PHYSICAL REVIEW B

VOLUME 47, NUMBER 17

1 MAY 1993-1

Theory of anisotropic superexchange in insulating cuprates

N. E. Bonesteel
Theoretische Physik, Eidgenossische Technische Hochschule-Honggerberg, CH-8098 Zirich, Switzerland
(Received 22 June 1992; revised manuscript received 25 February 1993)

Spin-orbit corrections to superexchange are calculated using the method of Moriya [T. Moriya,
Phys. Rev. 120, 91 (1960)] for two of the insulating parent compounds of the cuprate superconduc-
tors: (1) Laz—=Nd;CuO4 where the CuOg octahedra forming each CuO layer are tilted in staggered
fashion about an axis which depends on z and temperature and (2) YBa;CusOes+s (z < 0.4) where
the CuO layers form CuQa-Y-CuO> bilayers in which the in-plane O?~ ions are displaced uniformly
toward the Y37 layer. For (1) a simple formula is derived for the weak ferromagnetic moment in each
CuO layer as a function of the tilting axis and magnitude. For (2) it is shown that the anisotropic
corrections to superexchange are different from what has previously been assumed. For the correct
spin Hamiltonian a classical Néel state in which the Cu spins are lying in the plane is unstable in a
single CuO layer, but when a bilayer is considered there is a critical value of the interlayer exchange
coupling which stabilizes this state. For both cases (1) and (2) spin-wave spectra are calculated and

shown to compare favorably with experiment.

I. INTRODUCTION

Spin-orbit (SO) coupling causes electron spins to pre-
cess as they move through the electric field of a crys-
tal lattice. Within the tight-binding approximation this
precession appears as a small spin rotation which oc-
curs whenever an electron tunnels between two Wan-
nier orbitals. As first shown by Moriya! this rotation
can have important consequences in antiferromagnetic
(AFM) Mott insulators; when it is included in Ander-
son’s calculation? of superexchange then anisotropic cor-
rections to the otherwise isotropic effective spin Hamil-
tonian are generated. These corrections, known as
Dzyaloshinski-Moriya (DM) interactions®34, lift any
ground-state degeneracy associated with rotational in-
variance in spin space and are responsible for such effects
as weak ferromagnetism and the existence of spin-wave
anisotropy gaps.

The subject of this paper is the DM interactions which
exist in the distorted CuO layers of the insulating AFM
parent phases of the cuprate superconductors. We will
be concerned both with the microscopic origin of these
interactions and their physical consequences. Proba-
bly the best known example of the effects of DM in-
teractions in the cuprates occurs in LagCuQ4.% In this
material a structural phase transition occurs from a
high-temperature tetragonal (HTT) phase (space group
I4/mmm) to a low-temperature orthorhombic (LTO)
phase (space group Bmab). In the LTO phase the CuQOg
octahedra forming each CuO layer tilt in a staggered pat-
tern about the (110) axis and this distortion results in
DM interactions which induce a weak ferromagnetic mo-
ment in each layer.5 Another example of the effects of DM
interactions in the cuprates is the easy-plane anisotropy
which has been observed in the spin-wave spectrum of the
AFM insulating phase of YBaCu3Og4z (z S 0.4).5 In
this case the relevant structural feature is that the CuO
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layers form CuOg3-Y-CuOg bilayers in which the nega-
tively charged in-plane O?~ ions are uniformly buckled
towards the positively charged Y3+ layer.

One motivation for the present work is that in a recent
paper’ a “one-band” description of SO coupling in both
insulating and doped LazCuQy in the presence of various
tilting distortions was studied using the Hamiltonian

Hayx = —t Z {ei¢‘jaczacja + HC} + UzniTnil'
{ig) i
&

(1.1)

Here c!, creates an electron with spin o at site i,

Nio is the corresponding number operator, ¢;;rx =~
(—1)=tuid0. 10, diiry = —Pi itz where 8 is the octa-
hedral tilt angle, and in the exponent a = +1 (& =—4%
for up (down) spins. The z and y components of site ¢ are
denoted z; and y;, and X and ¥ are unit vectors. Hamil-
tonian (1.1) describes a correlated tight-binding band of
electrons which move in a background of staggered flux
where up and down spin electrons have opposite charge.
This flux is simply the Berry’s phase associated with spin
precession about the z axis in spin space. In Ref. 7 the ef-
fective Hamiltonian describing the large U/t limit of (1.1)
‘was derived and at half-filling the classical spin ground
state was found to have no weak ferromagnetic moment.
It is shown here that this result is not in conflict with the
experimental observation of such a moment in the LTO
phase of LagCuOy4. Hamiltonian (1.1} is a correct de-
scription of electrons in a tilt-distorted CuO layer when
the system is viewed in the appropriate site-dependent
coordinate system in spin space. When local rotations
are performed to transform the system back to the phys-
ical spin-space coordinate system a weak ferromagnetic
moment which agrees with experiment appears.

A similar approach to weak ferromagnetism has been
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discussed recently by Shekhtman, Entin-Wohlman, and
Aharony (SEA) (Ref. 8) who also studied the DM inter-
actions induced by tilting distortions in La;CuQOy4. SEA
were able to show that, quite generally, the DM inter-
actions present on a single Cu-O-Cu bond are isotropic
when the bond is viewed in the appropriate local coordi-
nate system in spin space. This observation led them to
the interesting conclusion that any physical anisotropy
(i-e., anisotropy which cannot be “gauged away” by local
rotations) must arise from the frustration of these bonds.
By applying this idea to the LTO phase of LasCuOy4 SEA
were able to successfully account for the observed weak
ferromagnetism in this material. In this paper we cal-
culate the DM interactions which occur in the presence
of tilting distortions in which the CuOg octahedra can
tilt about any axis, not just {110). Such general tilting
distortions may have physical relevance because they de-
scribe at least the average structure of Lag_;Nd CuOy4
when £ S 0.5.%1° The main result of our analysis is
that regardless of the octahedral tilt axis the effective
Hamiltonian describing a single layer can always be trans-
formed into (1.1), to lowest order in 8. However, the coor-
dinate system in spin space in which (1.1) holds changes
as the tilt axis changes so that the ratio of the weak fer-
romagnetic moment to the size of the tilting distortion
depends on the tilt axis in a simple way which we derive
in Sec. IV. These results provide a potential experimental
test of the “anisotropy through frustration” idea of SEA
(Ref. 8) and justifies the use of (1.1) in Ref. 7.

