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One-dimensional chains of non-Abelian quasiparticles described by SU�2�k Chern-Simons-Witten
theory can enter random singlet phases analogous to that of a random chain of ordinary spin-1=2 particles
(corresponding to k! 1). For k � 2 this phase provides a random singlet description of the infinite-
randomness fixed point of the critical transverse field Ising model. The entanglement entropy of a region
of size L in these phases scales as SL ’

lnd
3 log2L for large L, where d is the quantum dimension of the

particles.
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A particularly exotic form of quantum order is possible
in two space dimensions—so-called non-Abelian order
[1]. In states with non-Abelian order, when certain local-
ized quasiparticle excitations are present there is a low-
energy Hilbert space whose dimensionality grows expo-
nentially with the number of these quasiparticles. When
these quasiparticles are well separated, this low-energy
space becomes degenerate, and its states are characterized
by purely topological quantum numbers, meaning they
cannot be distinguished by local measurements. If these
quasiparticles are then adiabatically moved around one
another, unitary transformations corresponding to non-
Abelian representations of the braid group are carried out
on this degenerate space. Aside from their intrinsic scien-
tific interest, recent attention has focused on the possibility
of one day using non-Abelian states to perform fault-
tolerant quantum computation [2,3].

Recently Feiguin et al. [4] have studied models of
interacting non-Abelian quasiparticles, specifically uni-
form chains in which neighboring quasiparticles are close
enough together to lift the degeneracy of the topological
Hilbert space. In this Letter we study a related class of
random interacting chains of non-Abelian quasiparticles.
We are motivated both by [4] and by recent work of Refael
and Moore [5,6] showing that the entanglement entropy of
certain random one-dimensional models scales logarithmi-
cally with a universal coefficient. We find the same is true
here for an infinite class of models.

Exact diagonalization studies [7–9] provide compelling
evidence that the experimentally observed � � 5=2 frac-
tional quantum Hall (FQH) state is a non-Abelian state
described by the Moore-Read ‘‘Pfaffian’’ state [1]. This
state belongs to a wider class of non-Abelian FQH states
introduced by Read and Rezayi [10], labeled by index k. In
this class, the k � 1 state is an ordinary (Abelian) Laughlin
state, the k � 2 state is the Moore-Read state, and all
subsequent integer k values describe new non-Abelian
states. There is some numerical evidence [10,11] that the
k � 3 Read-Rezayi state describes the experimentally ob-
served � � 12=5 FQH state [12].

The quasiparticle excitations of the Read-Rezayi states
with index k can be viewed (up to Abelian phases) as
particle excitations in SU�2�k Chern-Simons-Witten theory
[13]. These particles are characterized by their topological
charge, a quantum number which can be viewed as a
‘‘q-deformed’’ spin [14]. At level k, topological charge
can take the values 0; 1

2 ; 1; . . . ; k2 and obeys the fusion rule,

 s1 � s2 � js1 � s2j � � � � �min�s1 � s2; k� s1 � s2�:

(1)

For k 	 2 this implies 1
2 �

1
2 � 0 � 1. Thus, when combin-

ing two particles with topological charge 1=2 the resulting
state can either have topological charge 0 or 1. For ordinary
spin-1=2 particles the former would be referred to as a
singlet and the latter as a triplet. We will use the same
terminology for SU�2�k particles, though it should be noted
that here there is no Sz degeneracy; i.e., there is only one
‘‘triplet’’ state. (For reviews of the general theory of non-
Abelian particles, see [15,16].)

The total spin 0 sector of a one-dimensional chain of
ordinary spin-1=2 particles is spanned by the set of all
‘‘noncrossing’’ singlet states, i.e., states in which pairs of
particles form singlet bonds in such a way that these bonds
do not cross [see Fig. 1(a)]. Furthermore, these noncrossing
states are linearly independent [17], and their number, and
hence the dimensionality of the spin 0 Hilbert space, grows
asymptotically as 2N for large N.

Using the generalized notion of singlet described above,
noncrossing singlet states can also be used as a basis for the
total topological charge 0 sector of a one-dimensional
chain of SU�2�k particles [18]. In this case the interpreta-
tion is that any pair of particles connected by a singlet bond
will fuse to topological charge 0 if brought together [19].

