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Monte Carlo comparison of quasielectron wave functions

V. Melik-Alaverdian and N. E. Bonesteel
National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, Florida 32306-40

~Received 23 December 1997!

Variational Monte Carlo calculations of the quasielectron and quasihole excitation energies in the fractional
quantum Hall effect have been carried out at filling fractionsn51/3, 1/5, and 1/7. For the quasielectron both
the trial wave function originally proposed by Laughlin and the composite-fermion wave function proposed by
Jain have been used. We find that for long-range Coulomb interactions the results obtained using these two
wave functions are essentially the same, though the energy gap obtained using the composite-fermion quasi-
electron is slightly smaller, and closer to extrapolated exact-diagonalization results.@S0163-1829~98!02627-7#
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I. INTRODUCTION

Shortly after the discovery of the fractional quantum H
effect1 ~fractional QHE! Laughlin2 introduced a set of tria
wave functions describing the ‘‘parent’’ quantum Hall stat
occurring at Landau-level filling fractionn51/q, whereq is
an odd integer. In addition to the ground state, Laugh
introduced trial wave functions describing fractiona
charged quasielectron (e/q) and quasihole (2e/q) excita-
tions. From the very beginning it was clear that the wa
function for the quasihole, with its simple Jastrow form, w
more natural than the wave function for the quasielectr
which contains explicit derivatives with respect to electr
coordinates. This difference is reflected, for example, in
fact that while there exists a Hamiltonian for which th
Laughlin ground state and quasihole wave functions are
act ~zero energy! eigenstates3 there exists no such simpl
Hamiltonian for which the quasielectron wave function
also an exact eigenstate.

According to the composite-fermion theory, proposed
Jain,4 the fractional QHE corresponds to anintegerQHE of
composite fermions–electrons bound to an even numbe
statistical flux quanta. This identification leads to a proced
for constructing fractional QHE trial states by first constru
ing integer QHE states, then multiplying by a Jastrow fac
which binds an even number of vortices to each electron,
finally projecting the resulting state onto the lowest Land
level. The wave function obtained using this procedure
the parent quantum Hall state is identical to Laughlin
ground state, and the same is true for the quasihole w
function. However, the composite-fermion quasielectr
wave function is not identical to the one proposed by Lau
lin.

To date, the best estimate of the energy gap for creatin
quasielectron-quasihole pair with infinite separation atn
51/3 computed using Laughlin’s trial states was obtained
Morf and Halperin, using the disk5 and spherical6 geom-
etries, with the result DL.0.092(4)e2/e l 0, where
l 05A\c/eB is the magnetic length. This may be compar
with the result of Bonesteel7 using the composite-fermion
quasielectron wave function ofDCF.0.106(3)e2/e l 0. It
therefore appears that the energy gap computed using
Laughlin quasielectron is over 10% lower than that obtain
PRB 580163-1829/98/58~3!/1451~6!/$15.00
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using the composite-fermion theory, and so one might c
clude that the Laughlin quasielectron wave function provid
a ~slightly! better description of the physical quasielectr
state. More recently, Girlich and Hellmund8 have shown that
for the truncated (V1) pseudopotential interaction introduce
by Haldane,3 the interaction for which the Laughlin groun
state and quasihole state are exact eigenstates, the Lau
quasielectron has an energy that is 18%higher than the com-
posite fermion quasielectron. These authors go on to sp
late that the same would be true for the Coulomb interacti
and this has motivated us to reexamine the calculations
Morf and Halperin.

Taking advantage of the availability of significantly fast
computers, and performing a better extrapolation of fin
size results to the thermodynamic limit, we find that t
n51/3 energy gap computed using the Laughlin quasie
tron extrapolates toDL.0.110(2)e2/e l 0, a significantly
higher result than previously reported. This result is high
than DCF and so is consistent with Girlich and Hellmund8

though we find that for the Coulomb interaction the diffe
ence between the two energy gaps is quite small~less than
5%! indicating that both wave functions provide adequa
descriptions of the true quasielectron. We have also p
formed calculations of the energy gap using Laughlin
quasielectron wave functions for filling fractionsn51/5 and
1/7. Comparing these energies to the correspond
composite-fermion energies we find the same result—
composite-fermion energy gap is consistently smaller th
the corresponding Laughlin energy gap. Comparing these
sults to the extrapolated exact diagonalization results of F
et al.9 we find that the composite-fermion energy gaps
also consistently closer to the ‘‘exact’’ results. However,
for n51/3, the differences are slight, and the main conc
sion is that both wave functions provide an adequate desc
tion of the physical quasielectron.