A second motivation for this work is the puzzling ob-
servation by Coffey, Rice, and Zhang!! that the DM in-
teractions in a single buckled CuO layer of YBa;Cu3 0.
tend to stabilize an incommensurate spiral spin configu-
ration, while neutron-scattering experiments see no sign
of such a spiral.® It is shown here that if an effective spin
Hamiltonian for a single CuO layer in YBayCu3zOgyy is
derived using the same method as for Lag_,Nd,CuOy4
then a classical Néel state with spins lying in the zy plane
is indeed unstable; complex frequencies corresponding
to exponentially growing unstable modes appear in the
classical linearized spin-wave spectrum. However, when
instead of a single CuO layer a CuO2-Y-CuOg bilayer
is considered these complex frequencies disappear for a
critical value of the interlayer coupling J§, ~ 10~3J,
well below the lower limit on Jiz set by experiment,®
and the Néel state becomes stable. This stabilization
occurs because the DM interactions in the upper and
lower planes favor spirals with opposite senses (a conse-
quence of the inversion symmetry of the YBasCu3zOgyy
unit cell) and this spiraling is frustrated by the interlayer
coupling. We also find that when Jy3 is large enough not
only does the Néel state become stable, but the spin-wave
spectrum shows an in-plane gapless mode and an out-
of-plane gapped mode in agreement with experiment.®
This result shows that the “easy-plane” anisotropy in
YBayCu3Og.,.,, in fact, arises from frustration of DM
interaéctions in accordance with the general principle of
SEA.

This paper is organized as follows. In Sec. IT the
structural and magnetic properties of Lay_,Nd,CuOy4
and YBasCuzOg4 which are relevant for this paper are
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discussed. The SO modification of superexchange due
to the structural distortions in these materials is calcu-
lated in Sec. IIT and the resulting classical ground-state
and spin-wave excitation spectra for Lag_Nd,CuO4 and
YBasCu3Og4, are presented in Secs. IV and V, respec-
tively. Finally, Sec. VI summarizes the conclusions of the
paper.

II. RELEVANT EXPERIMENTAL FACTS
A. Laz_ .Nd,CuO,

The Laz_.Nd CuO4 system shows a rich structural
phase disgram as a function of z and temperature. As
mentioned above when z = 0 the material undergoes a
phase transition from the HTT phase to the LTO phase.
It is also known that when enough Nd is doped into the
system (z > 0.5) the material crystallizes into the T”
structure of pure Nd,Cu04.12 However, for smaller Nd
concentration (x < 0.4) there is still a HT'T — LTO tran-
sition, and as the temperature is lowered further there is
a second transition into a structural phase with space
group Pccn.%1° In both the LTO and Pccn phases the
CuOg octahedra forming each CuQ layer tilt in a stag-
gered fashion through an angle §(~ 0.05) about first the
(cosx,sinx, 0) and then the (sinx,cosx,0) axis in suc-
cessive CuO layers where x = w/4 in the LTO phase and.
0 < x < w/4 in the Pcen phase. The case x = 0 cor-
responds to the low-temperature tetragonal (LTT) phase
(space group P4,/nem) which occurs, for example, in the
doped material La; ggBag.12Cu04.13

Neutron-scattering measurements of the spin struc-
ture factor of insulating LagCuQ4 and subsequent the-
oretical analysis have shown fairly conclusively that the
spin degrees of freedom in this material are well de-
scribed by an AFM Heisenberg model with exchange cou-
pling J ~ 130 meV.** Although this model is adequate
for describing most properties of LasCuOy slight devi-
ations from perfect isotropy have been observed exper-
imentally. In particular (i) Thio et al® found a first-
order weak-ferromagnetic transition as a function of ap-
plied magnetic field perpendicular to the CuO planes;
and (ii) both neutron-scattering!® and AFM resonance
measurements!” have shown that the zone-center spin
waves in LapCuQy4 are gapped with an in-plane gap of ~
1.5 meV and an out-of-plane gap of ~ 2.5 meV. It was im-
mediately realized by the groups which performed these
measurements that these effects were manifestations of
DM interactions. These interactions have since been cal-
culated microscopically.®:21:18 The resulting spin Hamil-
tonian has an Ising-like anisotropy, which is responsible
for the zone-center spin-wave gaps, and a ground state in
which the spins lie nearly along the orthorhombic ¢ axis
except for a slight cant out of the CuQO plane which gives
each layer a weak ferromagnetic moment. The canting
angle is roughly ©y¢ ~ 0.005 and so the weak ferromag-
netic moment is ~ 0.003up per Cu site.’

B. YBBQCUgOQ.’.x

For z S 0.4 the YBayCu3Ogy system is tetragonal
and AFM with the added oxygens going into the chains
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presumably at random. When z 2 0.4 the O ions par-
tially order and this leads to a tetragonal — orthorhom-
bic transition. At the same doping the planes become
metallic and the material becomes a superconductor.
Here we are primarily concerned with the tetragonal in-
sulating AFM phase. The key structural feature in this
material is that the CuO layers are not equally spaced
as they are in the La system but instead form CuOs-
Y-CuO3 bilayers. The planes forming these bilayers are
buckled with the in-plane negatively charged O2?~ ions
displaced uniformly towards the positively charged Y3+
layer. The size of the O dispacement out of the plane de-
pends only weakly on = and is roughly 0.22 A (Ref. 19)
and so the Cu-O bonds make an angle of § ~ 0.1 with
the CuO plane.!®

Previously the magnetic structure of YBasCuszOgix
has been modeled assuming each bilayer can be described
by a Hamiltonian of the form?0

