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We show the violation of the entanglement area law for bosonic systems with Bose surfaces. For

bosonic systems with gapless factorized energy dispersions on an Nd Cartesian lattice in d dimensions,

e.g., the exciton Bose liquid in two dimensions, we explicitly show that a belt subsystem with width L

preserving translational symmetry along d� 1 Cartesian axes has leading entanglement entropy

ðNd�1=3Þ lnL. Using this result, the strong subadditivity inequality, and lattice symmetries, we bound

the entanglement entropy of a rectangular subsystem from below and above showing a logarithmic

violation of the area law. For subsystems with a single flat boundary, we also bound the entanglement

entropy from below showing a logarithmic violation, and argue that the entanglement entropy of

subsystems with arbitrary smooth boundaries are similarly bounded.
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Introduction.—Entanglement is perhaps one of the most
counterintuitive aspects of quantum mechanics and pro-
vides the sharpest distinction between quantum and clas-
sical descriptions of nature. It has been playing an
increasingly important role in the characterization of
phases and phase transitions in condensed matter physics.
The most widely used measure of entanglement is the
entanglement entropy (EE), which is the von Neumann
entropy associated with the reduced density matrix of a
subsystem obtained by tracing out degrees of freedom
outside it. For extended quantum systems, it is generally
believed that ground states of all gapped local
Hamiltonians, as well as a large number of gapless sys-
tems, follow the so-called area law, which states that the
EE is proportional to the surface area of the subsystem [1].

Violations of the area law, usually in a logarithmic
fashion, do exist in various systems. They are found to be
associated with quantum criticality in many one-
dimensional (1D) systems [2]. However, such violations
are very rare above 1D; the only well-established examples
in higher dimensions are free fermion ground states with
Fermi surfaces, where it is found that the area law is
enhanced by a logarithmic factor [3–5]. Recently, this
result has been extended to Fermi liquid phases, and it
was shown that Fermi liquid interactions do not alter the
leading scaling behavior of the EE [6]. Besides, it has also
been used as a diagnostic of the presence of Fermi surface
(s), even for non-Fermi liquid phases [7,8].

In contrast to the fermionic systems, thus far there are no
known quantum critical (or gapless) free bosonic systems
that violate the area law above 1D [1,9,10]. The funda-
mental difference lies in the fact that gapless excitations
normally live near a single point (usually the origin of

momentum space) in such bosonic systems, while in
Fermi liquids they live around an (extended) Fermi surface.
In this Letter, we show through explicit examples that
logarithmic violation of the area law is possible in purely
bosonic models above 1D. The models we use are moti-
vated by the following considerations. Traditionally it was
believed that bosons either condense (and become a super-
fluid) or localize (and insulate) at T ¼ 0. Recently it has
been argued that, under certain circumstances, they can
form so-called Bose metals with ‘‘Bose surfaces,’’ along
which gapless excitations live [11–23]. These Bose sur-
faces resemble Fermi surfaces in intriguing ways and may
lead to violation of the area law. In this Letter, we examine
the EE of the so-called exciton Bose liquid (EBL)
[11,17,18] and show that it does indeed lead to such a
violation. The low-energy theory of the EBL is that of
free bosons with an energy dispersion which vanishes
linearly on a locus of points in k space. In our view, this
model plays the same ‘‘idealized’’ role for Bose surface
systems as the free fermion model does for Fermi surface
systems [24].
Motivated by the long-wavelength description of the

EBL in 2D, we study similar bosonic phases with gapless
factorized energy dispersions in Cartesian systems in
d dimensions (dD). We find that a belt subsystem I pre-
serving translational symmetry along d� 1 Cartesian axes
explicitly shows a logarithmic violation of the area law,
SdI ’ ðNd�1=3Þ lnL, with N and L being the edge length of

the whole Cartesian system and the width of the belt
subsystem, respectively. Using lattice symmetries along
with the strong subadditivity inequality [25–36], we then
find a lower bound on the EE of subsystems with a single
flat boundary which also shows a logarithmic violation of
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the area law and argue that the EE of subsystems with
arbitrarily smooth boundaries are similarly bounded.

Bosonic systems with Bose surfaces.—The Lagrangian
density for the long-wavelength bosonic theory of the EBL
is [11,17,18]

LEBL ¼ ð@�#Þ2 þ �ð@x@y#Þ2; (1)

where � is the EBL ‘‘phase stiffness’’ [18], # can be
identified as the coarse-grain field dual to the boson phase
� in the bosonization of the 2D ring exchange model in
Ref. [11], and �n ¼ ��1@x@y# is the parton-density fluc-

tuation. The energy dispersion for the bosons !2 � jkxkyj2
vanishes linearly on the kx and ky axes, which together

form a Bose surface.
A lattice realization of this theory is provided by a 2D

bosonic harmonic oscillator system on an N � N square
lattice with factorized energy dispersion

!2
2D ¼ jfxðkxÞfyðkyÞj2; (2)

where fxðkxÞ and fyðkyÞ are periodic functions of kx and ky
which each vanishing linearly as kx and ky ! 0. [The

simplest example is fxðkxÞ ¼ 2 sinðkx=2Þ and fyðkyÞ ¼
2 sinðky=2Þ with lattice constant a � 1.]

