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Quantum Hall Fluids on the Haldane Sphere: A Diffusion Monte Carlo Study
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A generalized diffusion Monte Carlo method for solving the many-body Schrédinger equation on
curved manifolds is introduced and used to perform a “fixed-phase” simulation of the fractional quantum
Hall effect on the Haldane sphere. This new method is used to study the effect of Landau level mixing
on ther = 1/3 energy gap and the relative stability of spin-polarized and spin-reversed quasielectron
excitations. [S0031-9007(97)04872-2]
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Much of the modern understanding of the fractionalthat the “Haldane sphere” is arguably the most convenient
guantum Hall effect (FQHE) is based on the observatiorgeometry for numerical study of the FQHE. As an ex-
that in two dimensions the quantum statistics of identicabmple of the application of this method we have calculated
particles can be changed by performing a singular gaugthe effect of LLM on the FQHE transport gap, i.e., the en-
transformation [1]. Such a transformation can be usedergy gap for creating a fractionally charged quasielectron-
for example, to map the equations describing an ideafuasihole pair with infinite separation. Results have been
two dimensional electron gas (2DEG) in a transverseobtained for both spin-polarized and spin-reversed quasi-
magnetic field at Landau level filing factar = 1/,  electrons. Previous calculations of the crossover magnetic
where ¢ is an odd integer, into those describing afield below which the transport gap is set by the spin-
system of “composite bosons” moving in zero effectivereversed excitation have ignored LLM [6,7]. The present
magnetic field, interacting via both Coulomb and “Chern-Letter includes these effects for the first time.

Simons” interactions. This transformation, from fermions An ideal two dimensional electron gas, with effec-
to bosons, is the basis of the successful Chern-Simonsive massm™, carrier densityn, and dielectric constant
Landau-Ginzburg phenomenology of the FQHE [2]. Itse, placed in a transverse magnetic field is charac-
existence also suggests the possibility of numericallyterized by three length scales—the effective Bohr ra-
simulating the FQHE at = 1/¢ using the composite diusaz = e/i’>/m*e?, the magnetic length, = //ic/eB,
boson description. and the mean interparticle spaciadg= 1/./n. These

Recently, Ortiz, Ceperley, and Martin (OCM) [3] in- length scales can be combined to form two independent
troduced the “fixed-phase” diffusion Monte Carlo (DMC) dimensionless ratios, the filling factor = 2i3/d2, and
method for simulating non-time-reversal symmetric systhe electron gas parametey = d/ag. The degree of
tems with complex-valued eigenfunctions. OCM appliedLLM is characterized by the ratio of the typical Coulomb
this method to the FQHE ground statezat= 1/q, using  energy to the cyclotron energi?/ed)/liw. = rv/2,
the torus geometry, and fixing the phase of the wave funcwhere w. = eB/m*c. Thus, for fixed v, r, provides
tion with Laughlin’s trial wave function. The resulting a useful measure of the importance of LLM. Because
effective bosonic problem corresponded precisely to the, « m*/~/B LLM can be increased either by decreasing
composite boson description, with the additional approxi-B or increasingm®. For example, in two dimensional
mation that those terms in the transformed HamiltoniarGaAs/AlGaAs systems with typical carrier densities, for
leading to fluctuations of the phase of the wave functiom-type systemsn* = 0.07 and r; ~ 2 while for p-type
were ignored. This effective bosonic problem was thersystemsn® = 0.38 andr, ~ 10.
solved by standard DMC techniques [4], and the results In the spherical geometry electrons are confined to
used to study the effect of Landau level mixing (LLM) on the surface of a sphere of radiug with a magnetic
the FQHE ground state. However, OCM did not considemonopole at its center. L&f denote the number of elec-
either excited states or geometries other than the torus. trons and2S denote the number of flux quanta pierc-

