A1)

This equation can be solved analytically with the result,

V (λ−) =
√

γ λ−

(
cJ− 2

√
α+
γ

−1

(
2
√

λ−√
γ

)
− cJ

1− 2
√

α+
γ

(
2
√

λ−√
γ

)
+ J 2

√
α+
γ

−1

(
2
√

λ−√
γ

)
− J 2

√
α+
γ

+1

(
2
√

λ−√
γ

))

2

(
cJ− 2

√
α+
γ

(
2
√

λ−√
γ

)
+ J 2

√
α+
γ

(
2
√

λ−√
γ

)) (A2)

where Jν (x) denotes the (here noninteger) order ν Bessel
function, and c is an integration constant to be fixed by
the UV boundary condition V (λ− = 0) = −α− + V0. The
value of λ− for which V then goes to −∞ then cor-
responds to a value of ω equal to the zero frequency
gap �(0).

This solution is easily found, and verified to be correct,
using Mathematica. The ability to analytically solve the non-
linear first-order differential equation (A1) can be seen by
running the derivation of this equation presented here in re-
verse, using the V function, defined as a nonlinear function of
� in (25), to map (A1) back to the linear second-order dif-
ferential equation for �(ω) given in (22). The equation (A1)
is an example of a Riccati equation for which this method
of converting a first-order nonlinear differential equation into

second-order linear differential equation via a nonlinear trans-
formation is a well-known solution technique.

It is apparent from the flow diagrams (Fig. 1) that, for the
gauge-pairing case, in the limit of large layer spacing with
α− � 1 and V0 > −√

α+, the solutions flow to the scaling
solution flowing from the point V = √

α+, λ− = 0. This solu-
tion corresponds to (A2) with c = 0,

Vlls(λ−) =
√

γ λ−

(
J 2

√
α+
γ

−1

(
2
√

λ−√
γ

)
− J 2

√
α+
γ

+1

(
2
√

λ−√
γ

))

2

(
J 2

√
α+
γ

(
2
√

λ−√
γ

)) .

(A3)
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The energy gap �(0) is then determined by finding where
V → −∞ as ω is decreased from ω0 to 0, which occurs when
the Bessel function in the denominator has its first zero, i.e.,
when,

2

√
λ−
γ

= j2√
α+/γ ,1, (A4)

where jν,n denotes the nth zero of the order ν Bessel
function Jν .

The result for �(0) can then be expressed as follows:

�(0) =
(

j0,1

j2√
α+/γ ,1

)2/γ

�(α+=0)(0), (A5)

where

�(α+=0)(0) = 1

j2/γ

0,1

(
4

γ

)1/γ

=
(

C

γ

)1/γ

α
1/γ
− ω0, (A6)

where

C = 4

j2
0,1

= 0.69166 · · · . (A7)

The multiplicative factor, which suppresses the gap compared
to its α+ = 0 value is

�(0)

�(α+=0)(0)
=

(
j0,1

j2√
α+/γ ,1

)2/γ

. (A8)

To get a simpler expression that captures the relevant behav-
ior of this function, consider the limit where γ → 0 while√

α+/γ 2 is held fixed. In this limit, we can Taylor expand the
quantity in parentheses in (A8), to find

j0,1

j2√
α+/γ , 1

= 1 − D
√

α+
γ 2

γ

2
+ · · · , (A9)

where

D = 4
d

dx
ln jx,0

∣∣∣∣
x=0

= 2.566 · · · . (A10)

We then have, (again, keeping
√

α+/γ 2 fixed),

lim
γ→0

�(0)

�(α+=0)(0)
= lim

γ→0

(
j0,1

j2√
α+/γ ,1

)2/γ

= lim
γ→0

(
1 − D

√
α+

γ 2

γ

2

)2/γ

= exp

(
− D

√
α+

γ 2

)
. (A11)

Finally, the frequency-dependent gap function �(ω) can be
obtained using (30) with the overall scale set by �(0).

2. Gauge pairing to BCS crossover

The crossover trajectory corresponds to the solution for
which V just touches the V = 0 axis, without changing
sign (and hence the energy gap does not change sign).
The value of c for this case is easily obtained by setting
V (λ− = α+/γ ) = 0, which fixes the trajectory to include
the point in the flow diagram where the dV

dl = 0 curve
(shown in black in Fig. 1) intersects the V = 0 axis. The
result is

c(α+, γ ) =
J 2

√
α+
γ

+1

(
2
√

α+
γ

)
− J 2

√
α+
γ

−1

(
2
√

α+
γ

)
J− 2

√
α+
γ

−1

(
2
√

α+
γ

)
− J

1− 2
√

α+
γ

(
2
√

α+
γ

) . (A12)

Plugging this value of c back into the expression for V gives
V (ω) for this case, which again can be used to determine the
corresponding �(ω) using (30), which just touches the ω axis,
as shown in Fig. 6.
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