The oscillator Hamiltonian has the form

H ¼ 1

2

X
j

p2
j þ

1

2

X
j;k

qjVjkqk; (3)

where qj and pj are the displacement and momentum of

oscillator j, respectively, and the elements of the matrix V
are determined by the inverse Fourier transform of the
square of the energy dispersion (2). In the models studied
here, V always describes short-ranged oscillator coupling.
Translational symmetry implies V is a Toeplitz matrix; i.e.,
its elements depend only on the displacement ~r between
oscillators j and k, Vjk � V~r ¼ V�~r. The factorized dis-

persion !2
2D further implies that V itself is factorized with

Vjk ¼ Vx
xj�xkV

y
yj�yk , where the Vx (Vy) matrix depends

only on the x (y) component of the displacement between
oscillators.

Standard techniques can, at least in principle, be used to
find the EE of a given subsystem in the ground state of the
Hamiltonian (3) [10,37–39]. As pointed out in Ref. [38],
the particular factorized form of V given above can give
rise to a violation of the area law if Vx and Vy are both
interaction matrices for 1D gapless harmonic chains (as is
the case for the EBL dispersion). One technical issue is
that for the EE to be well defined, the matrix V must be
positive definite, with no zero eigenvalues. The zero
modes on the Bose surface must therefore be regularized.
One natural way to do this is to apply antiperiodic bound-
ary conditions to the N � N lattice of oscillators. Doing so
regularizes the zero modes without introducing a new
length scale (other than the system size). If we adopt
this approach, the matrix V satisfies the condition

V~r¼ðx;yÞ ¼ �VðxþN;yÞ ¼ �Vðx;yþNÞ ¼ VðxþN;yþNÞ and, for

the dispersion (2), the lowest eigenvalue of V is of order
1=N2 [40].
Consider the EE of a block of oscillators with two flat

edges separated by distance L and parallel to a particular
Cartesian axis (e.g., the y axis, see Fig. 1). We refer to such
a block as a belt subsystem and denote it as I (the com-
plementary subsystem of oscillators outside the block is
denoted as O). Following a procedure introduced by
Cramer et al. [41], we perform a partial Fourier transform

along the y axis, ~qx;ky ¼ ð1= ffiffiffiffi
N

p ÞPye
ikyyqx;y, ~px;ky ¼

ð1= ffiffiffiffi
N

p ÞPye
ikyypx;y. This transformation does not mix the

degrees of freedom in I with those inO and thus leaves the
EE of the belt subsystem unchanged. After this transfor-
mation, the Hamiltonian is

H ¼ X
ky

1

2

�X
x

~px;ky
~px;�ky þ fyðkyÞ

X
x1;x2

~qx1;kyV
x
x1;x2

~qx2;�ky

�
;

(4)

where (for antiperiodic boundary conditions) ky ¼ ð2ny þ
1Þ�=N, with ny ¼ 0; 1; . . . ; N � 1.

The Hamiltonian (4) describes N decoupled 1D chains
with dispersions !1DðkxÞ ¼ jfxðkxÞjjfyðkyÞj with ky fixed

and nonzero. Each chain then has!1DðkxÞ�jkxj for kx�1
and so is conformally invariant at long wavelengths. We
therefore expect allN chains to contribute S1D ¼ ð1=3Þ lnL
to the EE in the L � 1 limit [2,42–44]. If the zero modes
are regularized using antiperiodic boundary conditions,
then the matrix Vx

xk�xj is an antiperiodic function of xk �
xj with antiperiod N. [For the case fxðkxÞ ¼ 2 sinðkx=2Þ,
Vxð0Þ ¼ 2, Vxð1Þ ¼ �1, VxðnÞ ¼ 0 for n 2 ½2; N � 1�
and VxðNÞ ¼ þ1 corresponding to oscillators coupled by
nearest-neighbor springs.] For this regularization scheme,
if L is held fixed and N is taken to 1, the EE will diverge
(as seen explicitly in the numerical work of Ref. [45]).

FIG. 1 (color online). Partition of an N � N square lattice into
the inner partition (I) with size L� N and the outer partition
(O) with size ðN � LÞ � N. The subsystem I , which preserves
translational symmetry along one Cartesian axis, is called the
belt subsystem. The leading EE of the belt subsystem is shown in
the text to be SI ¼ ðN=3Þ lnL.
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We therefore consider the limit N, L ! 1 keeping the
ratio L=N fixed. In this limit, we indeed expect the leading
contribution to the EE of each chain to be S1D ’ ð1=3Þ lnL
for large enough L regardless of the L=N ratio. Numerical
studies of the gapless harmonic 1D chain with nearest-
neighbor coupling and antiperiodic boundary conditions
confirm this expectation [45].

