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Variational Monte Carlo Calculations for the ¢'-J Model with Fermi Holes and Boson Spins
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We have performed variational Monte Carlo calculations for the two-dimensional #'-J model (¢' is an
effective, sublattice-preserving hopping amplitude) using new wave functions which describe fermionic
holes hopping in a background liquid of singlet bonds represented by products of bosonic spin operators.
The variational energies we obtain from these wave functions can be directly compared with those of
other proposed wave functions. We find that our energies are lowest in the ¢'// <1 limit.

PACS numbers: 74.65.-+n, 75.10.Jm

Strong correlations in the copper-oxide superconduc-
tors have motivated theorists to study a variety of
“strong-coupling” fermion models. One of the simplest
of these is the z-J model describing holes undergoing
nearest-neighbor hops (with amplitude ¢) in a spin- an-
tiferromagnet (with exchange coupling J). The two-
dimensional square-lattice version of the ¢-J model may
describe the essential low-energy physics of a single
copper-oxide sheet in a high-T, superconductor:'? If so,
the ratio of ¢ and J is probably intermediate,® with
t/J ~4-a difficult regime theoretically.

Recent mean-field work on the t/J <1 regime* has
suggested that the ground state (if one excludes the pos-
sibility of phase separation by adding long-range
Coulomb repulsion, see below) is a so-called commen-
surate-flux-phase (CFP) state, a generalization of the
1 flux state of Affleck and Marston.®> These states are
characterized by a fictitious “flux” parameter which is
taken to be uniform throughout the lattice with a flux
density commensurate with the number of electrons per
site. Among the interesting properties of the CFP states
is that they exhibit a spontaneously broken time-reversal
symmetry for any finite doping. Such a broken symme-
try is a prerequisite for some of the more exotic super-
conducting mechanisms, e.g., the anyon superfluid mod-
el,%7 and so this result provides strong motivation for
further study of the ¢/J <1 limit, despite its unphysical
nature.

In this Letter we present a new class of variational
wave functions with significantly lower magnetic ener-
gies (J) than the CFP states. These new wave functions
describe fermionic holes hopping (slowly) in a back-
ground liquid of singlet pairs represented by products of
bosonic spin operators. By construction each hole is con-
strained to a single sublattice and is described by a ¢'-J
model (where 't'~¢?/J is an effective sublattice-
preserving hopping parameter). In the case where it can
be checked, the magnetic energy of the new wave func-
tion is substantially lower (~40%) than that of the cor-
responding CFP state® clearly indicating that the CFP
states are not stable in the t/J <1 limit. This result is
especially significant because our wave functions are real

and thus time-reversal invariant—a result at variance
with the anyon mechanism, _

It is reasonable to assume that in the ¢/J <1 limit of
the ¢-J model coherent hole motion proceeds via two suc-
cessive nearest-neighbor hops followed by a spin flip
(S;~S;") which heals the ferromagnetic “wake” left by
the hole. The intermediate state in this process involves
a misoriented spin and so costs energy —~J: thus the
effective next-nearest-neighbor hopping amplitude ¢’ is of
the order ¢%/J. The effective low-energy Hamiltonian is
then the t'-J model

H= —Ztilj(l —ni,_,,)cif,cja(l —nj,-o)
ij

+J(Z>S,~~S,-+ Ve. (1
1,

The matrix ¢;; contains the sublattice-preserving second-
and third-neighbor hopping matrix elements: z; and #/.
When (1) is “derived” from the ¢-J model the diagonal
hopping amplitude ¢; is twice the collinear hopping am-
plitude ¢/, and both are positive. The third term in (1),
V¢, is the long-range Coulomb interaction without which
the ¢'-J model almost certainly phase separates into hole-
rich and electron-rich phases in the #'/J <1 limit.° By
including long-range repulsion between electrons these
phase-separated states can be ruled out as unphysical.
From a variational point of view the problem then be-
comes to find a homogeneous wave function with optimal
t'-kinetic and magnetic energies—the expectation values
of the first and second terms in (1), respectively. [It is
also possible that (1) has crystalline ground states for
certain commensurate filling fractions— we will not con-
sider that possibility here.]

Because we are interested in the ¢'/J <1 regime our
approach has been to construct variational wave func-
tions which optimize the magnetic energy— whatever the
cost to the ¢-kinetic energy. Accordingly, we follow
Liang, Doucot, and Anderson'® (LDA) who constructed
a class of wave functions for the insulating antiferromag-
net which included states with excellent energies [the
best being Erpa=—0.3344(1)J/bond versus the “ex-
act” result!! E=—0.33459(5)J/bondl. A simple gen-
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eralization of the Liang-Doucot-Anderson wave func-
tions to the doped case utilizes the Schwinger-boson-
slave-fermion representation in which the physical elec-
tron operator cj, is factorized into fib; with f; a
spinless-fermion annihilation operator and bi,, a spin-
indexed boson creation operator. The strict no-double-
occupancy (Gutzwiller) constraint is then enforced by
requiring that all physically acceptable states |y) satisfy
(T fi+bibi + b6 ) =0 for all lattice sites i. In
terms of the bosonic singlet-bond creation operator
B =(1/v2) (i}, —bib})) our ansatz wave function
may be written as

