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We demonstrate numerically that non-Abelian quasihole (qh) excitations of the � ¼ 5=2 fractional

quantum Hall state have some of the key properties necessary to support quantum computation. We find

that as the qh spacing is increased, the unitary transformation which describes winding two qh’s around

each other converges exponentially to its asymptotic limit and that the two orthogonal wave functions

describing a system with four qh’s become exponentially degenerate. We calculate the length scales for

these two decays to be �U � 2:7‘0 and �E � 2:3‘0, respectively. Additionally, we determine which fusion

channel is lower in energy when two qh’s are brought close together.
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The proposal to use quantum Hall states as a platform
for quantum computation has spurred a great deal of inter-
est [1–3]. These quantum Hall systems are believed to have
natural ‘‘topological’’ immunity to decoherence and there-
fore hold particular promise for quantum computation. In
so-called non-Abelian quantum Hall systems, the ground
state is highly degenerate in the presence of quasiparticles
(qp’s), and this degenerate space can be used to store
quantum information. Operations on this space are then
performed by adiabatically dragging qp’s around each
other, thus ‘‘braiding’’ their world lines in 2þ 1
dimensions.

Although there is currently no definitive experimental
evidence that non-Abelian quantum Hall states even exist,
the community now strongly suspects [1] that the quantum
Hall plateau observed at Landau level (LL) filling fraction
� ¼ 5=2 is the non-Abelian Moore-Read (MR) phase [4]
(or its closely related particle-hole conjugate [5]). While
the MR phase is, strictly speaking, not capable of universal
topological quantum computation (computation by braid-
ing qp’s around each other at large distances), a scheme has
been devised [6] that in principle allows error-free quan-
tum computation by supplementing these topological pro-
cesses with nontopological processes where qp’s are
moved together and allowed to interact. Furthermore, the
MR phase is frequently viewed as the simplest paradigm of
a non-Abelian state of matter, and is therefore a logical
starting point for detailed analysis [1].

In order for topological (or partially topological)
schemes for quantum computation to be scalable (i.e., to
allow large scale quantum computation), a number of
crucial conditions must hold [1]. Condition (1) As all of
the qp’s are moved apart from one another, the splitting of
the energy levels of the putatively degenerate ground state

space must converge to zero at least as fast as e�R=�E where
R is the minimum distance between qp’s. In the literature,
there has been numerical work suggesting that condition

(1) may not be true [7] for the MR state. One of the goals of
our work is to performmore precise numerical calculations
to determine whether this numerical conclusion holds up to
more careful scrutiny. Condition (2) As qp’s are moved
apart from each other, the unitary transformation that
results from adiabatically dragging one qp around another
must converge to its asymptotic limit at least as fast as

e�R=�U . For the MR state, several theoretical arguments
suggest that this is true [8–10]; however, in these theoreti-
cal works, the precise length scale �U remains unknown.
Presumably, �E and �U are both on the scale of a magnetic
length multiplied by some number of order unity. If this
number of ‘‘order unity’’ happens to be very large, it could
in principle start to cause trouble for practical implemen-
tation of topological schemes. Wewill explicitly determine
both �U and �E numerically. Finally, Condition (3) One
must be able to measure the topological quantum number
associated with a group of qp’s. Proposals have been made
that such quantum numbers can be measured using inter-
ferometry [1,2,11]. However, this scheme has turned out to
be very difficult experimentally. Another possible way to
measure the topological quantum number of, say, two qp’s,
is to move the qp’s microscopically close and precisely
measure the force between them (or equivalently the en-
ergy change of moving them). While this may not sound
any easier, it nonetheless proposes a different route to
making this measurement should interferometry prove to
be impossible. In the current Letter, we will attempt to
numerically evaluate this energy change and show how it
reflects the quantum number of a pair of qp’s. See Ref. [12]
for a similar analysis of the Kitaev model.
Our numerical work is performed on a spherical geome-

