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Fluctuations of the Chern-Simons gauge field in the composite Fermi liquid description of the
filled Landau level are pair breaking in all angular momentum channels. For short-range elec
electron interactions these fluctuations are sufficiently strong to drive anyT ­ 0 pairing transition first
order. For Coulomb interactions these fluctuations are weaker and a continuous transition is po
[S0031-9007(98)08381-1]
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There is strong experimental support [1] for the r
markable hypothesis that the two-dimensional electron g
at Landau-level filling fractionn ­ 1y2 can be viewed
as a compressible “metal” with a sharp Fermi surfa
[2]. The initial formulation of this idea, based on th
composite fermion theory of the fractional quantum Ha
effect [3], involved representing physical electrons b
fermions, referred to in what follows as Chern-Simon
(CS) fermions, bound to two quanta of fictitious, or CS
flux [2,4,5]. If this flux is chosen to point in the direction
opposite to that of the physical magnetic field then,
the mean-field level, CS fermions atn ­ 1y2 see zero
effective field and form a metallic state with a Ferm
surface. Halperin, Lee, and Read (HLR) [2] developed
theoretical description of the resulting “composite Ferm
liquid” (CFL) by studying fluctuations about this mean
field state within the random-phase approximation (RPA

Unlike the CS theories used to describe incompressi
quantum Hall states [5,6], where the energy gap provid
some justification for thinking that fluctuations are und
control, the CFL is gapless, the fluctuations are larg
and the degree to which the mean-field solution captu
the essential physics is unclear. One question w
important physical consequences is whether or not
mean-field Fermi surface is stable. Greiter, Wen, a
Wilczek (GWW) [7] have shown that the bare “density
current” interaction between the flux attached to one C
fermion and the current of another CS fermion mediat
an attractive pairing interaction in thep-wave channel.
These authors argued further that the resulting paired s
corresponds to the incompressible Pfaffian state origina
proposed by Moore and Read [8].

The n ­ 5y2 quantum Hall state [9] provides ex
perimental motivation for studying the stability of th
CFL. Exact diagonalization calculations of Morf [10
have shown that for the Coulomb interaction the ha
filled first-excited Landau level atn ­ 5y2 is spin po-
larized, even in the absence of Zeeman coupling. M
further speculates that the observed collapse of this s
in tilted fields [11] is a consequence of the “hardening
of the short-range part of the electron-electron interacti
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due to the “pinching” of the lowest subband wave fun
tion of the two-dimensional electron gas [12]. If this i
the case then it is plausible that the incompressible stat
small tilt is a Pfaffian, and the tilted field transition is from
Pfaffian to CFL. Another scenario, advocated by Reza
and Haldane [13], is that for a pure system there is
transition—the CFL isalwaysunstable to the Pfaffian—
and the observed incompressible-compressible transi
occurs when the gap becomes smaller than the charac
istic decay width associated with the disorder.

The analysis of GWW favors the latter scenario th
in the absence of disorder the CFL is always unsta
to the formation of a paired quantum Hall state. It
the modest purpose of this paper to show that while t
may, in fact, be the case it is notnecessarilythe case.
If one goes beyond GWW and computes the effecti
interaction between CS fermions within the RPA th
current-current interaction mediated by the transverse
gauge fluctuations is found to be strongly pair breaki
in all angular momentum channels. These fluctuatio
therefore provide a hostile environment for the formatio
of Cooper pairs and can, in principle, stabilize the CF
In what follows it will be assumed, with the usual proviso
regarding renormalization of the effective mass, that t
HLR approach is qualitatively correct. The relevance
more recent formulations of the CFL [14–19] will depen
on the extent to which they resemble HLR, currently
matter of some controversy [20].