A} {kh = 2,} w(a)Detlexp(ik; - r;)1|a;ir}), )

where'? w(a) =ITf=A{iz, — js,|) and
|e; {r})EfrT. s f:,,.Bitl,j,,l s Biiq,jaq |0}

with m=N8, g=N(1—8)/2 (5 is the fraction of holes
doped into the system and N the total number of sites),
and ¢ denotes the singlet-bond configuration. The coor-
dinates {r} label the hole positions while i, and j, label
spin positions. The “vacuum” state |0} is defined by re-
quiring that f;|0) =0 and b;5|0)=0 for all i and o, and
the function A(m) and the set of k states should be
chosen to optimize the energy of (2). We divide the
square lattice into two Néel sublattices, 4 and B, and the
sum in (2) is then over all singlet-bond states satisfying
the Gutzwiller constraint (every site on the lattice has ei-
ther a single Schwinger boson or a Fermi hole operator,
and not both) and in which all the i,’s and j,’s are in the
A and B sublattices, respectively. This last requirement
constrains the allowed configurations in (2) to have
equal numbers of holes on the 4 and B sublattices, and
so the matrix element of the nearest-neighbor electron
hopping operator in (2) is zero. Because of this, (2) can-
not be used to estimate the kinetic energy of the #-J mod-
el; however, it is ideal for the #’-J model.

As for the Liang-Doucot-Anderson wave functions, to
which our wave functions reduce when § =0, if A(m) =0
for all m (the only case we have considered) then the
spin part of (2) satisfies Marshall’s sign,'®13 4

1.e.,
sgn(Olfs, * + * fenbint =+ * biybj1 - -+ bji | 1))

=sgn(Detlexplik; r,)1) (—1)7Yr4 | (3)

where P(ji, . .. ,J;) is equal to the total number of down
spins on the A4 sublattice. While it is well known that the
ground state of the pure Heisenberg model satisfies
Marshall’s sign, away from half filling the ground state

(ﬁ;{r}IS,--S,-Ia;{r})={

0, otherwise.

of (1) is not required to satisfy Marshall’s sign.
Nonetheless, we expect that Marshall’s sign will be ap-
proximately satisfied when the magnetic energy dom-
inates'* and it is for this reason that we believe that (2)
is a sensible variational ansatz for the #'-J model in the
t'/J<K1 regime. We emphasize also that requiring
Marshall’s sign for the spins forces Fermi statistics on
the holes, as was first noted in Ref. 15.

If A(m) is taken to be independent of m then (2) de-
scribes holes hopping in a (singlet-projected) classical
Néel state.!® The holes then behave as noninteracting
spinless fermions with dispersion

e(k) = —2t/(cos2ky +cos2k, ) — 4tz cosky cosky .

When t; =2t the minimum-energy hole states are de-
generate along the half-zone boundary (k, =t k, * ).
Quantum spin fluctuations are introduced into (2) by al-
lowing A(m) to decay as m increases.'® The A(m) values
we have used are those which optimize the energy at half
filling, the optimal values obtained by LDA:'®A(3)/A(1)
=0.125, A(m)/A(3) =0.25(m/5) ~* for m = 5; for these
values (2) has long-range Néel order at half filling.'%!’
Spin fluctuations renormalize the effective hopping ma-
trix elements for the holes; we find for the A(m) values
just given that z; is more strongly renormalized than f.
Thus the occupied k states we have used in (2) fill the
band structure described by e(k) with #, 2 2¢4 for which
the one-hole ground-state degeneracy is lifted, with the
minimum’ hole energy being at (0,7) and (x,0). This
shift may be an artifact of our wave function, though a
similar shift [from (% #/2, *#/2) to (0,7),(x,0)] has
been seen in exact diagonalization studies of the z-J
model when ¢/J becomes less than some critical value. 18
We now describe the method used to compute the en-
ergies of (2). Consider two singlet-bond states: a bra
state {B;{r}| and a ket state |a;{r}). Each of these states
has a corresponding singlet-bond configuration which is
produced by drawing lines between the pairs of sites
which are connected by singlet bonds. When the two
configurations corresponding to states (B;ir}| and |e;{r})
are laid on top of one another a “transition graph” is
produced.'® This transition graph is always made up of
closed loops with each loop consisting of alternating o
and B bonds. We define the number of loops in this tran-
sition graph to be N,s. The overlap is then given by"®
(B;{r} | a3 fr}) =2 Nep~ N2 4
(the convention that bonds always connect opposite sub-
lattices in the way defined above ensures that
(B;ir}a;{r}) > 0), and the matrix element of a dot prod-
uct of spin operators by

(—D-12¢g;{}|a:{}) if i and j share a loop,

5)
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The expectation value of a dot product of spin operators may then be written as

(B;{r}1S;- S;las rd)

x};{k}ls,--s,-l{x};{kbsz_;, TRRIpEY Pla, {31, 6
{r}
where
. = 1 : . . ik x;
Pla,B:{r}1 <{;b};{k}lH;“};{k})(o([i)a)(az)(,(},{r}|oz,{1'})|Dete |2. )

The function Pla,B;ir}] is positive definite [because (2)
satisfies Marshall’s sign] and normalized to unity when
summed over all transition graphs. We used the Monte
Carlo method with the standard Metropolis updating?’
to calculate (6) and a similar expression for the ¢'-kinetic
energy of (2). Our update scheme combined the “loop-
gas” technique of LDA for the boson spins and the
“inverse-update” method of Ceperley, Chester, and
Kalos?! for the fermion holes.

