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Quantum Hall Fluids on the Haldane Sphere: A Diffusion Monte Carlo Study
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A generalized diffusion Monte Carlo method for solving the many-body Schrödinger equation on
curved manifolds is introduced and used to perform a “fixed-phase” simulation of the fractional quantum
Hall effect on the Haldane sphere. This new method is used to study the effect of Landau level mixing
on then ­ 1y3 energy gap and the relative stability of spin-polarized and spin-reversed quasielectron
excitations. [S0031-9007(97)04872-2]
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Much of the modern understanding of the fractiona
quantum Hall effect (FQHE) is based on the observatio
that in two dimensions the quantum statistics of identic
particles can be changed by performing a singular gau
transformation [1]. Such a transformation can be use
for example, to map the equations describing an ide
two dimensional electron gas (2DEG) in a transvers
magnetic field at Landau level filling factorn ­ 1yq,
where q is an odd integer, into those describing
system of “composite bosons” moving in zero effectiv
magnetic field, interacting via both Coulomb and “Chern
Simons” interactions. This transformation, from fermion
to bosons, is the basis of the successful Chern-Simo
Landau-Ginzburg phenomenology of the FQHE [2]. It
existence also suggests the possibility of numerica
simulating the FQHE atn ­ 1yq using the composite
boson description.

Recently, Ortiz, Ceperley, and Martin (OCM) [3] in-
troduced the “fixed-phase” diffusion Monte Carlo (DMC
method for simulating non-time-reversal symmetric sy
tems with complex-valued eigenfunctions. OCM applie
this method to the FQHE ground state atn ­ 1yq, using
the torus geometry, and fixing the phase of the wave fun
tion with Laughlin’s trial wave function. The resulting
effective bosonic problem corresponded precisely to t
composite boson description, with the additional approx
mation that those terms in the transformed Hamiltonia
leading to fluctuations of the phase of the wave functio
were ignored. This effective bosonic problem was the
solved by standard DMC techniques [4], and the resu
used to study the effect of Landau level mixing (LLM) on
the FQHE ground state. However, OCM did not consid
either excited states or geometries other than the torus.

In this Letter we present the results of a fixed-phas
DMC study of the FQHE atn ­ 1y3 using the spheri-
cal geometry introduced by Haldane [5]. To go from
the torus to the sphere we introduce a generalized DM
method for solving the many-body Schrödinger equatio
on curved manifolds. One motivation for this Letter i
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that the “Haldane sphere” is arguably the most convenie
geometry for numerical study of the FQHE. As an ex
ample of the application of this method we have calculate
the effect of LLM on the FQHE transport gap, i.e., the en
ergy gap for creating a fractionally charged quasielectro
quasihole pair with infinite separation. Results have be
obtained for both spin-polarized and spin-reversed qua
electrons. Previous calculations of the crossover magne
field below which the transport gap is set by the spin
reversed excitation have ignored LLM [6,7]. The presen
Letter includes these effects for the first time.

An ideal two dimensional electron gas, with effec
tive massmp, carrier densityn, and dielectric constant
e, placed in a transverse magnetic fieldB is charac-
terized by three length scales—the effective Bohr ra
diusaB ­ eh̄2ympe2, the magnetic lengthl0 ­

p
h̄cyeB,

and the mean interparticle spacingd ­ 1y
p

pn. These
length scales can be combined to form two independe
dimensionless ratios, the filling factorn ­ 2l2

0yd2, and
the electron gas parameterrs ­ dyaB. The degree of
LLM is characterized by the ratio of the typical Coulomb
energy to the cyclotron energyse2yeddyh̄vc ­ rsny2,
where vc ­ eBympc. Thus, for fixed n, rs provides
a useful measure of the importance of LLM. Becaus
rs ~ mpy

p
B LLM can be increased either by decreasin

B or increasingmp. For example, in two dimensional
GaAsyAlGaAs systems with typical carrier densities, fo
n-type systemsmp . 0.07 and rs , 2 while for p-type
systemsmp . 0.38 andrs , 10.

In the spherical geometry electrons are confined
the surface of a sphere of radiusR with a magnetic
monopole at its center. LetN denote the number of elec-
trons and2S denote the number of flux quanta pierc
ing the surface of the sphere. The field strength
then B ­ Sh̄cyeR2 and, for n ­ 1yq, 2S ­ qsN 2 1d.
If electron positions are given in stereographic coord
nates,r ­ sx, yd ­ scosf, sinfd tanuy2, whereu andf

are the usual spherical angles, then the Hamiltonian
sh̄ ­ mp ­ e ­ 1d,
© 1997 The American Physical Society
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Dsrid f2i=i 1 Asridg2 1
1
e

X
i,j

1q
r2

ij 1 b2
,

(1)

whereDsrid ­ s1 1 r2
i d2y4R2, rij is the chord distance

on the sphere, andb is a parameter which models the
finite thickness of the 2DEG [8]. We work in the Wu
Yang [9] gauge for whichAsrid ­ 2R2sBycd s2yi , xidy
s1 1 r2

i d.
We have used three trial wave functions to impleme

the fixed-phase approximation (z ­ x 1 iy is the com-
plex stereographic coordinate).