This paper is organized as follows. In Sec. II we revie
the formulation of the two-dimensional electron gas on
Haldane sphere and introduce a procedure for projec
wave functions on the sphere into the lowest Landau leve
Sec. III we review both the composite-fermion constructi
of the quasielectron state, which requires the projection
veloped in Sec. II, as well as the Laughlin quasielectr
1451 © 1998 The American Physical Society
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wave function. Finally, Sec. IV contains a summary of o
results.

II. THE TWO-DIMENSIONAL ELECTRON GAS
ON THE HALDANE SPHERE

A. One particle and Landau-level projection

We begin by reviewing the problem of one spin-polariz
electron confined to move on the surface of a sphere of
dius R with a magnetic monopole at its center. Followin
convention we let

2S5
4pR2B

hc/e
52S R

l 0
D 2

denote the number of flux quanta piercing the surface of
sphere due to the monopole. The Hamiltonian describing
particle is then

T5
uLu2

2mR2
, ~1!

where L5r3@2 i\“1(e/c) A(r )# and ¹3A5Br̂ on the
surface of the sphere. In what follows we work in the W
Yang gauge10 for which

A5
\cS

eR

12cosu

sin u
ef ~2!

and use the complex stereographic coordinatez5x1 iy
5tan(u/2) e2 if. The eigenfunctions ofT in this gauge are
the monopole harmonics10

YSlm5MSlmS 1

11uzu2
D S

zS1mPl 2s
S1m,S2mS 12uzu2

11uzu2D , ~3!

where

MSlm5S 2l 11

4p

~ l 2s!! ~ l 1s!!

~ l 2m!! ~ l 1m!! D
1/2

, ~4!

Pn
a,b is a Jacobi polynomial,l 5S,S11,S12,..., and for a

given l , m52 l ,2 l 11, . . . ,l 21,l . If we let n5S2 l then
the energies of these states are

En5\vFn1
1

2
1

n~n11!

2S G , n50,1,2, . . . , ~5!

andn is the spherical Landau-level index.
It will be necessary in what follows to project gener

wave functions onto the lowest Landau-level (n50) Hilbert
space. Following Girvin and Jach11 we now introduce a gen
eral procedure for performing such a projection on
sphere. First note that the lowest Landau-level wave fu
tions in the Wu-Yang gauge are

cm5F2S11

4p S 2S

S1M D G1/2S 1

11uzu2D S

zp, p50,1, . . . ,2S.

The Hilbert space of lowest Landau-level wave functions
the sphere then corresponds to wave functions of the fo
r

a-

e
is

-

e
c-

n

c~z,z* !5S 1

11uzu2D S

f ~z!, ~6!

where f (z) is a polynomial of degree up to 2S11 in z.
The differential area element on the surface of the sph

in terms of the stereographic coordinatesx andy is

dA5
4R2

~11uzu2!2
dxdy ~7!

and so the scalar product between any two polynomialsf and
g in this Hilbert space is

^ f ,g&5E 4R2

~11uzu2!2S12
f * gdxdy. ~8!

With this definition of the scalar product it is straightforwa
to derive the following identity by repeatedly integrating b
parts, exploiting the fact that (d/dz) @ f (z)* #50,

K f ,
dn

dzn
gL 5

~2S12!!

~2S122n!! K f ,S z*

11uzu2
D n

gL . ~9!

This result immediately implies the following spherical ge
eralization of thez*→2d/dz rule of Girvin and Jach to the
sphere:

S z*

11uzu2
D n

→
~2S122n!!

~2S12!!

dn

dzn
. ~10!

Thus, to project any polynomialf @z,z* /(11uzu2)# into the
lowest Landau level one simply orders each term so that
z* /(11uzu2)’s all sit to the left, then replaces these facto
by derivatives with respect toz according to Eq.~10!.

B. N particles and the fractional QHE

The Hamiltonian forN spin-polarized electrons on th
sphere interacting via the Coulomb repulsion is then

H5(
i 51

N

Ti1
V

e
. ~11!

The interaction energyV is

V5(
i , j

e2

r i j
1

1

2

Q2

R
2

NeQ

R
, ~12!

wherer i j is the chord distance between a given pair of el
trons on the sphere. Here the sphere is assumed to ha
uniform compensating charge density with total chargeQ.
When considering a homogeneous state the approp
background charge isQ5Ne for which

V5(
i , j

e2

r i j
2

1

2

N2e2

R
. ~13!