For N ordinary spin-1=2 particles, the overlap of two
noncrossing singlet states j�i and j�i can be computed by
overlaying the two bond configuration and counting the
number of closed loops, Nloops. The overlap is then given
by h�j�i � 2Nloops�N=2. For SU�2�k particles this overlap
rule becomes h�j�i � dNloops�N=2, where d � 2 cos �

k�2 is
the ‘‘quantum dimension’’ of the particles [see Fig. 1(a)]
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[15,16]. For these values of d the noncrossing states are no
longer linearly independent—they satisfy linear relations
known as the Jones-Wenzl projectors [20] which reduce
the size of the Hilbert space so that its dimensionality
grows asymptotically not as 2N , but as dN for large N.

Consider a random one-dimensional chain of SU�2�k
particles. Following [4], we assume that neighboring par-
ticles are close enough together so that the singlet and
triplet fusion channels are split in energy, with the singlet
lying lowest. The Hamiltonian describing this chain is then

 H � �
X

i

Ji�
0
i ; (2)

where Ji > 0 is the energy splitting associated with parti-
cles at sites i and i� 1, and �0

i is the singlet projection
operator on these particles, the action of which on repre-
sentative noncrossing singlet states is shown in Fig. 1(b).
The uniform versions of these models (Ji � J) were
studied numerically for k � 3 and analytically for all k
in [4], where they were shown to be conformally invariant
with central charge c � 1� 6=
�k� 1��k� 2��.

Because the Hilbert space of this SU�2�k chain can be
described using a noncrossing singlet basis, the usual real-
space renormalization group (RG) approach based on dec-
imating singlet bonds [21,22] can be straightforwardly
applied to (2) when the Ji’s are random. Each iteration of
this procedure begins by finding the strongest bond in the
chain, i.e., the Ji with the highest value, and making the
approximation that the two particles connected by it fuse to
topological charge 0 and so form a singlet bond.

The effective interaction ~J between the two particles on
either side of this singlet is then determined perturbatively
as follows. Consider four neighboring particles and the
associated three bond strengths J1, J2, and J3, with J2 �
J1, J3 so that, as described above, a singlet forms between
the two particles connected by J2 (see Fig. 2). A straight-
forward generalization of the usual second-order perturba-
tion theory calculation for ordinary spin-1=2 particles, but
using the modified overlap rules shown in Fig. 1, then
yields,

 

~J � �2=d2�J1J3=J2: (3)

Provided d 	
���
2
p

, which is the case for all k 	 2 consid-
ered here, ~J will always be less than the strength of the
decimated bond J2. Thus, as this procedure is iterated,
high-energy bonds are systematically eliminated, leading
eventually to a single noncrossing singlet state.

The RG flow produced by this decimation procedure can
then be analyzed in the standard way [21,22]. Introducing
the logarithmic bond strength variables �i � ln��=Ji�,
where � is the largest remaining bond strength at any
given stage of decimation, (3) can be written ~� � �1 �
�3 � ln�2=d2�. Defining the flow parameter � �
ln��0=�� where �0 is the largest bond strength at the
outset of the decimation procedure, and ignoring the
ln�2=d2� (i.e., taking ~� ’ �1 � �3), an approximation
which can be justified a posteriori due to the broad distri-
bution of �’s at the fixed point, an integro-differential
equation, can be written down for the bond strength distri-
bution P���� [21,22]. This distribution is defined so that
when the flow parameter is � the fraction of bonds with
logarithmic strength between � and �� d� is P����d�.
As shown by Fisher [22], for almost any initial random
bond configuration, the bond strength distribution flows to
the infinite-randomness fixed-point distribution, P���� �
e��=�=�. The resulting phase is known as a random singlet
phase.

It follows that the random SU�2�k chains (2) flow to
random singlet phases for all k 	 2. In the limit k! 1 this
phase corresponds to the usual random singlet phase for
ordinary spin-1=2 particles [22]. For k � 2 we now show
that the resulting phase can be mapped onto the infinite-
randomness fixed point of the critical transverse field Ising
model [23], thus providing a ‘‘random singlet’’ description
of this fixed point.

