Designing Two-Qubit Gates for Exchange-Only Quantum Computation

Nick Bonesteel

Dept. of Physics \& NHMFL, Florida State University

Work done in collaboration with:
Daniel Zeuch, FSU \rightarrow Peter Gruenberg Institut, Research Center Juelich

> Zeuch, NEB, Phys. Rev. A 98, 010303 (2016)
> Zeuch, NEB, Phys. Rev. B 102, 075311 (2020)

Cal State Los Angeles, Colloquium, Dec. 2, 2021

Early Vision of a Solid State Quantum Computer

Loss \& DiVincenzo, Phys. Rev. B (1998)

Decades of Slow Steady Progress

Petta et al., Science (2005)

$1 \mu \mathrm{~m}$

Medford et al., Nature Nanotechnology (2013)

$1 \mu \mathrm{~m}$

Andrews et al., Nature Nanotechnology (2019)

Basic Idea

- Use electron spins as qubits

spin-1/2 chain: electrons
in quantum dots

Exchange-Based QC

- Quantum gates through spin exchange

$$
H_{i}=J \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}
$$

spin-1/2 chain: electrons
in quantum dots

Exchange-Based QC

- Quantum gates through spin exchange

$$
H_{i}=J \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}
$$

spin-1/2 chain: electrons
in quantum dots

Exchange-Based QC

- Quantum gates through spin exchange

$$
H_{i}=J \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}
$$

total spin of the oval

Exchange-Based QC

- Quantum gates through spin exchange

$$
H_{i}=J \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}
$$

total spin of the oval

Exchange-Based QC

- Quantum gates through spin exchange

$$
H_{i}=J \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}
$$

Exchange-Based QC

- Quantum gates through spin exchange

$$
H_{i}=J \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}
$$

$$
s_{1} \otimes s_{2}=\left|s_{1}-s_{2}\right|,\left|s_{1}-s_{2}+1\right|, \ldots, s_{1}+s_{2}
$$

Controlling Exchange

Petta et al., Science (2005)

- Exchange Hamiltonian

$$
H=J \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}
$$

Electron wave functions in quantum dot potential $V(x)$

Controlling Exchange

Petta et al., Science (2005)

- Exchange Hamiltonian

$$
H=J \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}
$$

turn "off"

Electron wave functions in quantum dot potential $V(x)$

Controlling Exchange

Petta et al., Science (2005)

- Exchange Hamiltonian

$$
H=J \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}
$$

$$
\exp (-i H t)=\left(\begin{array}{ll}
1 & \\
& e^{-i t}
\end{array}\right) \quad(J=1)
$$

Simple Exchange Pulses

exchange pulse of duration t

$$
\begin{aligned}
& \left.a=\begin{array}{cc}
0 & 1 \\
\left(\begin{array}{ll}
1 & \\
& e^{-i t}
\end{array}\right)
\end{array} . \begin{array}{l}
\\
\end{array}\right)
\end{aligned}
$$

- SWAP pulse

$$
t=\pi
$$

Simple Exchange Pulses

exchange pulse of duration t

$$
\begin{aligned}
& \left.a=\begin{array}{cc}
0 & 1 \\
\left(\begin{array}{ll}
1 & \\
& e^{-i t}
\end{array}\right)
\end{array} . \begin{array}{l}
\\
\end{array}\right)
\end{aligned}
$$

- SWAP pulse

$$
t=\pi \quad \text { ○ } \begin{aligned}
& \stackrel{\uparrow}{\downarrow} \pi
\end{aligned}\left(\begin{array}{l}
0 \\
0
\end{array}\right]\binom{0}{0} \quad\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right)=-\left(\begin{array}{ll}
-1 & \\
& 1
\end{array}\right)
$$

$$
\frac{\text { singlet state }}{(a=0)}=|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle \quad \frac{\text { triplet states }}{(a=1)}=\left\{\begin{array}{l}
|\uparrow \uparrow\rangle \\
|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle \\
|\downarrow \downarrow\rangle
\end{array}\right.
$$

$$
\begin{aligned}
& \left.a=\begin{array}{cc}
0 & 1
\end{array} \begin{array}{cc}
0 & 1 \\
\left(\begin{array}{cc}
1 & \\
& -1
\end{array}\right)=-\left(\begin{array}{ll}
-1 & \\
& 1
\end{array}\right)
\end{array} . \begin{array}{c}
\\
\end{array}\right)
\end{aligned}
$$