The spherical analog of the Laughlin state3 at n51/q oc-
curs whenq(N21)52S and in the Wu-Yang gauge is
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cgs5)
k

S 1

11uzku2D S

)
i , j

~zi2zj !
q. ~14!

The quasihole wave function (S→S1 1
2 ) corresponding to a

single charge2e/q defect at the top of the sphere is

cqh5)
k

S 1

11uzku2D S

zk )
i , j

~zi2zj !
q. ~15!

III. QUASIELECTRON WAVE FUNCTIONS

A. Composite-fermion quasielectron wave function

According to Jain’s composite-fermion approach4 a given
fractional QHE wave function at filling fractionn5p/
(kp11) wherek52,4, . . . isfound by first constructing the
correspondinginteger QHE wave function atnCF5p and
then multiplying by a Jastrow factor, which tiesk vortices to
each electron. The state is then explicitly projected into
lowest Landau level. Denoting the Slater determinant co
sponding to the effective integer QHE state, with the ove
) l(11uzl u2)2S factor removed, asFCF , the corresponding
fractional QHE states are

c5PLLL)
l

S 1

11uzl u2D S

)
i , j

~zi2zj !
kFCF , ~16!

wherePLLL is the projection operator onto the lowest Land
level.

For thenCF51 ground state the Vandermonde determ
nant
e
-

ll

-

FCF5U1 z1 z1
2

••• z1
N21

A A

1 zN zN
2

••• zN
N21
U5)

i , j
~zi2zj !, ~17!

corresponding to one filled ‘‘pseudo’’-Landau level of com
posite fermions, gives forc the Laughlin wave function~14!
for n51/q, whereq5k11. If we remove a composite fer
mion from the lowest ‘‘pseudo’’-Landau level (S→S1 1

2 )
then

FCF5U z1 z1
2

••• z1
N21

A A

zN zN
2

••• zN
N21
U5)

k
zk )

i , j
~zi2zj !,

~18!

andc is identical to Eq.~15! and describes a state in whic
a single quasihole sits at the top of the sphere.

We now consider the quasielectron wave function co
structed using this approach. If we introduce a compo
fermion into the first excited ‘‘pseudo’’-Landau level then

fCF5U1 z1 . . . z1
N22 z1*

11uz1u2

A A A A

1 zN . . . zN
N22 zN*

11uzNu2

U ~19!

and the corresponding physical electron wave function is
ec. II A
cCF
q.e.5PLLL)

k
S 1

11uzku2
D S

)
i , j

~zi2zj !
q21U1 z1 . . . z1

N22 z1*

11uz1u2

A A A A

1 zN . . . zN
N22 zN*

11uzNu2

U . ~20!

This wave function can be projected into the lowest Landau level as follows. First rewritecCF
q.e. by pulling the Jastrow factor

and the projection operator into the last column of the determinant,

cCF
q.e.5)

k
S 1

11uzku2D SU1 z1 . . . z1
N22

PLLL

z1*

11uz1u2 )
i , j

~zi2zj !
q21

A A A A

1 zN . . . zN
N22

PLLL

zN*

11uzNu2 )
i , j

~zi2zj !
q21
U . ~21!

This can be done here because the cofactor associated with thenth element of theNth column does not containzn . Thus, when
we do the projection we need only project each element of the matrix separately. Following the procedure outlined in S
this projection gives

PLLL

zn*

11uznu2 )
i , j

~zi2zj !
q215

1

2S12

]

]zn
)
i , j

~zi2zj !
q215

q21

2S12 )
i , j

~zi2zj !
q21(

iÞn

1

zn2zi
. ~22!

ThuscCF
q.e. can be rewritten, up to an irrelevant normalization constant, to give
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cCF
q.e.5)

k
S 1

11uzku2D S

)
i , j

~zi2zj !
q21U 1 z1 . . . z1

N22 (
iÞ1

1

z12zi

A A A A

1 zN . . . zN
N22 (

iÞN

1

zN2zi

U . ~23!
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One can simplify things further by expanding the det
minant in a cofactor expansion down theNth column. The
cofactors are then all Vandermonde determinants and th
nal expression for the Jain quasielectron is

cCF
q.e.5(

n
)
kÞn

1

zk2zn
(
lÞn

1

zl2zn
cgs. ~24!