In this Letter we present the results of a fixed-phaséng the surface of the sphere. The field strength is
DMC study of the FQHE at = 1/3 using the spheri- thenB = Shc/eR? and, forv = 1/q, 25 = g(N — 1).
cal geometry introduced by Haldane [5]. To go fromIf electron positions are given in stereographic coordi-
the torus to the sphere we introduce a generalized DMQ@atesy = (x,y) = (cos¢,sin¢)tand /2, whered and ¢
method for solving the many-body Schrédinger equatiorare the usual spherical angles, then the Hamiltonian is
on curved manifolds. One motivation for this Letter is (A = m* = e = 1),
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_ 1 N e b 1 lution of which, in the limit 7 — o, converges to the
H 5 ;D(n)[ iV, + A(rp)]" + . ,Z} = 5 © ground state ofi.
V'Y 1) The dependence @ (r) on position in (1) is due to the
23 1452 . _ finite curvature of the surface of the sphere, for which the
where D(r;) = (1 + rj)*/4R", r;; is the chord distance metric tensor, in stereographic coordinatesgis (r) =
on the sphere, an@ is a parameter which models the p(r)~'5,5. Below we introduce our generalized DMC
finite thickness of the 2DEG [8]. We work in the Wu- method for simulating the many-body Schrédinger equa-
Yang [9] gauge for whichA(r;) = 2R*(B/c) (—yi,xi)/  tion on such a curved manifold. Note that in two dimen-
(1 + r). sions it is always possible to choose coordinates for which
We have used three trial wave functions to implementgaﬁ = f(r)8,p, i.e., to work in the so-called “conformal
the fixed-phase approximation ¢ x + iy is the com- gauge,” and so the generalized DMC method introduced

plex stereographic coordinate). ~ below can, in principle, be applied my curved two di-
(i) Ground state—In the Wu-Yang gauge the spherical mensional manifold, not just the sphere.
analog of the Laughlin wave function fer = 1/ is [5] The central modification of the DMC method is to re-

place the usual importance-sampled distribution function

hos = l:[(l + 1z TG = 2. @ P(R,1) = ¢(R, 1) lyr(R)] [4] with

i<j

N
(i) Spin-polarized excited state:-This state, con- P(R,t) = ¢(R,t)|¢ﬂr('R)|l_[L. @)
structed using Jain’s composite fermion approach [10], i=1 D(ri)

describes an excitation with a chargé; quasielectron at  This has two important consequences. First, because the
the top of the sphere and a charge/q quasihole at the differential area element on the spherelis = d’r/D(r)

bottom of the sphere, the expectation value of the ground state energy is simply
JP(R,t — »)E (R)dR
wse = [ 100+ 12 TG = )7 H = R i—mar - ®
¢ ’<Aj oy Second, the differential equation satisfied R , ¢) is
1 z¢ - 21 - P N N ~
i1 C —%P(R,t) = Z{—%V%[D(r,-)P(’R,t)]
x|: : : ) i=1 )
N-2 1 + Vi [D(l'i)Fi('R)P(fRJ)]}
1 ZN .« ZN Z P
o + [EL(R) = Er]P(R,1), ©)

(iii) Spin-reversed excited state.This state is similar B _
to ysp except the quasielectron has a reversed spin, If Where Fi(R) = ViIn[yr|, EL(R) = Hrlyr|/l¢r], and

denotes the coordinate of the down spin electron then thi§7 'S @ constant which must be adjusted in the course of
wave function is [7] the simulation to be equal to the ground state energy. It

is worth noting that, except for the position dependence

_ 1+ 2\—8 _ o1 . of D(r), (9) has the same form as the usual diffusion
Ysr l;[( l2l) ,l;[l(Zl 2 il:!(z %) equation appearing in DMC simulations [4].
4) Equation (9) can be solved numerically by stochasti-

The fixed-phase approximation is carried out by Writ—Ca”y iterating the integral equation

ing the relevant trial function agr(R) = |¢1(R)| X Yy :f R B
exdidr(R)], whereR = (ry,ry,---,ry), and then using PRt + 1) GR = R, DP(R,0dR, (10)
the overall phasepr(R) to perform a singular gauge using the short-time propagat® (r2)]

transformation, H = exd—i¢1(R)]H exdipr(R)] = /
G(R — R.7) exp[_7<[EL(R) + EL(R))]

Hy + iHj, where >
Hy = -~ S D)V - Ryl + =5 —— v
24 l € i<j\/r,-2j + B2 _ET>:|1_[G?(R—>R/,7-)’