Consider a two-dimensional electron gas, realized in t
xy plane, in a perpendicular magnetic fieldB at filling
factor n ­ 1yf̃, where f̃ is an even integer. Taking
h̄ ­ c ­ 1 the magnetic field isB ­ 2pf̃nye wheren is
the electron density. This system can be described by
Euclidean time action [2]S ­

Rb

0 dt
R

d2r L0sr, td 1

SCS, where

L0 ­ c

"
≠t 2 a0 2 m 2

1
2m

s= 2 ia 1 ieAd2

#
c

(1)

and
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SCS ­
1
2

X
m,n

X
q,n

amsq, vndD 0 21

mn sqdansq, vnd . (2)

Here c is the CS fermion field,a0 and a1sq, vnd ­ ẑ ?

fq̂ 3 asq, vndg are the time and transverse components
the CS gauge field,vn ­ 2npyb is a bosonic Matsubara
frequency, Asrd ­ sẑ 3 rdBy2 is the vector potential
describing the applied magnetic field,m is the electron
band mass, and

D 0sqd ­

µ
ysqd i2pf̃yq

2i2pf̃yq 0

∂
(3)

is the “bare” CS propagator whereysqd is the electron-
electron interaction. Integrating outa0 enforces the con-
straint = 3 a ­ ẑ2pf̃cc so that at the mean-field
level k= 3 al ­ ẑ2pf̃n ­ ẑeB. The CS gauge field
then exactly cancels the magnetic field and the C
fermions form a Fermi liquid with Fermi wave vec
tor kF ­ s2yf̃d1y2yl0 where l0 ­ s1yeBd1y2 is the mag-
netic length.

The GWW pairing instability is due to the bare “statis
tical” interaction in the Cooper channel,

V 0
10sk, k0d ­

k 3 q̂
m

D 0
10sqd ­ i

k 3 q̂
m

2pf̃

q
, (4)

whereq ­ k 2 k0. A dimensionless coupling constan
characterizing the strength of a given pairing interacti
is given by thel-wave Fermi-surface average,

lsvd ­ 2
m
2p

Z 2p

0
V ssskF x̂, kFscosux̂ 1 sinuŷd, vddd

3 expsiuld du , (5)

where, because the CS fermions are spinless,l must be
odd. ForV0

10 the result of this integral,l0
10 ­ sgnsldpf̃,

is attractive for positivel and repulsive for negativel,
reflecting the fact that the pairing interaction is not tim
reversal symmetric [21].

The RPA expression for the CS gauge field propaga
is obtained by integrating out the CS Fermi fields an
expanding the resulting effective action to second order
the CS gauge fields with the result [2]

SRPA ­
1
2

X
m,n

X
q,n

amsq, vndD 21
mn sq, vndansq, vnd . (6)

Here D 21 ­ K0 1 D 021
where K0

mn is the electro-
magnetic response function for noninteracting electro
[2]. For q , 2kF andv ø kFqym, K

0
00 . my2p and

K
0
11 . 2xdq2 2 kFjvjy4pq, where xd ­ s12pmd21

is the Landau diamagnetic susceptibility.
Within the RPA thescreeneddensity-current interac-

tion in the static limit is

V RPA
10 sk, k0, v ­ 0d ­

V 0
10sk, k0d

2pmf̃2x̃sqd
, (7)

where x̃sqd ­ ysqdys2pf̃d2 1 s1 1 6yf̃2dys12pmd.
The effect of finite thickness on this interactio
of
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can be studied by takingysqd to be the effective
potential corresponding to subband wave functio
jswd ­ Aw exp2bwy2 [22]. The renormalized effec-
tive mass, which must depend only onysqd, can also be
estimated using then ­ 1y3 energy gap, computed as
function of the thickness parameterb ­ sbl0d21 in [23],
with the approximate resultmsbd . s10 1 7bdys3e2l0d.
Figure 1 shows the dependence ofl10s0d on b, computed
using (5) withl ­ 1 and f̃ ­ 2, both with and without
this mass renormalization. The effect of including th
screened density-density interactionV00 through the
corresponding coupling constantl00s0d is also shown. In
all cases the effectivep-wave pairing interaction grows
with thickness.

So far the current-current interaction between CS ferm
ons mediated by the transverse CS gauge fluctuations
been ignored. In the Cooper channel this interaction is

V RPA
11 sk, k0, vnd ­

√
k 3 q̂

m

!2

D11sq, vnd

.