We use the fact that SU�2�2 particles can be represented
using Majorana fermions operators �i [16]—operators
which are self-conjugate (�yi � �i) and which satisfy the
Clifford algebra f�i; �jg � 2�ij. Two Majorana fermions
can be combined to form a usual fermion, so that, e.g.,
associated with neighboring sites i and i� 1 there is a
fermion operator cyi;i�1 � ��i � i�i�1�=

���
2
p

which satisfies
the usual anticommutation relation fci;i�1; c

y
i;i�1g � 1 and

which anticommutes with any similar fermion operator
constructed out of a different pair of Majorana fermions.
The Fermi mode associated with this pair can then be
occupied (corresponding to topological charge 1) or un-
occupied (corresponding to topological charge 0). The
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FIG. 2 (color online). One step in the decimation procedure.
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FIG. 1 (color online). (a) Two noncrossing singlet states for
SU�2�k particles and their overlap. (b) Action of the singlet
projection operators �0

1 (which acts on particles 1 and 2) and
�0

2 (which acts on particles 2 and 3) on a particular noncrossing
singlet state. The quantity d appearing in (a) and (b) is the
quantum dimension of the particles.
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singlet projection operator is then �0
i � 1� cyi;i�1ci;i�1,

which in the Majorana representation is �0
i � i�i�i�1.

To map the SU�2�2 chain onto the transverse field Ising
model we first group together neighboring pairs of
Majorana fermions. Letting the index j label these pairs,
each of which consists of a right Majorana fermion (�Rj )
and a left Majorana fermion (�Lj ), the Hamiltonian (2) can
be written

 H � �
X

j

hji�
L
j �

R
j �

X

j

Jji�
R
j �

L
j�1: (4)

Here hj corresponds to the coupling within the jth pair, and
Jj corresponds to the coupling between the rightmost
particle in the jth pair and the leftmost particle in the �j�
1�st pair. The usual Jordan-Wigner transformation (see, for
example, [24] ), �Lj � �xj

Qj�1
k�1 �

z
k and �Rj � �yj

Qj�1
k�1 �

z
k,

then maps (4) onto the random transverse field Ising model,

 H �
X

j

hj�
z
j �

X

j

Jj�
x
j�

x
j�1: (5)

Because hj and Jj are drawn from the same distribution,
the model is at its critical point.

The usual decimation procedure for the transverse field
Ising model involves two separate steps—either forming
ever larger ‘‘superspins’’ when the strongest interaction is
an Ising interaction (J) or decimating these superspins
when the strongest interaction is a magnetic field strength
(h) [23]. The SU�2�2 ‘‘random singlet’’ view of this deci-
mation provides a unified description of these two steps.
Figure 3 shows a random singlet state produced by deci-
mation and a reference ‘‘dimer’’ state in which bonds
connect pairs of Majorana fermions which correspond to
single spins in the transverse field Ising model. Overlaying
these two states produces closed loops which, in the trans-
verse field Ising model, correspond to decimated super-
spins. Essentially, as the decimation which produces the
random singlet state shown in the figure proceeds, any time
a bond forms which does not close a loop this corresponds

to eliminating an Ising interaction and increasing the num-
ber of spins contributing to a superspin. Then, when a bond
forms which closes a loop, the corresponding superspin is
frozen along the direction of the applied field and
decimated.

Recently Refael and Moore [5] have shown that the
entanglement entropy associated with the infinite-
randomness fixed points of both the random spin-1=2
Heisenberg chain (k! 1) and the transverse field Ising
model (k � 2) have universal scaling properties which can
be used to generalize the notion of central charge to one-
dimensional quantum critical systems which are not con-
formally invariant. We now show that the same is true for
all the SU�2�k infinite-randomness fixed points. The en-
tanglement entropy of these states is calculated by treating
a contiguous segment of the chain consisting of L particles
as a subsystem (denoted A) of the full chain. Tracing out
the degrees of freedom of the rest of the chain then yields a
reduced density matrix �A. The entanglement entropy is
the average over realizations of disorder of the von
Neumann entropy of this reduced density matrix, SL �
�hTr�Alog2�Ai.