(5) ‘

i=1

(11)
Hy = —%ZD(IV) [Vi- A(r) + A(;) - Vi],  (6)  where
and A(r;) = A(r;) + Vi¢r(R). As shown by OCM, G/(R—R'.r1)= ﬁ
the bosonic ground state dffg is the lowest energy y , )
state with the same phase as the trial function [3]. The X exp|: —lri = ri = D(r)7Fi(R)] }
DMC method can then be applied to the imaginary time 2D(rj)T
Schrédinger equatioflg (R, 1) = —%g&(TR, t), the so- (12)
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represents a diffusion and drift process. In (12) bothi4 T, while for r; = 10, B, = 7 T. This reduction ofB,
D(r;) and F;(R) are evaluated at the “prepoint” in the with increasingr, reflects the fact that, fo8 = 0, LLM
integral equation. This makes it possible to simulate (10has a stronger effect akgp than on theAgg, and so tends
in terms of branching random walks by a straightforwardto stabilize the spin-polarized excitation.
application of the rules given in [4], and is a direct For 8 = 1.5}y the effect of LLM onAgp and Agr is
consequence of having the spatial derivatives in (9) sit alinuch weaker than foB = 0 and the difference in the
the way to the left in each term [11]. This in turn follows two gap energies, in units @f/€ly, is roughly constant.
from our modified definition ofP(R,r). Had we used Again using GaAs parameters we fing. =4 T for
the usual definition,P(R,t), we would have obtained r;, =2 andB. =3 T for r, = 10. This result for the
“quantum corrections” in the propagator [12]. crossover field agrees with previous calculations which
The ry dependence of the ground state energy, and thimcluded the thickness correction but not LLM [6,7]. The
energies of the spin-polarized and spin-reversed excitedew result here is that, when thickness is includgdjs
states, have been calculated by fixing the phase with thenly weakly dependent on LLM.
trial functionsygs, ¥sp, andiyssg, respectively, and solv- Figure 3 shows mixed estimates [4] of the density
ing the resulting bosonic problems using the generalizegrofiles of the spin-polarized and spin-reversed excited
DMC method outlined above. Figure 1 shows the resultstates for8 = 0 aty = 1/3 for r;, = 1 and20. As LLM
for the ground state energy as a functionrpfor 8 = 0 is increased the quasielectron and quasihole induce ripples
and» = 1/3, compared with the variational Monte Carlo in the density due to Wigner crystal-like correlations in
results of Priceet al. [13,14]. This comparison provides the FQHE fluid. Note also that the effect of LLM is
an important test of our generalized DMC method—thestronger for the spin-polarized excitation than for the spin-
wave functions used in the variational calculations haveeversed excitation, consistent with the fact that LLM
the same phase af;s and so must have higher energiesstabilizes the spin-polarized excitation.
than our fixed-phase DMC results, as is in fact the case.
The spin-polarized and spin-reversed energy gags,
and Asg, obtained by subtracting the ground state energy 0.120
from the excited state energies, are plotted wsin + ® Spin Polarized
Fig. 2. Results are fov = 20 and are given foB = 0 | + Spin Reversed

and B8 = 1.5]p. To reduce finite size effects we have 0100

subtractedVy, = —(e/q)?/2€R, the Coulomb energy of —

two point charges with charge-e/q at the top and ) 0.080 4

bottom of the sphere, from our results for the gaps [15,16]. ‘o, 1
<

The crossover magnetic fiel®,., below which the spin-
reversed excitation has lower energy than the spin- 0.060 }
polarized excitation, i8. = (Asp — Asr)/gump, Where
up is the Bohr magneton angl is the effectiveg factor.
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FIG. 1. Ground state energy per particle fer=1/3 as a FIG. 2. » = 1/3 energy gaps for creating a quasielectron-
function of ;. The dashed line is the variational result of Price quasihole pair at opposite poles of the sphererys Results

et al.[13] and the solid line is a least-squares fit of secondare given for both a spin-polarized (dots) and spin-reversed
degree polynomial irv; to our fixed-phase DMC results for (diamonds) quasielectron for thickness parameter{ay 0,

ry = 1, 5, 10, 15, and 20 (dots). Results are for 50 electrongnd (b)B8 = 1.5/;. Results are for 20 electrons. The lines are
and statistical errors are smaller than symbol sizes. guides to the eye.
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— o method. We believe that the generalization of the fixed-
s” phase DMC method to the spherical geometry presented
here will be useful for many future numerical studies of
ol A the FQHE.
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