H= "% {252,525 + Toy(SE 52 ; + SY ,S¥ )}

a=1,2 i,j

+J12 S Sa 2.1)

The spin-wave spectrum of (2.1) has four branches: a
gapless in-plane mode; a gapped out-of-plane mode with
of 45+/2(Jzy — J)J; and two high-energy branches with
gaps of 44/25+/JJ ;. Neutron scattering has shown the
existence of a gapless in-plane mode with spin-wave ve-
locity ~1.0 eV A (J =~ 150 meV) and a gapped out-of-
plane mode with gap ~ 4 meV (Ref. 6) and so the low-
energy spectrum of (2.1) agrees with the experiment. At
the same time the high-energy modes have not been ob-
served for energy transfers up to 50 meV putting a lower
limit on the interlayer coupling of Ji5 = 10~2J.6:21 In
Sec. V we will show that when the same methods which
have been used successfully to describe LasCuQy are ap-
plied to YBazCuzOg¢y, the resulting spin Hamiltonian
is different than (2.1). Nonetheless, it is possible to re-
produce the experimentally observed spin-wave spectrum
using the new Hamiltonian.

III. SPIN-ORBIT CORRECTIONS TO
SUPEREXCHANGE

Superexchange occurs when two magnetic ions interact
through their mutual overlap with an intermediate dia-
magnetic ion.? Recently SEA (Ref. 8) have used Moriya’s
method! to derive a fairly general expression for the
anisotropic corrections to superexchange due to SO cou-
pling on a single such bond for spin 1/2. Their result,
which corrects some omissions in an earlier calculation,!!
has the interesting property that it can be related to
an isotropic interaction by a unitary transformation.® A
similar expression for the anisotropic superexchange on
a single bond was implicit” and in this section its deriva-
tion is sketched to show that in fact the expressions in
{Refs. 7 and 8) are the same and to establish notation
for the rest of the paper.

In the presence of SO coupling a single Cu-O-Cu bond
is described by the Hamiltonian!11:8:18
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Hcyocu = Z{d{a(tpdéaﬂ + iX1 . &'aﬁ)pﬁ
a,B

b (tpabap + 1%z - Gup)dy + Hee. |
+Uaa(Ngr 171y + PanyTany) + Adp Y Pl
[+4

(3.1)

In the vacuum state for (3.1) the Cu 3d and O 2p shells
are full. The operators d:-fa and p}, then create holes with
spin o at Cu site ¢ and the O ¢ orbital, respectively. The
(hole) energy splitting between Cu and O sites is Apg,
the on-site correlation on the Cu is Uz, and ¢4, Xl and
Xz are hopping integrals, the latter two resulting from
SO coupling.?:1

The problem of deriving the effective spin Hamiltonian
for (3.1) simplifies upon applying the unitary transforma-
tion

o 1X) A -e
dl = E {exp itan~! A - } i,
4 ta ) 1%l |Jag
7 . _ le ;\’2-0_" $
dl =E exp [itan™? [a] - di,. (3.3
28 ~ { tpd IAZI s 20y )

When (3.1) is expressed in terms of the primed operators
the result is

Heuwocu = Z {fpdd”]:apa + tpad’ ;,_,pa + H.c.}
o

(3.2)

+U(nyny) + ngpng) + AZpra, (3.4)
[23

where fpq = (t2; + A%)}/? (we will consider only the case

where [X;] = |Xz| = A). The transformation [(3.2) and
(3.3)] absorbs the spin precession induced by SO cou-
pling into a redefinition of the local coordinate system
in spin space. Such a transformation is possible because
the bond is essentially one dimensional; i.e., there are
no closed loops around which an electron can hop and
acquire a finite spin precession which cannot be trans-
formed away.

The effective spin Hamiltonian resulting from (3.1) in
the limit Z,4 > Ujd, Apg can now be found using stan-

dard methods.?? The result is Hpong = JS, - S5, with

a5, [ 1 1
J=-== {—— + —-—} 3.5

A?lp Adp Uga ( )
and 5] = (1/2)d'1,Gapd’ 15 + O(t/[Apa, U]). When the
unitary transformation [(3.2) and (3.3)] is undone the
final result is

Hpona = J | S15F + cos (ST 55 + SYSY)
+sing(STSY - SYs)|, (3.6)

where ¢ =~ 2|X; — X2|/tpa is the angle through which an
electron spin precesses when it hops from site 1 through
the intermediate orbital to site 2, and where the z axis in



spin space has been chosen to be parallel to the precession
axis Xl - Xg.

After some algebra it is possible to show that (3.6) is
equivalent to the result obtained by SEA.® Hamiltonian
(3.6) was also derived in precisely the form given above
in (Ref. 7) but starting from a one-band description in
which the O ions were not included explicitly. The equiv-
alence between the one-band and three-band pictures at
half-filling is easy to understand. If the Hamiltonian for
a single bond is given by

Hi_band = Z {Cla(—téap + inz . Eaﬂ)cga +H.c.}
o

+U (n11nyy + ngpngy ), (3.7

and if for a given ¢t we choose U so that 4(t2+)%,)/U = J
and Xjg =~ (t/tpa)(AQ1 — X2), then similar arguments to
those given above yield (3.6) when U > £. In what fol-
lows we will adopt this one-band approach and describe
a given CuO layer with a Hamiltonian of the form

H= Z{za( t6a3+z)\,, aag)cﬁ+Hc}
)

a,B
+U Z”irnil'
i

At half-filling there exists an entire class of models with
different ¢, U, and Xg‘,j values which yield the same effec-
tive spin Hamiltonian in the large U/t limit. Away from
half-filling this is no longer the case and it is necessary to
perform a mapping from the full three-band model to an
effective one-band model in order to find the appropriate
parameters. In what follows we are only concerned with
the half-filled case and so for simplicity we take t = tyq.