In this form ucCF
q.e.u2 can be sampled by usual variation

Monte Carlo techniques with each Monte Carlo step tak
orderN instructions, rather thanN2 for a usual determinant

B. Laughlin quasielectron wave function

The generalization to the spherical geometry of the qu
electron wave function (S→S2 1

2 ) introduced by Laughlin is

cL
q.e.5F)

k
S 1

11uzku2D S
]

]zk
G)

i , j
~zi2zj !

q. ~25!

Straightforward Monte Carlo sampling ofucL
q.e.u2 is not pos-

sible because of the explicit derivatives with respect to
electron coordinates. To compute the energy of this state
therefore follow the procedure of Morf and Halperin5,6

which, for completeness, we review below. A more detai
discussion can be found in Ref. 6.

Following Ref. 2 we first take the absolute square of
wave function to obtain

ucL
q.e.u25F)

k
S 1

11uzku2
D 2S

]

]zk

]

]zk*
G)

i , j
uzi2zj u2q

5F)
k

S 1

11uzku2D 2S
1

4
“k

2G)
i , j

uzi2zj u2q. ~26!

The expectation value of any operatorO depending only on
the coordinates$(xi ,yi)% is then

^O&5

E S 1

11uzku2D 2S12

O“k
2)

i , j
uzi2zj u2q)

i
dxidyi

E S 1

11uzku2
D 2S12

“k
2)

i , j
uzi2zj u2q)

i
dxidyi

,

~27!

which, after integrating by parts twice in the numerator a
the denominator can be rewritten
-

fi-

g

i-

e
e

d

e

d

^O&5

E P~z1 , . . . ,zN!Õ)
i

dxidyi

E P~z1 , . . . ,zN!)
i

dxidyi

, ~28!

where

P5F)
k

S 1

11uzku2
D 2S13S uzku22

1

2S12D G)
i , j

uzi2zj u2q

~29!

and

Õ5

)
j

¹ j
2S 1

11uzj u2
D 2S12

O

)
j

¹ j
2S 1

11uzj u2D 2S12 . ~30!

The chord distance between any two points on the sphe
given by r i j 52Ruzi2zj u/A(11uzi u2)(11uzj u2) and so for
the Coulomb interaction the operatorO is

VCoul5
e2

2R

A11uzi u2A11uzj u2

uzi2zj u
. ~31!

It is then straightforward to computeÕ and evaluate Eq.~28!
by usual variational Monte Carlo techniques.

IV. RESULTS

The excitation energies of isolated quasielectron a
quasihole states have been obtained using the
wave functions reviewed in Secs. II and III. Followin
Ref. 6 we have computed theproper energies, meaning
that the relevant ground-state energies are computed
monopole strength 2S5q(N21) and background charg
Q5Ne, while the energy of the quasielectron~quasihole!
excitations are obtained keepingR andN fixed and decreas
ing ~increasing! the monopole strength according
S→S21/2 (S→S11/2). In addition, following Refs. 3 and
9, we have shifted the background charge when compu
the quasielectron~quasihole! energies takingQ→Q2e/q
(Q→Q1e/q), in order to compensate the charge density
the bulk of the wave function. This eliminates a finite-siz
correction of 6(e/q)21/R;O(1/AN), a correction which
was not included in Ref. 6 and which may account for t
slightly different results obtained here. Our results for t
proper energies of the quasiholes, the Laughlin quasie
trons, and the composite-fermion quasielectrons for filli
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FIG. 1. Proper energies for the Laughlin quasielectron~solid circles!, composite-fermion quasielectron~solid squares!, and quasihole
~solid diamonds! for filling fractions n51/3, 1/5, and 1/7, plotted vs 1/N.
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fractionsn51/3, 1/5, and 1/7 are shown plotted vs 1/N in
Fig. 1.

The quasihole energy gaps obtained here,Dq.h., extrapo-
lated to theN→` limit are given in Table I, together with
then51/3 result of Morf and Halperin6 and the extrapolated
exact diagonalization results of Fanoet al.9 As stated above
the discrepancy between our results and those of Morf
Halperin is most likely due to the 1/AN finite-size correction

TABLE I. Quasihole energy for the fractional QHE wit
n51/3, 1/5, and 1/7. The Monte Carlo results of Morf and Halpe
~Ref. 6! and extrapolated exact diagonalization results of Fanoet al.
~Ref. 9! are given for comparison.

n Dq.h. Dq.h. ~Ref. 1! Dq.h. ~Ref. 2!