try with a monopole of flux N� at the center of the sphere

and N electrons on the surface. For the MR state [4], N� is

given by N� ¼ 2N � 3þ nqh=2 and nqh is the number of

quasiholes (qp’s with positive charge). The radius of the

sphere is ðN�=2Þ1=2‘0 where ‘0 is the magnetic length. For
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the purpose of stating the decay lengths �U and �E, the
distance R between quasiholes (qh’s) will be written in
terms of the chord length. The definitions of �E and �U are
given below. It should be noted that while their precise
values depend on the particular qh configurations used in
our calculations, alternate definitions for different qh con-
figurations will give results that only differ by factors of
order unity.

We consider the MRwave function (WF) in the presence
of qh’s which is defined as the zero energy space of a
special short-ranged three-body interaction [13]. Although
this is just a model interaction, the ground state WF turns
out to be an accurate approximation for more realistic
interactions [14]. Thus, our calculations are variational in
nature. Pairs of qh excitations carry the topological quan-
tum number ‘‘1’’ or ‘‘c ’’ which represents the two states of
a qubit and the degeneracy [15] of a system with nqh qh’s is

2ðnqh=2Þ�1.
We start by considering the case of two qh’s for which

the ground state is unique. In this case, we can address
condition (2) above by calculating the braiding statistics of
these two qh’s. To do so in the spherical geometry, we
compute the Berry phase accumulated when one qh is
moved adiabatically around the equator of the sphere while
the second qh is held fixed first on the north pole and then
on the south pole. Both these Berry phases have contribu-
tions from the statistical phase associated with the two
qh’s, and the Aharanov-Bohm phase due to the applied
magnetic field. To isolate the statistical phase, we therefore
compute the difference between these two phases. In the
planar geometry, this difference would correspond to the
change in the Berry phase when one qh is moved in a
closed loop while a second qh is held fixed first inside the
loop and then outside the loop.

The Berry phases are all calculated numerically using a
Monte Carlo method essentially identical to that described
in Ref. [16]. We use theMRWFwith two qh’s, which is not
an exact WF for the realistic Coulomb interaction, but is
quite accurate nonetheless as prior numerical work has
demonstrated [14]. When we drag qh’s, we can think of
having added a highly localized potential well to the
system whose position moves as a function of time.
However, since our Berry phase calculation does not in-
volve a detailed Hamiltonian per se, our results are inde-
pendent of the form of this potential well. (Further details
of the methods used will be given in Ref. [17]). For the
cases of either an even or odd number of electrons on the
sphere, the two qh’s together must have topological quan-
tum numbers 1 or c , respectively. The statistical phase is
then expected [1,4,8,10] to converge either to zero (if the
quantum number is 1) or� (if the quantum number is c ) as
the distance between the qh’s is increased. Indeed, for an
even number of electrons, we show in Fig. 1 that as the
sphere is made larger, the convergence is exponential and
the decay scale is roughly �U � 2:7‘0. Similar results were

obtained for the case of an odd number of electrons where
the phase converges exponentially to � with roughly the
same decay scale.
The difference between the even and odd case can be

interpreted as the non-Abelian component—i.e, the part of
the phase that depends on which topological sector the two
qp’s are in. We conclude that this non-Abelian contribution
does indeed converge exponentially with increasing sys-
tem size as desired by condition (2). (Ideally we would like
to determine the unitary transformation that occurs on this
two dimensional ground state space when particles are
braided around each other as in Ref. [16]. However, we
have found that it is currently numerically too demanding
to demonstrate exponential convergence in this more com-
plicated situation).
The oscillations in Fig. 1 (and in the later Figures) are

not unexpected. In the closely related system of a p-wave
paired superfluid, the oscillating form of the wave func-
tions can be calculated explicitly [18,19]. However, in this
quantum Hall system, those results would only be
qualitative.
To address condition (1) above, we now turn to the case