It remains to compute the X.ij vectors. At half-filling
each Cu ion in a CuO layer has one hole in its 3d shell
which, in the absence of SO coupling, occupies the d;a_ 2
orbital. If on each Cu site a SO interaction

Hso =40 Z.Ei -8

(3.8)

(3.9)

is included where E,- and §,- are the orbital angular mo-
mentum and the hole spin at site i, respectively, and
B =~ 0.1 eV for Cu,?® then higher crystal-field levels —
dzy, dzz, and dy, — are mixed into the lowest-lying d 2,2
state. These admixtures then modify the hopping inte-
grals and give rise to the X terms in (3.1). Moriya® de-
rived an expression in second-order perturbation theory
for the X;; vectors in (3.8) which for our purposes reads

>_«1

X,;'ﬁ X
_?ﬁz{(m z|L |0 z) t4;(m, o)

(m,JIL 10,3)

- (3.10)

tj(m, a)}

where |m, 1) is a crystal-field split level in the absence of
SO coupling labeled by m at site ¢ with m = 0 corre-
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sponding to dy2_,2. The energy of the mth level is €,
and t;;(m, o) is the hopping matrix element in the ab-
sence of SO coupling between the Cu orbital m at site ¢
and the O ¢ orbital between sites i and j. The relevant
matrix elements of L are

(z° = 9%, j|L; w2, 5) =19,
(3.11)
(a? — 9, 41 Lslyz, 5) = —i%,
and so to evaluate (3.10) only the matrix elements

tij(m, o) need to be determined. This is done below for
Lay_zNd,CuO4 and YBa;CuzOgz-

A. Lag_Nd,CuO,

In the LTO and Pecen phases of Lay_Nd,CuO4 the
CuOg octahedra forming a given CuO layer are ro-
tated through an angle (—1)®t#:)@ about the axis
{cos x, sin x,0). In general, there are then two CuO bond
angles: +0sin x and +6cosx for bonds pointing in the
z and y directions, respectively. Figure 1(a) shows the
Cu zz orbitals and O ¢ orbital in a typical bond in
Lay_sNd,CuO4. For this bond the hopping from the
rotated xz orbitals to the o orbital is, for small 6,

tisrz(T2,0) (—1)*t¥i V4,0 sin X,

(3.12)
ti,¢+,~((yz, 0') ~ 0,
and similarly
tiity(22,0) >0,
(3.13)

ti,irg(Yz,0) 2 —(—1)%F¥ V5.6 cos x,

La, Nd Cu O,

D
T \\
+
@

(®)

FIG. 1. Cu xz orbitals and O o orbital in a Cu-O-Cu
bond parallel to the x direction in the presence of (a) a tilt-
ing distortion {(Laz—+NdzCuO4) and (b) a buckling distortion
(YBazCu3Og4z). In (a) the zz orbitals are tilted with respect
to the CuO plane while in (b) they are not. As a result, the
ratio of the Cu-O bond angle to ¢(zy, o) (the hopping ampli-
tude between the 2y and ¢ orbitals) is larger in YBa;CuzOg+5

than in Las.. . Nd.CuOq.
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where Vp4r is the hopping amplitude between a Cu dyy

orbital and an O my orbital. The resulting X vectors are
then

Xigrz ™ (=1)%+¥ () cos x, Az sin x, 0),

(3.14)
Xi,,:+9 o2 —(—1)%V¥i (A5 cos x, A1 sin x, 0),
where
A1 =0, (3.15)
Ny —pdB g (3.16)

€xz — €x3—-y2

A nonzero )\;, which arises to leading order from di-
rect hopping between neighboring d orbitals, has been
included in (3.14) for completeness and also to show that
such a term does not affect the results that follow. Fi-
nally, for concreteness we take the values 8 ~ 0.1 eV,
€25 — €x2_y2 = 1.0 €V, and Vpqr = 1.0 €V to obtain

/\1 ~ 0,

(3.17)
A2 ~ 100 meV 6.

B. YBag Cu303+z

The O ion displacement in a buckled CuOs-Y-CuOq
bilayer, like the tilting in Las_,Nd,CuOy, results in a
nonzero t;;(xz,0) and t;;(yz,o). Because the geometry
is different {the d orbitals are not rotated, see Fig. 1(b)]
the proportionality to & of these hopping integrals from
the zz and yz orbitals to the o orbital is larger than
in Las_zNd;CuOy4 by a factor which we estimate to be
roughly 4.8,24 and so in this case

tiive (T2, o) > 4.8 Vparb,
(3.18)
tii+5(y2,0) =0

and

t,;’,',_l_ﬁ(l‘z, 0‘) ~ 0,
(3.19)
t1445(y2,0) ~ 4.8Vpart

and the resulting X vectors are

XD =(0,,0),

i,i+%
(3.20)

XB,.o=—(1,0,0),

where
4.8 V;zd-rrﬁ 0

€xz — Cz2_-43

A~ (3.21)
(We will refer to the upper and lower layers as 1 and 2,
respectively.)

An important point for what follows is that because of
the inversion symmetry of the unit cell of YBagCusOg.1o
the Xij vectors in the lower layer are the opposite of those
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in the upper layer and so
(2
>‘1(I,i)+>"c = “(07 ’\7 0): .
(3.22)

i,i+§

X2 =(),0,0).

IV. MAGNETIC ANISOTROPY IN
Lag,.dex Cu04

In order to derive the effective spin Hamiltonian for
Las—»Nd,CuQy it is necessary to consider the large U/t
limit of (3.8) with X;; vectors given by (3.14) when there
is one electron per site. Before doing this it is useful to
analyze the structure of this model by considering the
motion it describes for a single electron. It is natural
to decompose X;; into “frustrated” and “unfrustrated”
components as follows:

Xijirg = (=1)%tw {ozl(cos X, sin x, 0)
+ag(cosx, —sin x, 0)},

,—\'i,i_*_}», = M(f1)1‘+”‘ {al (cos x;, sin x, 0)

(4.)