1/3 0.0279~12! 0.0224~16! 0.0264
1/5 0.0092~6! 0.0071
1/7 0.0038~4!
d

we have eliminated by modifying the background char
density.

The quasielectron energy gaps obtained using both
Laughlin trial stateDL

q.e. and the composite-fermion stat
DCF

q.e. are given in Table II. Again, in comparing the prese
n51/3 result forDL

q.e. with those of Ref. 6 we note a sligh
discrepancy that we attribute to the 1/AN finite-size correc-
tion we have included here. Forn51/3, 1/5, and 1/7 the

TABLE II. Quasielectron energy for the fractional QHE wit
n51/3, 1/5, and 1/7. The Monte Carlo results of Morf and Halpe
~Ref. 6! and extrapolated exact diagonalization results of Fanoet al.
~Ref. 9! are given for comparison.

n DCF
q.e. DL

q.e. DL
q.e. ~Ref. 6! Dq.e. ~Ref. 9!

1/3 0.0779~10! 0.0825~12! 0.075~5! 0.0772
1/5 0.0166~6! 0.0191~6! 0.0173
1/7 0.0063~4! 0.0070~5!
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TABLE III. Total gap for the fractional QHE withn51/3, 1/5, and 1/7. The Monte Carlo results of Mo
and Halperin~Ref. 6! and Bonesteel~Ref. 7!, and extrapolated exact diagonalization results of Fanoet al.
~Ref. 9! are given for comparison.

n DCF DL DL ~Ref. 6! DCF ~Ref. 7! D ~Ref. 9!

1/3 0.1058~16! 0.1104~17! 0.092~4! 0.106~3! 0.1036~2!

1/5 0.0258~9! 0.0283~9! 0.025~3! 0.0244~3!

1/7 0.0101~6! 0.0108~6! 0.011~3!
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composite-fermion excitation energyDCF
q.e. is consistently

about 10% lower than the Laughlin excitation energy, as
be seen clearly in Fig. 1. Note that the composite ferm
result is also in slightly better agreement with the extra
lated exact diagonalization results of Fanoet al.9

Finally, Table III gives results for the total-energy gap f
creating a well-separated quasielectron quasihole p
D5Dq.h.1Dq.e.. The results are again compared with tho
of Ref. 6 for the Laughlin energy gap as well as those of R
7 for the composite-fermion energy gap. Forn51/3 our ex-
trapolated energy gap using the Laughlin quasielectron
DL50.110(2)e2/e l 0, roughly 20% larger than the earlier e
timate of Morf and Halperin.6 Our improved calculation
gives a Laughlin energy gap which is slightly larger than
corresponding energy gap computed using the compo
fermion quasielectron,DCF50.106(2)e2/e l 0. This is consis-
tent with the results of Girlich and Hellmund8 using the
short-rangeV1 model; however, we find here that for th
Coulomb interaction the energy gaps obtained using th
two wave functions are essentially the same. Table III gi
similar results forn51/5 and 1/7. We therefore conclud
that both the Laughlin and composite-fermion quasielect
wave functions provide adequate descriptions of the phys
quasielectron, though the energy gap obtained using
composite-fermion quasielectron is slightly closer to e
trapolated exact-diagonalization results for all the filling fa
tors we have considered.
n
n
-

ir,
e
f.

is

e
e-

se
s

n
al
he
-
-

To summarize, the quasielectron and quasihole excita
energies in the fractional QHE have been calculated
n51/3, 1/5, and 1/7 by variational Monte Carlo method
Results have been obtained using the quasielectron s
originally proposed by Laughlin, as well as the fully pro
jected composite-fermion quasielectron states proposed
Jain. We have improved on earlier estimates5,6 of the excita-
tion energies of the Laughlin states atn51/3 in order to
show that the composite-fermion energy gap is actua
slightly lower than the Laughlin energy gap, consistent w
the results of Girlich and Hellmund.8 Results for the energy
gap using Laughlin’s quasielectron forn51/5 and 1/7 show
that, as forn51/3, for Coulomb interactions the energy ga
obtained using the Laughlin and composite-fermion qua
electron wave functions are essentially the same, tho
those obtained using the composite-fermion quasielectr
are slightly smaller, and closer to extrapolated exa
diagonalization results of Fanoet al.,9 than those obtained
using the Laughlin quasielectron.
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