Simple Exchange Pulses

exchange pulse of duration t

$$
\begin{aligned}
& \left.a=\begin{array}{cc}
0 & 1 \\
\left(\begin{array}{ll}
1 & \\
& e^{-i t}
\end{array}\right)
\end{array} . \begin{array}{l}
\\
\end{array}\right)
\end{aligned}
$$

- SWAP pulse

$$
t=\pi \quad \text { ○ } \frac{}{\frac{\uparrow \pi}{\imath}} \rightarrow\left(\begin{array}{l}
0 \\
0
\end{array}\right]\binom{0}{0}
$$

$$
\begin{aligned}
& \left.\left.a=\begin{array}{cc}
0 & 1 \\
\left(\begin{array}{cc}
1 & \\
& -1
\end{array}\right)=-\left(\begin{array}{c}
-1
\end{array}\right.
\end{array} . \begin{array}{c}
- \\
\end{array}\right)=\begin{array}{c}
-1
\end{array}\right)
\end{aligned}
$$

- SWAP $^{1 / 2}$ pulse

$$
\begin{aligned}
& t=\pi / 2 \\
& \left(\begin{array}{l}
0 \\
0) \\
\overline{\imath \pi / 2}
\end{array}\right.
\end{aligned}
$$

Three-Spin Qubit Encoding

Three-Spin Qubit Encoding

Transitions to this state are leakage errors.

Single-Qubit Gates

- Rotation about z-axis :

$\begin{aligned} & \text { arbitrary } \\ & \text { rotations }\end{aligned}$
\longrightarrow

Two-Qubit Gates

Two-Qubit Gates

Two-Qubit Gates

DiVincenzo, Bacon, Kempe, Burkard \& Whaley, Nature (2000) 19 pulse sequence found numerically

$$
t_{1}=2.581 . ., t_{2}=1.303 . ., t_{3}=1.753 . ., \ldots
$$

Two-Qubit Gates

DiVincenzo, Bacon, Kempe, Burkard \& Whaley, Nature (2000) 19 pulse sequence found numerically

$$
t_{1}=2.581 . ., t_{2}=1.303 . ., t_{3}=1.753 . ., \ldots
$$

Two-Qubit Gates

DiVincenzo, Bacon, Kempe, Burkard \& Whaley, Nature (2000)

19 pulse sequence found numerically

Gives a CNOT (up to single qubit operations) if the total spin is 1

Two-Qubit Gates

DiVincenzo, Bacon, Kempe, Burkard \& Whaley, Nature (2000)

Does not give a CNOT if the total spin is 0

Fong-Wandzura Sequence

Fong \& Wandzura, Quantum Information and Computation (2011)

18 pulse sequence found numerically

$0,1 \leftarrow$ Gives CNOT for both total spin 0 and 1

Fong-Wandzura Sequence

Fong \& Wandzura, Quantum Information and Computation (2011) 18 pulse sequence found numerically

Two Simple Pulses

$$
(0) \frac{\overline{\hat{l}^{t}}}{}
$$

$$
\begin{aligned}
& a=0 \\
& \left(\begin{array}{cc}
1 & \\
& e^{-i t}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{t=0} \\
\ddots \\
\underline{\hat{\imath} 0}
\end{array} \quad\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right) \\
& t=\pi \\
& (0) \overline{\hat{\imath} \pi} \longrightarrow\left(\begin{array}{l}
0 \\
\bullet \\
0
\end{array}\right. \\
& \left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right)
\end{aligned}
$$

Two Simple Sequences

Zeuch, NEB, Phys. Rev. A (2016)

Two Simple Sequences

Zeuch, NEB, Phys. Rev. A (2016)

Two Simple Sequences

Zeuch, NEB, Phys. Rev. A (2016)

Two Simple Sequences

Zeuch, NEB, Phys. Rev. A (2016)

Two Simple Sequences

Two Simple Sequences

Two Simple Sequences

Two Simple Sequences

Sequence Identity

$$
\begin{aligned}
& a=0 \quad 1 \quad \text { Identity holds for } \\
& \bigodot_{a} \frac{\sqrt{\uparrow t}}{} \quad\left(\begin{array}{ll}
1 & \\
& m
\end{array}\right) \\
& \begin{array}{ll}
t=0 \rightarrow m=+1 \\
t=\pi \rightarrow m=-1
\end{array} \quad m^{2}=1
\end{aligned}
$$

Zeuch, NEB, Phys. Rev. A (2016)