The N 1D chains described by Hamiltonian (4) are
critical. They each violate the 1D area law logarithmically
and contribute ð1=3Þ lnL to the EE of the belt subsystem I .
The total EE of I is thus

SI _¼N

3
lnL; (5)

which violates the 2D area law (here _¼ indicates the
leading contribution in the scaling limit described above).
This violation occurs because the number of critical chains
contributing to SI is extensive in N. This in turn is a direct
consequence of the existence of a Bose surface and should
be contrasted with the case of critical Bose systems with
dispersions vanishing at a single point in k space consid-
ered in Ref. [41] for which the number of critical chains is
not extensive in N and the area law holds. Note that the
simplest case with fxðkxÞ ¼ 2 sinðkx=2Þ and fyðkyÞ ¼
2 sinðky=2Þ can be realized in Hamiltonian (3) with only

first and second neighbor couplings.
The result (5) can be generalized straightforwardly to

belt subsystems in d � 2 [see, e.g., Fig. 2(a) for the 3D
version of the partition]. The EE in dD for a system with
dispersion !2

dD ¼ jf1ðk1Þf2ðk2Þf3ðk3Þ 	 	 	 fdðkdÞj2 where

each fiðkiÞ vanishes linearly as ki ! 0 is

SdI _¼Nd�1

3
lnL: (6)

Bounds for EE of rectangular subsystems in dD.—A
rectangular subsystem on a 2D square lattice can be viewed
as the intersection of two perpendicular belt subsystems

A and B, [see Fig. 2(b)]. The region A \B has length
Lx and widthLy. We can put an upper bound on the EE of

this rectangular subsystem using the strong subadditivity
inequality [25–36],

SA þ SB � SA[B þ SA\B � SA\B

) N

3
lnðLxLyÞ � SA\B � Sh; (7)

where we assume N, Lx, Ly, N �Lx, N �Ly � 1 [46].

Here we explicitly use Eq. (5) and the positivity of the EE.
To obtain a lower bound, we consider N ¼ nxLx and

N ¼ nyLy, where nx; ny 2 Rþ. By translational symme-

try, the EE of any subsystem with the same shape, size, and
orientation as A \B is equal to Sh. We can therefore
clone dnye (dnxe) copies ofA \B and pile them along the y

direction (x direction) to cover the whole area of subsystem
A ðBÞ, each of which has the same EE, S1 ¼ S2 ¼ 	 	 	 ¼
Sdnye ¼ Sh and a similar relation for y $ x. By the strong

subadditivity inequality we have S1 þ S2 þ 	 	 	Sdnye �
S1[2[3[			[dnye ¼ SA ) Sh � Ly

3 lnLx and a similar rela-

tion with y $ x. The EE of a rectangular subsystem can
then be bounded below as

Sh � max

�
Lx

3
lnLy;

Ly

3
lnLx

�
: (8)

For a concrete example, let us consider a partition of the
2D system into four (22) equally sized square subsystems.
The belt subsystems A and B now are each half of the
whole system [see Fig. 2(c)], and we are interested in
placing upper and lower bounds on SA\B. In this parti-
tioning, SA[B ¼ Scomplement ¼ SA\B, and we obtain a

better upper bound than Eq. (7) because SA þ SB �
SA[B þ SA\B ¼ 2SA\B. The EE S2EP � S2;EPh (where

EP indicates an equally partitioned region) is bounded as

N

3
ln

�
N

2

�
� S2;EPh � N

6
ln

�
N

2

�
: (9)

For d > 2, the above argument is straightforwardly gen-
eralized to show that the EE of the equally partitioned
subsystem (2d equally sized subsystems) in d dimensions

SdEP � Sd;EPh can be bounded as

dNd�1

3
ln

�
N

2

�
� Sd;EPh � 1

3

�
N

2

�
d�1

ln

�
N

2

�
: (10)

Now consider a nonrectangular subsystem with at least
one boundary parallel to a Cartesian axis, Fig. 3(a). We can
still use lattice symmetries and the strong subadditivity
inequality to obtain a lower bound on the EE. Taking the
EBL as an explicit example, which has lattice translation
and mirror symmetries, first we clone the original subsys-
tem and use mirror symmetry to flip the cloned subsystem
about a Cartesian axis. We then overlap the clone with the
original to form a new subsystem with two parallel flat

FIG. 2 (color online). (a) Partition of a 3D lattice into the
subsystem I and O. The shaded box regime I with size
L� N � N is the belt subsystem of interest. (b) Rectangular
subsystem of a 2D lattice which can be considered as the overlap
region of two belt subsystems A with size Lx � N and B
with size N �Ly. The leading entanglement entropies of the

belt subsystems are SA ¼ ðN=3Þ lnLx and SB ¼ ðN=3Þ lnLy.