—aa(cos x, —sin x, 0) }, (4.2)

where a; = (A1 + A2)/2 and ag = (A1 — A\3)/2. To see
why this decomposition is useful consider the hopping of
an electron around a single plaquette according to (3.8)
for (i) oy =0, ag # 0, and (ii) a1 # 0, ap = 0. For case
(i) (unfrustrated) the sign of the spin precession oscillates
and no net precession occurs {Fig. 2(a)] while for case (ii)
(frustrated) the sign of the precession does not oscillate
and there is a net precession of ~ 8a;/t [Fig. 2(b)]. As
emphasized by SEA (Ref. 8) case (i) is special: When
og = 0 it is possible to perform a unitary transforma-

-\ l S,
- . N
(a) : )

FIG. 2. (a) Unfrustrated and (b) frustrated spin preces-
sion about a single plaquette in the presence of a tilting dis-
tortion. The precession shown in (a) is unfrustrated because
the electron spin returns to its original value upon hopping
around any closed loop. The precession shown in (b) is frus-
trated because an electron which hops around a single pla-
nuette acquires a finite spin precession. While it is always
possible ¢o eliminate the unfrustrated precession by a uni-
tary transformation the frustrated precession cannot be so
removed and thus_is responsible for any physical anisotropy
in spin space due to spin-orbit coupling.
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tion which maps (3.8) onto a precession-free (isotropic)
Hamiltonian. The nontrivial physics is thus due to the
frustrated precession and it is precisely this which is de-
scribed by (1.1).

The unitary transformation which eliminates the un-
frustrated precession in (3.8) corresponds to a local ro-
tation in spin space. For §,;/t < 1 this unitary trans-
formation is represented by the operator (see Appendix)

2c¢

t2 (cosx, —siny,0) 5’}

U=exp iZ(_l)(mj'l‘U:’)
J

(4.3)

under which (3.8) becomes, to leading order in a/t,

vHU' 2 3 {el, (~t6as + % Gap) cig + He}

(i)
af
U ngny, (4.4)
i
where ;\'2’,-4_* = (—1)**¥iay(cos x, sin x,0) and Xg,iﬂ., =

—X’i’i +%+ 1f a global rotation in spin space is then per-
formed to bring the z axis parallel to (cosx, sinx, 0) the
result is (1.1) with ¢; 445 = (—1)@F¥)2tan~1 (o /t) ~
(_1)(a:¢+y.;)0-19 and Diirg = —Giita. It follows that to
leading order in @ the energy spectrum of (3.8) is inde-
pendent of the tilt axis angle x and depends only on the
octahedral tilt angle 6.

At half-filling and when U >» t the effective spin Hamil-
tonian arising from (1.1) is (up to an irrelevant constant)

(Ref. 7)

Hsp = JZ{ SFS5 + cos ¢35 (STST + SYSY)
(25}

+singi(SPSY — S¥ST) ). (45)
The sin ¢4 J% - (S x .5—"1) term in (4.5) is minimized by a
four sublattice state which only becomes stable when the
magnitude of this term is larger than J.!® This is never
the case here and so this term is completely frustrated,
there is no spin canting, and the remaining cos ¢;; easy
axis line the spins up along the 2z axis.

The classical ground state of (4.5) has no weak ferro-
magnetic moment and so seems to disagree with exper-
iment. However, this is no longer true in the physical
spin-space coordinate system. Once the local rotations
used to transform (3.8) into {1.1) and also the global ro-
tation which brought the z axis in spin space parallel
to (cos x,sin x, 0) are undone the spins which once were
parallel to the z axis become nearly aligned along the
{cos x, —sin x, 0) direction except for a slight cant out of
the CuO plane with the canting angle given by

209 5in 2y
t

The spin configuration in the physical basis for a spe-
cific x between 0 and 7/4 is shown in Fig. 3, together

Oyt = ~ 0.16sin 2. (4.6)

11307

Frustrated Axis

Q o)

Unfrustrated Axis

0]
O

O O

FIG. 3. Two neighboring CuO clusters in the Pecen phase
of Laz—»Nd;CuOy4. The heavy line is the (cos x,sin x,0) axis
about which the CuQOs octahedra are tilted through an angle
8. The light line is the (cos x, —sin x, 0). The spin precession

_of a single electron which hops in the presence of this tilting

distortion is a combination of frustrated precession about the
light axis and unfrustrated precession about the heavy axis.
The classical ground state of the effective spin Hamiltonian
describing this system at half filling is also shown. The spins
are nearly lined up along the frustrated axis except for a slight
cant out of the plane by an angle which is proportional to

sin(2x).

with the frustrated and unfrustrated spin precession axes.
In the LTO phase (x = w/4) (4.6) agrees with experi-
ment: the spins point nearly parallel to the orthorhom-
bic ¢ axis and cant out of the plane through the angle
Ou =~ 0.005.°5 As x decreases the ratio of the weak fer-
romagnetic moment to 6 also decreases and this decrease
should be experimentally observable in the Pccn phase
of Lag_dezCuO4.

Given the classical ground state of (4.5) the linearized
spin-wave spectrum can be calculated using standard
methods.?® The result is a twofold degenerate spectrum
defined within the AFM zone with dispersion (here and
throughout the paper ¢ is in units of inverse lattice spac-

ing),
w(q) = 25J | 4 — cos® ¢(cos g, + cosgy)?

1
2

—sin? ¢(cos g, — cos gy )? (4.7)

The two zone-center modes, which in the physical basis
correspond to in-plane and out-of-plane spin waves, have
a gap of 45J sin ¢. For the parameters used above this is
~ 3.0 meV which agrees roughly with the observed zone-
center spin-wave gaps of ~ 1.5 meV and ~ 2.5 meV in
LayCu04.16:17 Note, however, that the theory presented
here unambiguously predicts that the in-plane and out-
of-plane spin-wave gaps should be equal, while experi-
mentally these gaps have different values. It is proba-
ble that this discrepancy is due to either dipolar interac-
tions or SO corrections to direct exchange, two sources
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of anisotropic spin interactions which have not been in-
cluded in this calculation.