Sequence Identity

$$
\begin{aligned}
& a=\begin{array}{lll}
0 & 1 \quad \text { Identity holds for }
\end{array} \\
& \ominus_{a} \frac{\overline{\hat{\imath} t}}{} \quad\left(\begin{array}{ll}
1 & \\
& m
\end{array}\right) \\
& \begin{array}{ll}
t=0 \rightarrow m=+1 \\
t=\pi \rightarrow m=-1
\end{array} \quad m^{2}=1
\end{aligned}
$$

Can show: Any pulse with $m^{2}=1$ will satisfy this identity

Sequence Identity

$$
\begin{aligned}
& a=0 \quad 1 \quad \text { Identity holds for } \\
& \ominus_{a} \frac{\bar{\imath} t}{} \quad\left(\begin{array}{ll}
1 & \\
& m
\end{array}\right) \\
& \begin{array}{ll}
t=0 \rightarrow m=+1 \\
t=\pi \rightarrow m=-1
\end{array} \quad m^{2}=1
\end{aligned}
$$

Can show: Any pulse with $m^{2}=1$ will satisfy this identity
Does m have to be a number? How about a matrix?

$m^{2}=1$ Pulses

$$
m^{2}=1 \longrightarrow m=+1,-1
$$

Zeuch, NEB, Phys. Rev. A (2016)

$$
\begin{aligned}
& a=0 \quad 1 \\
& \left(\begin{array}{ll}
1 & \\
& m
\end{array}\right)
\end{aligned}
$$

$m^{2}=1$ Pulses

$$
\left(\because \overline { \hat { \jmath } 0 } (\begin{array} { l l }
{ 1 } & { 1 } \\
{ 1 }
\end{array}) \quad \left(\begin{array}{l}
\overline{\hat{\jmath} \pi} \\
\left(\begin{array}{ll}
1 & -1
\end{array}\right)
\end{array}\right.\right.
$$

$$
m^{2}=1 \longrightarrow m=+1,-1
$$

Zeuch, NEB, Phys. Rev. A (2016)

"Elevating" $m^{2}=1$ Pulses

Zeuch, NEB, Phys. Rev. A (2016)

"Elevating" $m^{2}=1$ Pulses

$$
\begin{aligned}
& a=\begin{array}{cc}
0 & 1 \\
& \left(\begin{array}{ll}
I & \\
& M
\end{array}\right)
\end{array} .
\end{aligned}
$$

Zeuch, NEB, Phys. Rev. A (2016)

"Elevating" $m^{2}=1$ Pulses

2×2 matrices, acting on "swapped in" qubit

Zeuch, NEB, Phys. Rev. A (2016)

$M^{2}=I$ "Pulse"

$$
\begin{aligned}
& a=\begin{array}{cc}
0 & 1 \\
& \left(\begin{array}{ll}
I & \\
& M
\end{array}\right)
\end{array} .
\end{aligned}
$$

$$
M^{2}=I \rightarrow M=+I,-I
$$

Zeuch, NEB, Phys. Rev. A (2016)

$M^{2}=I$ "Pulse"

$$
\begin{aligned}
& a=\begin{array}{cc}
0 & 1 \\
\left(\begin{array}{ll}
I & \\
& M
\end{array}\right)
\end{array} .
\end{aligned}
$$

$$
\begin{array}{ll}
M^{2}=I \rightarrow M=+I,-I & M=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\text { More solutions! } \longrightarrow M=\widehat{\boldsymbol{n}} \cdot \boldsymbol{\sigma} & M=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \ldots
\end{array}
$$

Zeuch, NEB, Phys. Rev. A (2016)

Sequence Elevation

Zeuch, NEB, Phys. Rev. A (2016)

Sequence Elevation

Zeuch, NEB, Phys. Rev. A (2016)

Sequence Elevation

Zeuch, NEB, Phys. Rev. A (2016)

Sequence Elevation

Zeuch, NEB, Phys. Rev. A (2016)

Sequence Elevation

Zeuch, NEB, Phys. Rev. A (2016)

Sequence Elevation

Applies M to bottom qubit only if top qubit is in state |1〉

Zeuch, NEB, Phys. Rev. A (2016)

Sequence Elevation

Two-qubit controlled- M gate --- no leakage.