In random singlet states the calculation of SL for large L
can be done, as in [5], by counting the number of singlet
bonds which connect sites in region A with sites outside of
it, averaging over realizations of disorder, and then multi-
plying the result by the entanglement entropy associated
with each bond. All the SU�2�k random singlet states
discussed here are governed by the same fixed-point
bond distribution as that considered in [5], so the result
of that work that the average number of bonds contributing
to the entanglement scales as 1

3 lnL for large L holds here
as well.

To compute the entanglement entropy per bond for
SU�2�k particles, imagine forming N singlet pairs, with
one particle from each pair taken to be in subsystem A and
the other in subsystem B, as shown in Fig. 4. This figure
also shows a Schmidt decomposition of this state using a
basis in which ovals are drawn around particles in topo-

FIG. 3 (color online). ‘‘Random singlet’’ view of a decimated
random transverse field Ising model. A random singlet state
(green) is overlaid with a dimer state (blue). In the dimer state
bonds connect pairs of SU�2�2 particles which are mapped onto
the spin-1=2 degrees of freedom of the transverse field Ising
model (bottom row of dots). Closed loops then correspond to
decimated superspins, indicated by solid arrows.
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FIG. 4 (color online). Schmidt decomposition of a state of N
pairs of SU�2�k particles connected by singlet bonds. The states
in the decomposition are expressed using a basis in which circles
enclose particles in topological charge eigenstates. The sum is
over all s2; s3; . . . ; sN , consistent with the fusion rule (1).
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logical charge eigenstates. The Schmidt coefficients (	sN
in Fig. 4) can be obtained using standard calculation tech-
niques for non-Abelian particles [15,16]. They depend
only on the total topological charge sN of the particles in
region A (or equivalently region B) of the corresponding
state in the Schmidt decomposition, and they are given by
	sN � 
2sN � 1�=dN , where we have introduced the q
integers 
m� � �qm=2 � q�m=2�=�q1=2 � q�1=2� with q �
exp
i2�=�k� 2��.

The von Neumann entropy of the reduced density matrix
�A obtained by tracing out the degrees of freedom in region
B is then [25], SA � �

P
sND�N; sN�	sN log2	sN , where

D�N; sN� is the dimensionality of the space of N SU�2�k
particles with total topological charge sN . Using the fact
that, for large N, D�N; sn� ’ 
2sN � 1�dN=D2 where
D2 �

Pk=2
s�0
2s� 1�2 [15,16], it follows that SA ’

Nlog2d�O�log2k� for N � k. Thus for large N the en-
tanglement per bond is log2d, reflecting the fact that the
size of the Hilbert space of N particles grows asymptoti-
cally as dN [26].

Returning to the SU�2�k random singlet phases, multi-
plying the average number of bonds leaving a region of
size L (’ 1

3 lnL) by the entanglement per bond (’log2d)
yields

 SL ’ �lnd=3�log2L: (6)

Following [5], if we compare (6) with the entanglement
entropy of conformally invariant one-dimensional systems,
SL ’

c
3 log2L where c is the central charge [24,27–29], it is

natural to define an ‘‘effective central charge’’ of ~c � lnd
for these phases. In the k! 1 limit, corresponding to the
ordinary SU�2� random singlet phase with d � 2, we have
~c � ln2, and for k � 2, corresponding, as shown above, to
the critical point of the random transverse field Ising model
with d �

���
2
p

, we have ~c � 1
2 ln2, both of which agree with

results obtained in [5].
Finally, we note that for the SU�2�k chains considered

here the effective central charge of the disordered model,
~c � lnd is always less than the central charge of the
uniform model, c � 1� 6=
�k� 1��k� 2�� [4], though
the simple relation ~c � ln2
 c emphasized in [5] only
holds for k! 1 and k � 2. This is consistent with the
generalized ‘‘c theorem’’ envisioned in [5] which supposes
that the effective central charge decreases along RG flows
between quantum critical points. However, it should be
emphasized that this ‘‘theorem’’ is not a rigorous result. In
particular, Santachiara [30] has shown that it is violated by
RG flows from the uniform to disordered phases of the Zn
parafermionic Potts model for n 	 42.
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