V. MAGNETIC ANISOTROPY IN YBa,CusOex

Before studying the properties of a CuQOs-Y-CuO; bi-
layer it is useful to first consider the simple toy model
shown in Fig. 4: Two coupled chains in the presence of
a buckling distortion. This model has the advantage of
simplicity and the basic physics is similar to that of the
more complex two-dimensional bilayer. The spin Hamil-
tonian for this system can be written

HO®) = gD 4+ gD 4 gD, (5.1)

where

D .
Hfl ) = JZ{Sf,i f,i+1 + cos ¢(Sf,isil,i+1 + Sf,i‘s’f,i+1) -+ sin ¢(S¥,¢Sf,i+1 - Sf,isf,i+1)},
i

D .
HP = JZ{S&S{HI +cos ¢(SY ;5 ;41 + 55453 441) —sin §(SF ;55 14y — 5§,¢55,i+1)}
i

and where we also include an isotropic interchain cou-
pling

HSD) = Ji2 Z 511+ Say, (6.4)

where 1D denotes one dimensional.
First consider the case Jio = 0. If we define the unitary
operator

Ua(¢) = exp {i¢zxi5¢f,i} .

then it is possible to transform away the DM interactions
in the two chains as follows:

U1(¢)H§1D)Uf(¢) = JZ Sii- S1i41

(5.5)

(5.6)

Ua(—))HSP UL (=) =T > Gai - Saia. (5.7)

The eigenvalues of H. §1D) and I-IélD) are therefore the

same as those of two uncoupled isotropic Heisenberg
models. The corresponding eigenvectors are, however,
different. For example, consider the classical ground-
state manifold of Hj. This manifold is infinitely degener-

1

%
w®(q) =28J (1 + 2J12/J — cos® ¢ cos® ¢ — sin? ¢ sin? g + 2 cos ¢ cos Q\/(J12/J)2 + sin? ¢ sin? q) .
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TN OO

FIG. 4. Two buckled CuO “chaing” representing the toy
model described by (5.1). The spin configuration shown is
one possible classical ground state in the absence of interchain
coupling. The DM interactions induced by the buckling cause
the spins to form a spiral, but because the buckling in the
bottom layer is opposite to that of the top layer the spirals in
the two chains have opposite senses.

(5.2)

(5.3)

ate because (5.6), which is & unitary equivalent of H{lD),

is isotropic in spin space. The ground states of H{m),
however, are not the same as the ground states of (5.6).
Two extreme cases are (i) the spins lie in the yz plane
and form a spiral with pitch angle ¢, and (ii) the spins
are parallel to the x axis and form a Néel state. For both
cases the energy gain per site over having the spins lying
uncanted in the yz plane is JS?sin ¢ and so these states
are degenerate.

The system changes qualitatively when the slightest
interchain coupling is introduced. Figure 4 shows one
of the degenerate classical ground states of the system
when Jjo = 0 in which the spins spiral in the yz plane.
Note that the senses of the spirals in the two chains are
opposite. Any finite Ji5 will thus frustrate this spiral and
the spins will prefer to point in the z direction so that
Ji2 is unfrustrated. The classical ground state is then

5. =5(1,0,0)(—1)%,
§2,i =S(17 0, 0)(_1)i+1‘

The linearized spin-wave spectrum about the ground
state (5.8) consists of two twofold degenerate branches
with dispersions ’

(5.8)

(5.9)

In Fig. 5(a) these two spin-wave dispersions are plotted for small ¢, Ji12 = 0 and ¢ = 0.02. As expected, in this case
the energy spectrum is the same as for two isotropic spin chains, the only difference being that the zeros of the spectra
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have been shifted from ¢ = 0 to ¢ = ¢ [this shift occurs because U(+¢) does no commuting with the translation
operator]. Figure 5(b) then shows w(‘)(q) for Jis = 0.01J. For these parameters the spectrum has evolved into a
low-lying “acoustic” branch and a high energy “optic” branch (not shown in the figure) in which the spins in different
chains precess, respectively, in and out of relative AFM phase. Note that the ¢ = 0 acoustic mode has acquired a gap
because of the Ising-like isotropy induced by Jiz. '

The corresponding problem for two coupled planes is somewhat more complex. The effective Hamiltonian for a

single CuQ3-Y-CuO; bilayer is again of the form
2D 2D 2D
HED) = &) 4 g3 4 gi3»)

(5.10)

where H sz) describes the “upper” layer in which the in-plane O ions are buckled downwards

@D) _ _ ,
HEP) =g Z{ 57 i5Y ipx T cosA(ST ST 14z + ST,657 c42) +5In&(ST ST 10 — ST:5Tias)
[

+8T 8T iy +cos§(SY ;57 ;g + STiST i1p) — sind(SY ;ST i1y — Sf,isi’,iﬂ')}’

(5.11)

HZSZD) describes the “lower” layer in which the in-plane O ions are buckled upwards

2D .
HPP) = 73 { S8.5Y 1 + 005 $(SF:F i + 55455 i42) — 51 $(S5SF iz — S4SF000)

+55,i55 419 +cosp(SF ;53 ;g + 55,153 i1g) +sin (55,5515 — Sf,isg,éw)}’

and we again assume that the layers are coupled by

H{ZD) = Ji2 Z S1i- o (5.13)
i

The Hamiltonians (5.11) and (5.12) are obtained as

before by taking the large U/t limit of (3.8) with Xij vec-

tors given by (3.20) and (3.22). A similar Hamiltonian

0.08

0.06 N

0.04

o(q) (J)

0.02

0.00
0.08

0.08

0.0'4 (b)

w(q) ()

0.02

0.00
-0.06

0.00°
q

© 0.08

FIG. 5. Spin-wave spectrum for two buckled chains when
(a) Ji2 = 0 and (b) Ji2 = 0.01J. In (a) the spin-wave spec-
trum is identical to that of two isotropic Heisenberg models
except that ¢ has been shifted by -=¢. In (b) there is a finite
interlayer coupling and the system has acquired an Ising-like
character and & gap.