Figure 1 shows the magnetic energies we have ob-
tained using our wave functions, as well as the energies
of other wave functions and models for comparison. The
calculations for our wave functions, and for the uni-
form-flux states,® were performed on 24 % 24 lattices with
periodic boundary conditions. On this graph the mag-
netic energies of a completely phase-separated state lie
on a straight line drawn through E ~ —0.334J/bond at
half filling and E =0 at zero filling. As expected, these
phase-separated magnetic energies are lower than those

© S
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o T =1 I EE— =T = T
i * — @ =
A - P = 211'/3 :
 —-Broken Bonds o b
© — Bosonic—Spin States - : -

-0.15

Magnetic Energy (J) / Bond
~0.25

~0.35

Hole Doping (6)

FIG. 1. Magnetic energy per bond vs doping for a phase-
separated state (solid line), our wave functions— referred to as
bosonic spin states (circles), a simple broken-bond model
(squares), and the uniform-flux states (stars and triangles; tak-
en from Ref. 8). The solid line shows the average magnetic en-
ergy per bond for a completely phase-separated state. The cir-
cles are the energies we have found for wave function (2). The
squares are the energies for a simple broken-bond model com-
puted from Eq. (8), and the stars and triangles are the energies
of the uniform-flux states with ®=x and ®=2x/3, respectively
(Ref. 8). At 8=1 the ®=22/3 uniform-flux state is an exam-
ple of a CFP state. Our wave function has significantly lower
energy than this state, indicating that the CFP state is unstable
in the ¢/J K1 limit.

1234
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of any other wave function, including ours, clearly show-
ing that the ¢’-J model (and the #-J model), in the ab-
sence of long-range Coulomb interactions, must phase
separate in the #'(¢)/J <1 limit.° As stated above, our
viewpoint is that the addition of long-range repulsion be-
tween electrons will make the phase-separated states
physically unacceptable, and we include their energies
only to provide an absolute lower bound to the magnetic
energy.

The next-lowest magnetic energies shown in Fig. 1 are
for our wave functions. Just above them are the energies
from a broken-bond model (BBM). A broken bond is
two neighboring sites i and j which are not both occupied
by an electron, ie., for which (n;n;) =0 rather than I.
Assuming that the half-filled energy per bond,
~ —0.334J, is lost for each broken bond then we have

0.3347
bond ] 2N %;(”'”f ®

7 EBBM=[

where the expectatlon value is taken using our wave
functions. The true magnetic energies of our wave func-
tions are Jower than this naive model, indicating that, al-
though magnetic energy is being lost due to bond break-
ing as holes are added to the system, some of the remain-
ing bonds are “strengthened.” This result is not surpris-
ing in light of recent spin-wave calculations which show
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FIG. 2. The t'-kinetic energy per hole vs doping for our
wave functions with (circles) and without (squares) quantum
spin fluctuations. The occupied hole k states fill the band de-
scribed by e(k) given in the text with 22z,
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that the local energy near a frozen hole is enhanced over
its half-filled value.?? Finally, the uniform-flux-phase
energies calculated by Liang and Trivedi® are also shown
in Fig. 1. As predicted by the mean-field theories, at

=1 the magnetic energy of the 3 -flux (CFP) state is

lower than that of the 7 -flux state; however, both of
these energies are much higher than that of our wave
function, as well as of the naive broken-bond model.
This indicates that the CFP state cannot be stable, not
only in the #'/J <1 limit of (1), but also in the 1/J <1 of
the ¢-J model.

Figure 2 shows the #"-kinetic energy per hole of (2) for
two cases: (i) A(m) has the optimal half-filled values
given above, and (ii) A(m) is taken to be constant (clas-
sical Néel spin background). As & is increased the ¢'-
kinetic energies per hole for case (i) increase in roughly
the same fashion as for case (ii); the added holes fill a
spinless Fermi sea where the effective hopping matrix
elements are renormalized from their “bare” values.
One effect of this renormalization, as discussed above, is
that the one-hole minimum is placed at (0,7) and (z,0).
Another is that the total ¢'-kinetic energy is increased;

thus adding quantum spin fluctuations to (2)—ie., al- .

lowing A(m) to vary— lowers the magnetic energy at the
cost of increasing the ¢'-kinetic energy.

To conclude, we have presented a class of variational
wave functions suitable for the ¢'-J model in the ¢'/J « 1
limit. These wave functions have excellent magnetic en-
ergies, substantially lower than the uniform-flux-phase
wave functions (including the case we could check with
commensurate flux), thus providing a direct demonstra-
tion that the CFP states are unstable for the #-J model
when ¢/J is less than some finite critical value.
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