(i) Ground state.—In the Wu-Yang gauge the spherica
analog of the Laughlin wave function forn ­ 1yq is [5]

cGS ­
Y

k

s1 1 jzkj2d2S
Y
i,j

szi 2 zjdq. (2)

(ii) Spin-polarized excited state.—This state, con-
structed using Jain’s composite fermion approach [1
describes an excitation with a chargeeyq quasielectron at
the top of the sphere and a charge2eyq quasihole at the
bottom of the sphere,

cSP ­
Y

k

s1 1 jzk j2d2S
Y
i,j

szi 2 zjdq21

3

ØØØØØØØØØØØØØ

1 z1 · · · zN22
1

P
ifi1

1
z12zi

...
...

...
...

1 zN · · · zN22
N

P
ifiN

1
zN 2zi

ØØØØØØØØØØØØØ
. (3)

(iii) Spin-reversed excited state.—This state is similar
to cSP except the quasielectron has a reversed spin. Ifz1

denotes the coordinate of the down spin electron then t
wave function is [7]

cSR ­
Y

k

s1 1 jzk j2d2S
Y
lfi1

szl 2 z1d21
Y
i,j

szi 2 zjdq.

(4)

The fixed-phase approximation is carried out by wri
ing the relevant trial function ascTsRd ­ jcTsRdj 3

expfifTsRdg, whereR ­ sr1, r2, · · · , rNd, and then using
the overall phasefTsRd to perform a singular gauge
transformation, Ĥ ­ expf2ifTsRdgH expfifTsRdg ­
HR 1 iHI, where

HR ­ 2
1
2

X
i

Dsrid f=2
i 2 Ã2sridg 1

1
e

X
i,j

1q
r2

ij 1 b2
,

(5)

HI ­ 2
1
2

X
i

Dsrid f=i ? Ãsrid 1 Ãsrid ? =ig , (6)

and Ãsrid ­ Asrid 1 =ifTsRd. As shown by OCM,
the bosonic ground state ofHR is the lowest energy
state with the same phase as the trial function [3]. T
DMC method can then be applied to the imaginary tim
Schrödinger equationHRcsR, td ­ 2

≠

≠t csR, td, the so-
-

nt

l

0],

his

t-

he
e

lution of which, in the limit t ! `, converges to the
ground state ofHR.

The dependence ofDsrd on position in (1) is due to the
finite curvature of the surface of the sphere, for which th
metric tensor, in stereographic coordinates, isgabsrd ­
Dsrd21dab. Below we introduce our generalized DMC
method for simulating the many-body Schrödinger equa
tion on such a curved manifold. Note that in two dimen
sions it is always possible to choose coordinates for whic
gab ­ fsrddab, i.e., to work in the so-called “conformal
gauge,” and so the generalized DMC method introduce
below can, in principle, be applied toany curved two di-
mensional manifold, not just the sphere.

The central modification of the DMC method is to re-
place the usual importance-sampled distribution functio
PsR, td ­ csR, td jcTsRdj [4] with

P̃sR, td ­ csR, td jcTsRdj
NY

i­1

1
Dsrid

. (7)

This has two important consequences. First, because
differential area element on the sphere isdA ­ d2ryDsrd
the expectation value of the ground state energy is simp

kHl ­

R
P̃sR, t ! `dELsRd dRR

P̃sR, t ! `d dR
. (8)

Second, the differential equation satisfied byP̃sR, td is

2
≠

≠t
P̃sR, td ­

NX
i­1

"
2

1
2

=2
i fDsridP̃sR, tdg

1 =i ? fDsridFisRdP̃sR, tdg

#
1 fELsRd 2 ET gP̃sR, td , (9)

where FisRd ­ =i ln jcT j, ELsRd ­ HRjcT jyjcTj, and
ET is a constant which must be adjusted in the course
the simulation to be equal to the ground state energy.
is worth noting that, except for the position dependenc
of Dsrd, (9) has the same form as the usual diffusio
equation appearing in DMC simulations [4].

Equation (9) can be solved numerically by stochast
cally iterating the integral equation

P̃sR0, t 1 td ­
Z

GsR ! R0, tdP̃sR, td dR , (10)

using the short-time propagatorfO st2dg

GsR ! R0, td ­ exp

"
2t

√
fELsRd 1 ELsR0dg

2

2 ET

!#
NY

i­1

G0
i sR ! R0, td ,

(11)

where

G0
i sR ! R0, td ­

1
2pDsridt

3 exp

"
2fr0

i 2 ri 2 DsridtFisRdg2

2Dsridt

#
(12)
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represents a diffusion and drift process. In (12) bo
Dsrid and FisRd are evaluated at the “prepoint” in the
integral equation. This makes it possible to simulate (1
in terms of branching random walks by a straightforwar
application of the rules given in [4], and is a direc
consequence of having the spatial derivatives in (9) sit
the way to the left in each term [11]. This in turn follows
from our modified definition ofP̃sR, td. Had we used
the usual definition,PsR, td, we would have obtained
“quantum corrections” in the propagator [12].