(5.12)

(without the cos ¢ terms) was derived by Coffey, Rice,
and Zhang'! for a single CuO layer in YBagCuzOg.z.
These authors noted that the classical ground state of a
single layer is not a (possibly canted) Néel state. Instead,
because the ¢;;’s do not alternate in sign as they do in
Las_Nd,CuOy, the spins want to form a spiral.}1:1® It
is interesting to note that the problem of finding the clas-
sical ground state of (5.10) is nontrivial because bonds
which point in the z direction favor spiraling about the
y axis, while bonds which point in the y direction favor
spiraling about the z axis and there is no classical ground
state which spirals in this way. Fortunately, any difficul-
ties associated with finding the classical ground state of
(5.11) are probably irrelevant; just as the coupled chains
discussed above the spiral tendencies in the two layers
are opposed to one another and so interlayer exchange,
if sufficiently strong, will lock in a commensurate AFM
state.

__ Consider the set of classical Néel state parametrized as

=+

S1,i = S(cosy cosn, sin~y cos 7, sin n)(=1)Etw),
(5.14)
8, = S(cos~y cosm, sin~y cos 7, sin n)(—1)EF¥t),

Treating these as variational states for (5.10) yields an
energy per site of

_ El¢,n] = —JS?[cos ¢7(sin2n + 1) + cos? ] — J1252
o T N (5.15)

which is minimized when n = 0. Thus the lowest energy
Néel states are those in which the spins lie in the zy
plane. The origin of this easy plane is rather subtle. It
arises from the cos¢@;; easy-axis terms in (5.10). These
terms favor spins parallel to the z direction on bonds
which point in the y direction, and wvice versa, so that
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when a classical Néel state is rotated in the plane the
energy gain on one type of bond increases while that on
the other type decreases in such a way that the total
energy remains constant.

The classical spin-wave spectrum about (5.14) when
v = 0 can again be calculated using standard methods.
The resulting spectrum has four branches with disper-
sions given by

W (@) = w[ [A(0) + 212/ T1A0) — A(g)B(@) — C(@)?

%
£(TAOB@ ~ [4©) + 25/ TADY + 40@PADED) | (5.16)
Wi (g) = QJS[ [A(0) +2J12/J1A(0) — A(@)B(@) — C(*
%
+£({[A(0) + 2712/J1B(D) — A(Q)A(D} + 40(@')214@3@)%] ; (5.17)
where
A(@) = (cos®~ + sin? ycos @) cos gz + (sin?y + cos? ycos @) cos g, (5.18)
B(q) = cos ¢(cos gz + cosgy), (5.19)
C(q) = sin ¢(sinysin g, + cosysingy). (5.20)

It can now be made apparent that the Néel state (5.14)
with n = 0 is not stable for small Ji2/J. In the limit
02, Gy, ¢ K 1, Jia/J S ¢%, and ¥ = 0 the dispersion of
the lowest lying branch is well approximated by

%
wiN(G) ~2T8 [(M> g+ 2q§] . (5.21)

4Jyg + J?

When Ji2/J < 3¢?/4 the frequencies of this branch be-
come complex for a region in g space near § = 0. These
complex frequencies signal the appearance of unstable
modes which grow exponentially with time.

In Fig. 6 the spin-wave dispersions given by (5.17) and
(5.20) are shown for v = 0, Iy = 0 and g, small when
¢ = 0.02 and Ji2/J = 0.0, ¢?/2, 3¢%/4 and 0.01. The
hatched regions denote ¢ values for which the spin-wave
frequencies become complex indicating that the Néel
state is unstable. As Jya is increased the spin-wave spec-
trum evolves in the following way. First, for Ji5 = 0.0
there are two twofold degenerate branches, the lower two
of which become complex at small g;. Then, as Ji2/J
is gradually increased the degenerate branches split and
the region of instability in g space shrinks so that when
Jia/J = ¢?/2 there is only one unstable branch (wf,_))
and when J;p/J ~ 3¢2/4 the complex frequencies dis-
appear entirely from the spectrum and the Néel state
becomes locally, and almost certainly globally, stable.

For the physically relevant case J 3> Jiz 3> ¢2J the
dispersion of the four spin-wave branches are approxi-
mately given by

0.08

0.08

0.04} (@)

@(9x0) (J)

0.02¢ J

0.00 LLLLLLLLELLLL

1) | { (@)

©(ax0) (J)
o
b

0.068 ~0.06 0.00 0.06
Gx qx

FIG.6. Spin-wave spectrum about a Néel state with spins
parallel to the z direction for a CuOz-Y-CuQO; bilayer in
YBa2CusOs4z for Jiz/J equal to (a) 0; (b) 0.25¢; (c) 0.75¢;
and (d) 0.01 where ¢ =~ 0.02. The hatched regions represent g
values where one or more of the frequencies are complex indi-
cating an instability. There are four modes which degenerate
into two when (a) J12/J = 0. As J12/J increases these modes
split. In (b) one of the two unstable modes has become stable.
In (c) both have become stable and in (d) the two higher-lying
optic modes are not shown and the two lowest modes corre-
gspond to a gapless in-plane and a gapped out-of-plane mode
in agreement with experiment.



Wi (@) ~2v275\41, (5.22)
w7 (@) > 2V2ISVE + a7, © (5.23)
W@ 2w 2205\ BTR/T+1@2.  (5.24)

Such a spin-wave spectrum is precisely what is ex-
pected for a bilayer made up of two easy-plane

antiferromagnets.?® In this limit w{(g) and w,(,‘)(q’)
have evolved into low-energy modes corresponding to
gapless in-plane and gapped out-of-plane spin-waves, re-
spectively. These modes are acoustic modes in the sense
defined above: the spins in the two layers precess in rel-
ative AFM phase with one another. Figure 6(d) shows
these low-lying modes for Jip/J =~ 0.01. The out-of-
plane mode has a gap of 2v/25J¢ a result which is con-
sistent with the experimental observation of a gapped
out-of-plane zone-center mode.® The remaining branches

wiP (@) and wl()'*') (¢) have evolved into the high-energy
optic modes in which spins in the two layers precess out
of AFM phase and have a gap of 4+/28+/J13J. These
modes have not been seen experimentally for energies up
to ~ 50 meV (Ref. 6) indicating that Ji2 > 0.01J. The
interlayer coupling is therefore large enough to lock in
the Néel state according to the above scenario.