Zeuch, NEB, Phys. Rev. A (2016)

Constructing T

What we want

$a=0 \quad 1$
$\left(\begin{array}{ll}I & \\ & M\end{array}\right)$

Zeuch, NEB, Phys. Rev. A (2016)

Constructing T

What we want

$$
M=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \text { for example }
$$

Zeuch, NEB, Phys. Rev. A (2016)

Constructing T

What we want

This is close! (But wrong basis)

Zeuch, NEB, Phys. Rev. A (2016)

Constructing T

What we want

This is close! (But wrong basis)

Basis change

Zeuch, NEB, Phys. Rev. A (2016)

Constructing T

What we want

Basis change

Constraint

Any V satisfying this constraint will do the job.

Zeuch, NEB, Phys. Rev. A (2016)

Satisfying the Constraint

Zeuch, NEB, Phys. Rev. A (2016)

Satisfying the Constraint

Zeuch, NEB, Phys. Rev. A (2016)

Satisfying the Constraint

Form entirely fixed by $t_{1}=0, \pi$ and $t_{2}=0, \pi$ cases

Zeuch, NEB, Phys. Rev. A (2016)

Satisfying the Constraint

Form entirely fixed by $t_{1}=0, \pi$ and $t_{2}=0, \pi$ cases
For example, $t_{1}=\pi$ and $t_{2}=0$

Zeuch, NEB, Phys. Rev. A (2016)

Satisfying the Constraint

Form entirely fixed by $t_{1}=0, \pi$ and $t_{2}=0, \pi$ cases
For example, $t_{1}=\pi$ and $t_{2}=0$

Zeuch, NEB, Phys. Rev. A (2016)

Satisfying the Constraint

Form entirely fixed by $t_{1}=0, \pi$ and $t_{2}=0, \pi$ cases
For example, $t_{1}=\pi$ and $t_{2}=0$

Zeuch, NEB, Phys. Rev. A (2016)

Satisfying the Constraint

Form entirely fixed by $t_{1}=0, \pi$ and $t_{2}=0, \pi$ cases
For example, $t_{1}=\pi$ and $t_{2}=0$

Zeuch, NEB, Phys. Rev. A (2016)

Satisfying the Constraint

Need destructive interference

$$
\begin{aligned}
& t_{1}=\frac{\pi}{2} \\
& t_{2}=\frac{3 \pi}{2}
\end{aligned}
$$

Zeuch, NEB, Phys. Rev. A (2016)

Constructing T

Basis change

Constraint

Optimal Solution

Zeuch, NEB, Phys. Rev. A (2016)

Constructing T

Constraint

Optimal Solution

Zeuch, NEB, Phys. Rev. A (2016)

Full Sequence

Zeuch, NEB, Phys. Rev. A (2016)

Full Sequence

Zeuch, NEB, Phys. Rev. A (2016)

Full Sequence

- Original version of the Fong-Wandzura Sequence

PHYSICAL REVIEW A 93, 010303(R) (2016)

Simple derivation of the Fong-Wandzura pulse sequence

Daniel Zeuch and N. E. Bonesteel
Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
(Received 4 September 2015; published 25 January 2016)

We give an analytic construction of a class of two-qubit gate pulse sequences that act on five of the six spin- $\frac{1}{2}$ particles used to encode a pair of exchange-only three-spin qubits. Within this class, the problem of gate construction reduces to that of finding a smaller sequence that acts on four spins and is subject to a simple constraint. The optimal sequence satisfying this constraint yields a two-qubit gate sequence equivalent to that found numerically by Fong and Wandzura. Our construction is sufficiently simple that it can be carried out entirely with pen, paper, and knowledge of a few basic facts about quantum spin.

DOI: 10.1103/PhysRevA.93.010303

Simple derivation of the Fong-Wandzura pulse sequence

Daniel Zeuch and N. E. Bonesteel
Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
(Received 4 September 2015; published 25 January 2016)

We give an analytic construction of a class of two-qubit gate pulse sequences that act on five of the six spin- $\frac{1}{2}$ particles used to encode a pair of exchange-only three-spin qubits. Within this class, the problem of gate construction reduces to that of finding a smaller sequence that acts on four spins and is subject to a simple constraint. The optimal sequence satisfying this constraint yields a two-qubit gate sequence equivalent to that found numerically by Fong and Wandzura. Our construction is sufficiently simple that it can be carried out entirely with pen, paper, and knowledge of a few basic facts about quantum spin.