(c) Illustration of equal partition in 2D. Each subsystem has size
N=2� N=2.
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edges, see Fig. 3(b). Next, we make copies of the new
subsystem and tile them along a Cartesian axis to form the
belt subsystem, Fig. 3(c). Finally, focusing on the belt
subsystem, we can adopt the result (5) to show a logarith-
mic lower bound on the EE.

We have not found a rigorous way to establish a viola-
tion of the area law for subsystems with general smooth
boundary. However, we consider it likely that such a
violation does occur. A general subsystem can be ‘‘arbi-
trarily’’ sliced into a left region (L) and a right region (R)
by a cut parallel to a Cartesian axis as shown in Fig. 3(d).
Since L and R both have a flat boundary parallel to a
Cartesian axis, the arguments given above imply that SL
and SR will both show logarithmic enhancements to the
area law. The only way that the EE of the full subsystem
SL[R would not have a similar enhancement would be if
the leading logarithmic enhancements of SL and SR were
each entirely due to entanglement of oscillators in L with
those in R. Given that the division of the general subsys-
tem into L and R is arbitrary, we view such a cancellation
as implausible. Rather, we believe the logarithmic

enhancement is due to long-range correlations in the sys-
tem. We thus expect that a subsystem with general smooth
boundary shows a logarithmic violation of the entropic
area law. Such arguments can be straightforwardly gener-
alized to d > 2.
Arbitrary Bose surface.—The arguments presented here

are not unique to the factorized EBL dispersion. We expect
similar logarithmic enhancement of the area law for sys-
tems with generic Bose surfaces. For example, a system of
harmonic oscillators with dispersion

!2
k ¼ �2½sin2ðkx=2Þ þ sin2ðky=2Þ � ��2 (11)

has a closed Bose surface for 0<�< 2. To compute the
EE of a belt subsystem I of width L, one can again follow
Ref. [41] and Fourier transform along the direction parallel
to the boundary of I , say the y direction, to obtain
decoupled chains with dispersions given by Eq. (11) for
fixed values of ky.

As illustrated in Fig. 4, for those values of ky which

correspond to lines that intersect the Bose surface, the
resulting 1D dispersion is critical and generically has two
gapless points where the dispersion vanishes linearly. We
therefore expect each such chain to contribute ð2=3Þ lnL to
the EE of I , which will then be SI ’ �N lnL where � is a
geometric factor associated with the size of the Fermi
surface along the ky axis. The strong subadditivity argu-

ments given above then imply a logarithmic enhancement
to the area law for rectangular and more general subsys-
tems. As also noted above, the essential ingredient for this
enhancement is the extended Bose surface which gives rise
to an extensive number of critical chains contributing to SI
after a partial Fourier transform.
Conclusions.—In this Letter we show that the entangle-

ment entropy of Bose metals has a logarithmic violation of
the area law. We explicitly study bosonic systems with
gapless factorized energy dispersions, such as the exciton
Bose liquid in 2D. We explicitly give the entanglement
entropy of the belt subsystems in d dimensions which
shows logarithmic enhancement. We bound the entangle-
ment entropy of the subsystems with at least a single flat
boundary in a way that shows the logarithmic violation and

FIG. 3 (color online). (a)–(c) Illustrations of the use of mirror
and lattice translation symmetries to form a belt system to obtain
a logarithmic entropic lower bound. The shaded region in
(a) represents the initial subsystem with one flat boundary. In
(b) we clone a copy of the subsystem and use mirror symmetry to
flip it. We then overlap the flipped subsystem with the original
one to make a new subsystem. In (c) we clone the new subsystem
in (b) and tile it along the Cartesian axis (y axis here) to form a
belt system, which gives the logarithmic entropic lower bound.
(d) Arbitrary slicing along a Cartesian axis of a subsystem
with general smooth boundary into a left region L and a right
region R.

0

0

kx

k y

(a)
2 2

kx

0.2

0.4

k

(b)

FIG. 4 (color online). (a) Closed Bose surface for the disper-
sion (11) with � ¼ 1 and � ¼ 0:75 and a line of constant ky
corresponding to one of the decoupled chains which contributes
to the entanglement entropy of a belt subsystem I with boundary
parallel to the y axis. (b) 1D dispersion of the decoupled chain
corresponding to the line in (a).
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argue that subsystems with arbitrarily smooth boundary are
similarly bounded. The implication of this work is that
entropic area-law violation is perhaps more common than
thought. It is not a unique identifier of the presence of
Fermi surface in fermionic systems, as it can also be
associated with Bose metals.
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