√
k 3 q̂

m

!2

3
1

x̃sqdq2 1 skFy2pd jvnjyq
. (8)

For short-range electron-electron interactions taki
ysqd . ys0d and evaluating (5) gives

l11svnd , 2
1
m

√
kF

x̃s0d

!2y3

jvnj21y3. (9)

The divergence ofl11svd as v ! 0 is from small
q scattering of Cooper pairs and so is independe
of l.
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FIG. 1. Coupling constant characterizing the strength of t
p-wave pairing interaction vs thickness parameterb. Results
are given with (solid line) and without (dashed line) the ma
renormalization discussed in the text, as well as with both t
mass renormalization and the screened Coulomb repulsion (
dashed line). In all cases the interaction grows stronger as
thickness is increased.
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The effect of this singularity on the pairing instability of the CFL can be seen by considering the followingT ­ 0
BCS gap equation,

Dsvd ­ l
Z v0

2v0

dv0 Dsv0d
2
p

v0 1 jDsv0dj2
2 g

Z `

2`

dv0 Dsv0d
2
p

v0 1 jDsv0dj2

√
v0

jv 2 v0j

!1y3

. (10)
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Here l and g are dimensionless coupling constant
characterizing a nonsingular attractive interaction and
singular repulsive interaction andv0 , e2yl0. Assuming
that thev dependence ofD is weak, takingv ­ 0, and
performing the integrals yields

1 . l ln
v0

jDj
2 Cg

µ
v0

jDj

∂1y3

, (11)

where C . 4.2. For small D, the second term which
prevents pairing dominates, suggesting that the CFL m
be immune from the GWW instability, or, for that matter
any Kohn-Luttinger-type instability [24], at least for short
range electron-electron interactions.

This analysis leaves out both self-energy effects a
the self-consistent modification of the CS gauge fie
propagator, both of which may be important, particularl
for the more physically relevant Coulomb interactio
case for which the CS gauge fluctuations lead only
logarithmic singularities. An alternative approach whic
includes these effects was introduced by Ubbens and L
[25] in the context of theUs1d gauge-theory description
of the t-J model. In this approach the free energy o
at T ­ 0, the condensation energy, is computed direct
within the RPA as a function of the gap parameter.

To apply the Ubbens-Lee analysis to the present proble
it is necessary to “probe” the CFL by introducing anl-wave
pairing interaction by hand. This interaction is taken to b
of the usual separable form,

SBCS ­
V0

Ab

X
m,n,n0

X
k,k0

gkgk0csk, Vn 1 vmd

3 cs2k, 2Vndcsk0, Vn0 1 vmdcs2k0, 2Vn0d ,
(12)

whereA is the area of the system,Vn ­ s2n 1 1dpyb

is a fermionic Matsubara frequency,gk ­ Qsv0 1

ekdQsv0 2 ekd expsiukd, ek ­ sk2 2 k2
Fdy2m, anduk ­

arctankyykx . The Hubbard-Stratonovich decompo
sition of the BCS interaction is accomplished b
adding the termSHS ­

P
m csvmdcsvmd to the ac-

tion where csvmd ­
p

AbyV0 Dsvnd 1
p

V0yAb 3P
n

P
k gkcsk, Vn 1 vmdcs2k, 2Vnd [26]. The CS

fermion fields can then be integrated out and, with
the static approximation,Dsvnd ­ D0dn,0, the resulting
effective action can be expanded to second order in t
CS gauge fields. Integrating out these fields and taki
the T ­ 0 limit then yields the RPA expression for the
condensation energy per unit area,

EsD0d ­
jD0j

2

V0
2

m
2p

Z v0

2v0

s
p

e2 1 jD0j
2 2 jejd de

1 ECSsD0d 2 ECSs0d , (13)
where
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ECSsD0d ­
1
2

Z `

2`

dv

2p

Z d2q
s2pd2 ln detD 21sq, v; D0d .