The rs dependence of the ground state energy, and t
energies of the spin-polarized and spin-reversed excit
states, have been calculated by fixing the phase with
trial functionscGS, cSP , andcSR, respectively, and solv-
ing the resulting bosonic problems using the generaliz
DMC method outlined above. Figure 1 shows the resu
for the ground state energy as a function ofrs for b ­ 0
andn ­ 1y3, compared with the variational Monte Carlo
results of Priceet al. [13,14]. This comparison provides
an important test of our generalized DMC method—th
wave functions used in the variational calculations hav
the same phase ascGS and so must have higher energie
than our fixed-phase DMC results, as is in fact the case

The spin-polarized and spin-reversed energy gaps,DSP

andDSR, obtained by subtracting the ground state ener
from the excited state energies, are plotted vsrs in
Fig. 2. Results are forN ­ 20 and are given forb ­ 0
and b ­ 1.5l0. To reduce finite size effects we have
subtractedV0 ­ 2seyqd2y2eR, the Coulomb energy of
two point charges with charge6eyq at the top and
bottom of the sphere, from our results for the gaps [15,16
The crossover magnetic field,Bc, below which the spin-
reversed excitation has lower energy than the spi
polarized excitation, isBc ­ sDSP 2 DSRdygmB, where
mB is the Bohr magneton andg is the effectiveg factor.
For GaAsse . 13, g . 0.5d we find, for rs ­ 2, Bc .

FIG. 1. Ground state energy per particle forn ­ 1y3 as a
function ofrs. The dashed line is the variational result of Pric
et al. [13] and the solid line is a least-squares fit of secon
degree polynomial inrs to our fixed-phase DMC results for
rs ­ 1, 5, 10, 15, and 20 (dots). Results are for 50 electro
and statistical errors are smaller than symbol sizes.
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14 T, while for rs ­ 10, Bc . 7 T. This reduction ofBc

with increasingrs reflects the fact that, forb ­ 0, LLM
has a stronger effect onDSP than on theDSR, and so tends
to stabilize the spin-polarized excitation.

For b ­ 1.5l0 the effect of LLM onDSP and DSR is
much weaker than forb ­ 0 and the difference in the
two gap energies, in units ofe2yel0, is roughly constant.
Again using GaAs parameters we findBc . 4 T for
rs ­ 2 and Bc . 3 T for rs ­ 10. This result for the
crossover field agrees with previous calculations whic
included the thickness correction but not LLM [6,7]. The
new result here is that, when thickness is included,Bc is
only weakly dependent on LLM.

Figure 3 shows mixed estimates [4] of the densit
profiles of the spin-polarized and spin-reversed excite
states forb ­ 0 at n ­ 1y3 for rs ­ 1 and20. As LLM
is increased the quasielectron and quasihole induce ripp
in the density due to Wigner crystal-like correlations in
the FQHE fluid. Note also that the effect of LLM is
stronger for the spin-polarized excitation than for the spin
reversed excitation, consistent with the fact that LLM
stabilizes the spin-polarized excitation.

FIG. 2. n ­ 1y3 energy gaps for creating a quasielectron
quasihole pair at opposite poles of the sphere vsrs. Results
are given for both a spin-polarized (dots) and spin-revers
(diamonds) quasielectron for thickness parameter (a)b ­ 0,
and (b)b ­ 1.5l0. Results are for 20 electrons. The lines ar
guides to the eye.
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FIG. 3. Mixed estimates of the density profiles ofn ­ 1y3
excited state wave functions on the sphere with a quasielect
at the top of the spheresu ­ 0d and a quasihole on the bottom
of the spheresu ­ pd with rs ­ 1 (dashed line) andrs ­ 20
(solid line), for (a) the spin-polarized excited state, and (b) th
spin-reversed excited state. Results are for 20 electrons.

For typical carrier densities the magnetic field atn ­
1y3 is greater thanBc and the transport gap is set by
DSP . This gap has been measured in bothn-type [17] and
p-type [18] GaAs quantum wells, with typical results
for the highest quality samples, ofDn . 0.05e2yel0 and
Dp . 0.023e2yel0, respectively. The factor of 2 reduc-
tion of the energy gap fromn-type srs , 2d to p-type
srs , 10d samples has been attributed to the increas
LLM [18]. Our results show that LLM has only a weak
effect on DSP when the thickness effect is included, in
agreement with previous calculations [13,19,20]. Thu
while our energy gap forrs . 2 is close to the experimen-
tal value, our result forrs . 10 is off by roughly a factor
of 2. This discrepancy between theory and experiment
most likely due to disorder, the effects of which on the en
ergy gap are still poorly understood.

To summarize, a generalized DMC method for solvin
the many-body Schrödinger equation on curved manifol
has been introduced and used to perform a fixed-pha
simulation of the FQHE on the Haldane sphere. Th
effect of LLM on the n ­ 1y3 energy gap, and the
relative stability of the spin-polarized and spin-reverse
quasielectron states have been investigated using the n
ron
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method. We believe that the generalization of the fixed
phase DMC method to the spherical geometry present
here will be useful for many future numerical studies o
the FQHE.
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