VI. CONCLUSIONS

In this paper the anisotropic corrections to su-
perexchange arising from SO coupling in the distorted
CuO layers in Laz_;Nd;CuOy (tilting distortion) and
YBayCusz0p4, (buckling distortion) have been calcu-
lated using Moriya’s method.! Special care has been
taken to include the higher-order symmetric anisotropy
terms whose importance has recently been emphasized
by SEA.2

In the Lag_oNd,CuOy4 system in the presence of a tilt-
ing distortion it was shown that regardless of the tilt axis
it is always possible to find a local coordinate system in
spin space in which the SO-induced spin precession of
moving electrons has the same form. This form is pre-
cisely that which was studied in Ref. 7 and is described
by Hamiltonian (1.1). In this special spin-space coor-
dinate system the classical ground state of the effective
spin Hamiltonian has no weak ferromagnetic moment but
when the system is viewed in the physical coordinate sys-
tem a weak ferromagnetic moment appears. The ratio of
the octahedral tilt angle to the weak ferromagnetic mo-
ment depends on the tilt axis according to (4.6) and so
it decreases as the tilt axis moves from (110) in the LTO
phase to (100) in a hypothetical insulating AFM LTT
material. The experimental observation of the reduction
of this ratio in the Pccn phase of Laz—_,Nd,CuO4 would
provide a test of the theory discussed here and in Ref. 8.
One unresolved problem with the theory is that it pre-
dicts that regardless of the tilt axis there should be only

|
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one spin-wave gap—a prediction which is at odds with
the experimental observation of two different gaps for the
in-plane and out-of-plane zone-center modes. It is likely

" that this discrepancy is due to the additional anisotropy

caused either by dipolar interactions or SO corrections to
direct exchange. However, a full treatment of the prob-
lem including these interactions has not yet been carried
out.

When the same method for calculating the SO cor-
rections to superexchange in Lag_.Nd,CuO4 is applied
to the buckled CuO,-Y-CuOg bilayers in YBazCuzOg4 5
the resulting Hamiltonian is quite different from what has
been used previously to model this system. The Hamil-
tonian obtained here describes a system in which the
spins in each individual CuO layer tend to form a spi-
ral pattern. However, one consequence of the inversion
symmetry of the unit cell of YBagCu3Og, is that the
senses of the spirals favored by the two CuO planes in a
given bilayer are opposed to one another. When a weak
interlayer coupling is included the spiraling becomes frus-
trated and a commensurate AFM state is stabilized. For
physical parameters the low-energy spin-wave spectrum
agrees with what is seen experimentally: there is an in-
plane acoustic mode and an out-of-plane gapped mode.

We conclude on a speculative note. In Ref. 7 it was
argued that the frustrated DM terms in LagCuOy4 can -
give rise to physics away from half-filling. In particu-
lar, doped holes can gain energy from their s.o.-induced
spin precession as they move through a commensurate
spin background. This energy gain is similar to that
which occurs when holes move through a spiral state.” We
have shown here that frustrated DM terms are present
in YBasCu3gOg.z, and the size of these terms is signif-
icantly larger than in LapCuOy (by roughly a factor of
5). Because of this, holes doped into a CuO3-Y-CuO,
bilayer can also gain energy through their spin preces-
sion. In this case the maximum energy gain occurs when
the spins form a commensurate Néel background and
are lined up parallel to the z direction. When mov-
ing through such a spin background doped holes see,
effectively, a so-called “double spiral.”?¢ We note that
a strong tendency for commensurate spin fluctuations
in superconducting YBayCugOg4, has been observed in
both NMR. (Ref. 27) and neutron-scattering®?! exper-
iments while in doped La;CuOy4 spin fluctuations ap-
pear to be incommensurate.28:29 It is tempting to specu-
late that SO effects such as those discussed here and in
(Ref. 7) may play some role in determining the different
spin dynamics of these two systems.
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APPENDIX

In this appendix the exact unitary transformation which maps Hamiltonian (3.8) into (1.1) is constructed for
arbitrary ¥ and 9. This transformation is most easily represented as a sequence of two local rotations in spin space.
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The first rotation eliminates the component of the unfrustrated precession perpendicular to the frustrated axis and

is generated by

UM = exp iZ(—l)(“’f+”f)2 tan—! (m) (cos x, =sinx, 0) - 5
J

t

When U is applied to Hamiltonian (3.8) the result is

7(OF: (/G- > {cla’[\/t"‘ + (orz 50 2x) 2605 + 4N - 3a;] Cig +H.c.} +UD nymy,

{i3)
af
where the transformed X vectors are

X irz = (=1)"F¥ (0 — arg cos 2x)(cos x, sin x, 0),

X i45 = —(=1)*(a + az cos 2x) (cos X, sin x, 0).

(A1)

(A3)

The precession axes on all the links in the lattice are now parallel to one another. A further rotation generated by

Qg cos 2x

U® =exp i Z(—l)(”1+”f)2 tan™!

j /12 + o3 sin? 2

(cos x,siny,0) - 5'3 (A4)

then ensures that the precession has the same magnitude on all the links. Upon applying this transformation the

Hamiltonian becomes

vPHT® =% {c}a (&j&ap + X ;5"01;3) cjp + H.c.} +UD nany,
) i

(5}
af

(A5)

where & ;18 = /2 + 0 + @1028in 2, & ip9 = /12 + a3 — aag sin 2x; and

X ips = (—1)" ¥ (cos x,sinx,0)

— R

b4 _
Bty = N

(A6)
(A7)

if the second order in @ corrections to the direct hopping integral are ignored (&i; ~ t) and a global rotation
in spin space is performed so that the 2z axis is parallel to (cosy,sinx,0) the result is Hamiltonian (1.1) with
(—1)(3""'1’*)2 tan"l(al/t) ~ (—1)(“'““)0.19 and ¢z’,i+ﬁ = —'¢i’i+£. -
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