DOI: 10.1103/PhysRevA. 93.010303

Efficient two-qubit pulse sequences beyond CNOT

D. Zeuch \odot^{1} and N. E. Bonesteel \odot^{2}
${ }^{1}$ Peter Grünberg Institute, Theoretical Nanoelectronics, Forschungszentrum Jülich, D-52425 Jülich, Germany ${ }^{2}$ Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA

(Received 30 January 2020; revised 6 August 2020; accepted 6 August 2020; published 26 August 2020)
We design efficient controlled-rotation gates with arbitrary angle acting on three-spin encoded qubits for exchange-only quantum computation. Two pulse sequence constructions are given. The first is motivated by an analytic derivation of the efficient Fong-Wandzura sequence for an exact CNOT gate. This derivation, briefly reviewed here, is based on elevating short sequences of SWAP pulses to an entangling two-qubit gate. To go beyond CNOT, we apply a similar elevation to a modified short sequence consisting of SWAPS and one pulse of arbitrary duration. This results in two-qubit sequences that carry out controlled-rotation gates of arbitrary angle. The second construction streamlines a class of arbitrary CPHASE gates established earlier. Both constructions are based on building two-qubit sequences out of subsequences with special properties that render each step of the construction analytically tractable.

DOI: 10.1103/PhysRevB.102.075311

New Sequences?

Strategy: "Elevate" simple three-spin pulse sequence to a two-qubit gate.

Another Simple Sequence

Strategy: "Elevate" simple three-spin pulse sequence to a two-qubit gate.

Another Simple Sequence

Strategy: "Elevate" simple three-spin pulse sequence to a two-qubit gate.

Zeuch, NEB, Phys. Rev. B (2020)

Another Simple Sequence

Strategy: "Elevate" simple three-spin pulse sequence to a two-qubit gate.

Zeuch, NEB, Phys. Rev. B (2020)

Another Simple Sequence

Strategy: "Elevate" simple three-spin pulse sequence to a two-qubit gate.

Zeuch, NEB, Phys. Rev. B (2020)

Sequence Identity

Strategy: "Elevate" simple three-spin pulse sequence to a two-qubit gate.

"Elevating" t Pulse

$$
\left(\begin{array}{ll}
1 & \\
& e^{i t}
\end{array}\right)
$$

M can be any 2×2 unitary. No longer require $M^{2}=I$

Zeuch, NEB, Phys. Rev. B (2020)

"Elevating" SWAP Pulse

$$
\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
I & \\
& -I
\end{array}\right)
$$

Zeuch, NEB, Phys. Rev. B (2020)

Sequence Elevation

Zeuch, NEB, Phys. Rev. B (2020)

Sequence Elevation

Zeuch, NEB, Phys. Rev. B (2020)

Sequence Elevation

Zeuch, NEB, Phys. Rev. B (2020)

Sequence Elevation

Applies M to bottom qubit only if top qubit is in state |1〉

Zeuch, NEB, Phys. Rev. B (2020)

Sequence Elevation

Zeuch, NEB, Phys. Rev. B (2020)

Constructing T

$$
\begin{aligned}
& M(t)=e^{i \xi(t)} e^{i \phi(t) \widehat{\boldsymbol{n}}(t) \cdot \boldsymbol{\sigma} / 2} \\
& \phi(t)=2 \arccos ((5 \cos (t / 2)+3 \cos (3 t / 2)) / 8) \\
& \xi(t)=-t / 2
\end{aligned}
$$

Zeuch, NEB, Phys. Rev. B (2020)

Constructing Π

Basis change

Constraint

Solution

Zeuch, NEB, Phys. Rev. A (2016)

Constructing Π

Constraint

Solution

Zeuch, NEB, Phys. Rev. A (2016)

Full Sequence

Zeuch, NEB, Phys. Rev. B (2020)

Full Sequence

$$
t_{1}=1.34004 \ldots, \mathrm{~s}_{1}=2 \pi-\mathrm{t}_{1, \ldots}
$$

$$
\phi(t)=2 \arccos ((5 \cos (t / 2)+3 \cos (3 t / 2)) / 8)
$$

Zeuch, NEB, Phys. Rev. B (2020)

Summary

Analytic Derivation of Fong-Wandzura CNOT sequence:

Generalization leading to new sequences:

Open questions:

1) Can we prove Fong-Wandzura sequence is truly optimal?
2) More efficient general gate constructions?
3) Can these tools be used to construct more "robust" sequences?

Zeuch, NEB, Phys. Rev. A 98, 010303 (2016)
Zeuch, NEB, Phys. Rev. B 102, 075311 (2020)