of four qh’s and restrict ourselves to an even number of
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FIG. 1 (color online). Statistical phase for winding one qh
around another in the spherical geometry as defined in the
text. Data are shown for the case of even total numbers of
electrons for which the topological quantum number of the
pair of qh’s is 1. In (a), we have plotted the statistical phase
versus the chord distance R between the two qh’s and fit the data
using cosða R

l0
þ bÞ for the oscillatory part and a decay term that

is either exponential, Gaussian or power law. We fit the data
starting at R ¼ 6:48l0 and find the value of the reduced �2 is
smallest for exponential decay with a value of 1.42 while for
power law and Gaussian decays, it is 7.22 and 5.52, respectively.
The good fit to exponential decay is also confirmed when we plot
the absolute value of the data on log and log-log scales (b) and
perform linear fits to the extrema of the oscillations. The linear
fit is clearly much better on the log plot demonstrating that the
oscillations decay exponentially rather than as a power law.
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electrons. We implement a trial WF approach using theMR
WF with qh’s, which is the ground state of a special three-
body interaction, but we will evaluate its energy with a first
excited LL Coulomb interaction [20], for which the MR
WF is not the exact ground state. We nonetheless expect
this hybrid approach to give accurate results because the
MR WF is an extremely accurate approximation of the
exact ground state of the Coulomb interaction. Our calcu-
lation is also an exact statement about the lowest order
perturbation of the special three-body interaction towards
the Coulomb point [14].

For the MRWF with four qh’s, there are two putatively
degenerate ground state wave functions [4,8]. Using a
spherical geometry, we place four qh’s on the corners of
an equilateral tetrahedron and implement standard
Monte Carlo procedures to evaluate the energy splitting
between the two eigenstates of the interaction within the
two dimensional ground state subspace (Details will be
presented in Ref. [17]). Results are presented in Fig. 2 as a
function of system size, and indeed it appears that the two
blocks become degenerate exponentially as the distance
between qp’s increases as required by condition (2) with a
decay length of �E � 2:3‘0. This result appears to contra-
dict results of Ref. [7] which claimed an algebraic rather
than exponential decay. Although the methods used by the
two works are essentially identical, in Ref. [7] the MR state
is studied in the lowest LL (where MR is known not to be a
good trial WF) whereas we have studied it in the first LL
where it is known to be a very good trial WF and thought to

be experimentally relevant. Differences with Ref. [7] could
occur because of differing levels of Monte Carlo error as
well. The numerical difficulty of collecting data is sub-
stantial, so admittedly our error bars are currently some-
what larger than desirable. However, we will continue to
collect data, and these results will almost certainly
improve.
Finally, we turn to the issue of measurement, condition

(3). Here, we start with four qh’s at the corners of a
tetrahedron on a relatively large sphere (N ¼ 40) where
the two ground state wave functions are close to degener-
ate. We then move qh 2 close to 1 and observe the change
in energy of the two wave functions. It turns out (and we
will show in detail in Ref. [17]) that if we choose to move
the qh’s together along an appropriately chosen path, then
the conformal block wave functions defined in Ref. [8]
diagonalize the interaction. These two conformal block
wave functions, known as j1i and jc i, are constructed
such that the pair of qh’s 1 and 2 have topological quantum
number 1 and c , respectively. The results of such a calcu-
lation are shown in Fig. 3. We see that the energy of
moving two qh’s together is always positive simply due
to the Coulomb repulsion. However, the energy is substan-
tially greater when the two qh’s are in the j1i state com-
pared to the jc i state. To our knowledge, this result was not
predicted and may be attributed to the fact that the electron
density vanishes in the j1i state when two qh’s approach
each other, but remains nonzero in the jc i state resulting in
a more extended object [17]. Thus our calculation makes
the first mapping between a proposed measurement of the
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FIG. 2 (color online). Energy splitting of the eigenstates on a
sphere with four qh’s as a function of system size. The four qh’s
are placed on the corners of an equilateral tetrahedron. The data
is fit with the function cosða ffiffiffiffi