(14)

Here DmnsD0d is the CS gauge field propagator ob
tained from the equationD 21sD0d ­ K sD0d 1 D 021

where now KmnsD0d is the electromagnetic respons
function of the paired state calculated for fermion
described by the HamiltonianH ­

P
ksekc

y
kck 1

fD0
P

k gkc
y
k c

y
2k 1 H.c.gd. To analyze (14) it is

useful to analytically continue to the real frequenc
axis, setting Dmnsq, n ­ ijvjd ­ Dmnsq, vd and
Kmnsq, n ­ ijvjd ­ Kmnsq, vd. The usual deformation
of the imaginary frequency integration in (14) aroun
the branch cut of the logarithm on the real axis the
gives [2,25]

ECSsD0d ­
Z `

0

dn

2p

Z d2q
s2pd2

3 tan21 Im detD21sq, n; D0d
Re detD21sq, n; D0d

. (15)

In the paired state atT ­ 0 there is no damping for
frequenciesn # 2jD0j which implies thatIm K00sD0d ­
Im K11sD0d ­ Re K01sD0d ­ Re K10sD0d ­ 0 and thus
Im detD21sD0d ­ 0 for n # 2jD0j. Following [25]
ECSsD0d 2 ECSs0d can then be estimated by calculatin
the contributions of these frequencies to2ECSs0d which
are lost in the paired state [27]. For the case of sho
range electron-electron interactions, takingysqd . ys0d,
this approximation gives

ECSsD0d 2 ECSs0d .
Z 2jD0j

0

dn

2p

Z d2q
s2pd2

3 tan21 kF

2px̃s0d
n

q3

,

√
kF

x̃s0d

!2y3

jD0j
5y3. (16)

For small D0 this term, which is consistent with the
singular term appearing in (11), will always dominat
the condensation energy and prevent any continuo
zero temperature pairing transition. Thus for short-ran
electron-electron interactions any pairing transition of t
CFL will necessarily involve a discontinuous jump i
D0 and so be first order. As pointed out in [25], th
appearance inEsD0d of a nonanalytic term injD0j

2 due to
finite frequency gauge fluctuations is a quantum versi
of the fluctuation driven first order transition discussed
Halperin, Lubensky, and Ma [28]. A similar effect, in
which a continuous quantum Hall-insulator transition



VOLUME 82, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 1 FEBRUARY 1999

.

d

;

y

driven first order by a fluctuating CS gauge field, has bee
studied by Pryadko and Zhang [29].

If the same approximation is applied to the Coulom
interaction case it is necessary to cut off the momentu
integration at2kF with the result

ECSsD0d 2 ECSs0d .
Z 2jD0j

0

dn

2p

Z 2kF

0

qdq
2p

3 tan21 kFf̃2

e2

n

q2

.
mc

2p
jD0j

2 ln
2kFe2

f̃2jD0j
, (17)

wheremc ­ kFf̃2y2pe2. For smallD0 the condensation
energy is thenEsD0d , jD0j

2yV0 2 fsm 2 mcdy2pg 3

jD0j
2 lnsv0yjD0jd. If m 2 mc , 0 pair breaking domi-

nates and anyT ­ 0 pairing transition will be first
order. Alternatively, ifm 2 mc . 0 a continuous tran-
sition is possible and the CFL is unstable for arbitraril
weakV0. Note that according to the mass renormalizatio
scheme discussed abovemsbd 2 mc . 0 for f̃ ­ 2,
suggesting that forn ­ 1y2 the CFL is unstable for
Coulomb interactions.

The singular CS contribution to the condensation ener
is from long-wavelength fluctuations and so is unaffecte
by any softening of the short-range part of the electro
electron interaction. It follows that as the thickness pa
rameterb increases both the effective massm and l10,
and hence the tendency towards pairing, increase while
pair-breaking effects are essentially unchanged. Thus t
CFL becomes less stable with increasing thickness, cons
tent with the tilted field experiments as well as numerica
studies of the half-filled Landau level [7,10,13,30].

To summarize, the CS gauge fluctuations in the CF
description of the half-filled Landau level are strongly pa
breaking in all angular momentum channels. For shor
range electron-electron interactions these fluctuations a
sufficiently strong to drive anyT ­ 0 pairing transition
of the CFL first order. For Coulomb interactions thes
fluctuations are weaker and, depending on details,
continuous transition may be possible. To the exte
that more recent formulations of the CFL contain bot
a pairing interaction [15] and aUs1d gauge field [18–20]
the conclusions of this paper should still be relevant.
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