N
p þ bÞ multiplied by an exponen-

tial, Gaussian, or power law decay function. The distance
between particles grows as

ffiffiffiffi

N
p

, so this is essentially the same
fit as used in Fig. 1. The data is fit starting with N ¼ 12 (not
shown because the fits are nearly identical at the small N values).
The reduced �2 values for the exponential, Gaussian, and power
law fits are 3.39, 7.73, and 6.49, respectively, which helps
confirm our expectation that two energies become exponentially
degenerate as the qh’s move apart. We have not shown the log
and log-log plots here because such plots discard the sign, and in
the absence of a higher density of points, are hard to interpret.

FIG. 3 (color online). This figure shows the total energy of the
N ¼ 40 system with four qh’s as qh 2 is moved closer to its pair,
qh 1. qh 1 is located at the north pole, and qh 2 is moved along a
path that keeps a certain analytic form [8] for the trial states j1i
and jc i precisely orthogonal [17]. The two states of the system,
j1i and jc i, which are nearly degenerate when the qh’s are well
separated, split as the qh’s approach each other. The inset shows
the energy needed to move qh 2 within ‘0 of qh 1 for different
values of N. We find that it takes more energy to bring the two
qh’s together when the system is in state j1i than in state jc i, and
that the energy splitting is on the order of 0:01e2=�‘0.
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energy of two qh’s and what this would indicate in terms
of determining their topological quantum number.
(Obviously if one were moving a qp together with a qh,
the j1i state would have lower energy). We also point out
that this result may be significant in regards to the possi-
bility of qh’s condensing into daughter states as proposed
in Refs. [21,22].

The magnitude of the energy splitting of the two states,
when two qh’s are very close to each other (within ‘0), is
measured to be roughly 0:01e2=�‘0 which in a real system
corresponds to roughly 1 K, a rather small energy to be
measured. To make matters worse, this measured energy
should be considered to be an upper bound, as mixing with
states above the gap will be substantial and could easily
reduce this energy scale (the experimentally measured gap
itself is less than 1 K in the very best samples, although
theoretically without disorder the gap could be almost
2.5 K. See Ref. [1] and therein). Nonetheless, this numeri-
cal work gives the 1st order of magnitude estimate for how
large the splitting due to topological quantum numbers is
likely to be compared to the overall Coulomb energy
between the two qh’s.

The decay length scales and energy scales that we
calculate above are also extremely relevant to Majorana
tunneling. Plugging in real numbers, we find that at a
separation of about 0.1 �m, the energy difference will be
about 80 mK with the sign of the tunneling amplitude
depending sensitively on the distance. These scales have
implication to interferometry experiments [23] where tun-
neling occurs between edge and bulk as well as for a
Majorana hopping problem where tunneling occurs be-
tween many bulk qh’s [22].

To summarize, we have used Monte Carlo techniques to
examine several key properties of the MR WF with qh’s.
Note that because our calculations do not incorporate LL
mixing terms (which are expected to be small), they are
equally applicable to the recently proposed AntiPfaffian
WF [5]. We find that both the unitary transformation
associated with adiabatic transport and the energy splitting
of putatively degenerate states converge exponentially with
increasing distance between qp’s, and we explicitly extract
the decay lengths. Encouragingly, the decay lengths are on
the order of a magnetic length which suggests that qp
spacing should not be a barrier to physical implementation
of topological operations. Further, we examine the energy
splitting that occurs when two qh’s are moved together. We
find that the j1i state of these two particles is of higher
energy and we measure this energy splitting between j1i
and jc i. Although this energy splitting is small, it gives
experimentalists another way to measure topological quan-
tum numbers in these systems. Many more details of this
work will be presented in an upcoming publication [17].
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