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Early Vision of a Solid State Quantum
Computer

Loss & DiVincenzo, Phys. Rev. B (1998)

ﬁ

— \
back gates magnetized or heterostructure
high-g layer quantum well



Decades of Slow Steady Progress

Petta et al., Science (2005) Medford et al., Nature Nanotechnology (2013)
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Basic Idea

* Use electron spins as qubits

spin-1/2 chain: electrons
in quantum dots



Exchange-Based QC

* Quantum gates through spin exchange

H;=JS§;-8;,

spin-1/2 chain: electrons
in quantum dots

Bacon, Kempe, Lidar & Whaley, Phys. Rev. Lett. (2000)
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* Quantum gates through spin exchange
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* Quantum gates through spin exchange

H;=JS§;-8;,

DR
1 1/2

T

total spin of the
oval

Bacon, Kempe, Lidar & Whaley, Phys. Rev. Lett. (2000)



Exchange-Based QC

* Quantum gates through spin exchange
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Exchange-Based QC

* Quantum gates through spin exchange
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Controlling Exchange

Petta et al., Science (2005)
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Controlling Exchange

Petta et al., Science (2005)
£ * Exchange Hamiltonian  energy 4
i’ 1 triplet
T singlet

V(X) N turn “Off’
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Electron wave functions in
quantum dot potential V(x)




Controlling Exchange

Petta et al., Science (2005)
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Simple Exchange Pulses

exchange pulse of duration ¢

a= 0 1
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T
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* SWAP pulse = 0 1
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Simple Exchange Pulses

exchange pulse of duration ¢
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Simple Exchange Pulses

exchange pulse of duration ¢
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Three-Spin Qubit Encoding

non —
computational

DiVincenzo et al., Nature (2000) Medford et al., Nature Nanotechnology (2013)



Three-Spin Qubit Encoding
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non — > Transitions to this state

DiVincenzo et al., Nature (2000) Medford et al., Nature Nanotechnology (2013)



Single-Qubit Gates

= Rotation about z-axis : = Rotation about other axis:
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Two-Qubit Gates

qubit in state | a>

’\ time

qubit in state |b>



Two-Qubit Gates

qubit in state|a) Inevitably leads to leakage into non computational states

’\ time

qubit in state |b> 01



Two-Qubit Gates

DiVincenzo, Bacon, Kempe, Burkard & Whaley, Nature (2000)
19 pulse sequence found numerically
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Two-Qubit Gates

DiVincenzo, Bacon, Kempe, Burkard & Whaley, Nature (2000)
19 pulse sequence found numerically
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Two-Qubit Gates

DiVincenzo, Bacon, Kempe, Burkard & Whaley, Nature (2000)
19 pulse sequence found numerically
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<« Gives a CNOT (up to single qubit operations) if the
total spinis 1



Two-Qubit Gates

DiVincenzo, Bacon, Kempe, Burkard & Whaley, Nature (2000)
19 pulse sequence found numerically

< Does not give a CNOT if the total spin is O

A

3V



Fong-Wandzura Sequence

Fong & Wandzura, Quantum Information and Computation (2011)

18 pulse sequence found numerically
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Fong-Wandzura Sequence

Fong & Wandzura, Quantum Information and Computation (2011)

18 pulse sequence found numerically

<>
b |
> |
<>
> |
> |
N |[€&—>
t\.>|°’
N |[&—>
o |

>~

t\.>|°’
N
U




Two Simple Pulses
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Two Simple Sequences

Zeuch, NEB, Phys. Rev. A (2016)
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Two Simple Sequences
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Two Simple Sequences
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Sequence ldentity

1r1”1r T >T

@

a= 0 1 |dentity holds for
G 6o I
a

Can show: Any pulse with m?=1 will satisfy this identity

Zeuch, NEB, Phys. Rev. A (2016)



Sequence ldentity
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Can show: Any pulse with m%=1 will satisfy this identity

Does m have to be a number?
How about a matrix?

Zeuch, NEB, Phys. Rev. A (2016)



m? = 1 Pulses
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m? = 1 Pulses
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Zeuch, NEB, Phys. Rev. A (2016)



“Elevating” m? = 1 Pulses
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“Elevating” m? = 1 Pulses

Zeuch, NEB, Phys. Rev. A (2016)



“Elevating” m? = 1 Pulses
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Zeuch, NEB, Phys. Rev. A (2016)
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M=(1 o
More solutions! | —— M — ﬁ ) M = ((1) _01),...

Zeuch, NEB, Phys. Rev. A (2016)



Sequence Elevation

Zeuch, NEB, Phys. Rev. A (2016)



Sequence Elevation
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Sequence Elevation
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Sequence Elevation
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Sequence Elevation

Applies M to bottom qubit only if top qubit is in state |1)
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Zeuch, NEB, Phys. Rev. A (2016)



Sequence Elevation

Two-qubit controlled- M gate --- no leakage.
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Zeuch, NEB, Phys. Rev. A (2016)



Constructing T

What we want

Zeuch, NEB, Phys. Rev. A (2016)



Constructing T

What we want a= 0 1 AT Leakage
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Constructing T

What we want
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This is close! (But wrong basis)
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Constructing T

Basis change
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Constructing T

What we want Basis change
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Satisfying the Constraint
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Satisfying the Constraint
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Satisfying the Constraint
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Zeuch, NEB, Phys. Rev. A (2016)
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For example, t; = mandt, = 0
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Satisfying the Constraint
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Constructing T

Basis change
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Constructing T
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Full Sequence
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Simple derivation of the Fong-Wandzura pulse sequence

Daniel Zeuch and N. E. Bonesteel
Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
(Received 4 September 2015; published 25 January 2016)

We give an analytic construction of a class of two-qubit gate pulse sequences that act on five of the six
Spill—% particles used to encode a pair of exchange-only three-spin qubits. Within this class, the problem of gate
construction reduces to that of finding a smaller sequence that acts on four spins and is subject to a simple
constraint. The optimal sequence satisfying this constraint yields a two-qubit gate sequence equivalent to that
found numerically by Fong and Wandzura. Our construction is sufficiently simple that it can be carried out

entirely with pen, paper, and knowledge of a few basic facts about quantum spin.

DOI: 10.1103/PhysRevA.93.010303
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PHYSICAL REVIEW B 102, 075311 (2020)

Efficient two-qubit pulse sequences beyond CNOT

D. Zeuch®! and N. E. Bonesteel >
! Peter Griinberg Institute, Theoretical Nanoelectronics, Forschungszentrum Jiilich, D-52425 Jiilich, Germany
*Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA

M| (Received 30 January 2020; revised 6 August 2020; accepted 6 August 2020; published 26 August 2020)

We design efficient controlled-rotation gates with arbitrary angle acting on three-spin encoded qubits for
exchange-only quantum computation. Two pulse sequence constructions are given. The first is motivated by
an analytic derivation of the efficient Fong-Wandzura sequence for an exact CNOT gate. This derivation, briefly
reviewed here, is based on elevating short sequences of SWAP pulses to an entangling two-qubit gate. To go
beyond CNOT, we apply a similar elevation to a modified short sequence consisting of SWAPs and one pulse of
arbitrary duration. This results in two-qubit sequences that carry out controlled-rotation gates of arbitrary angle.
The second construction streamlines a class of arbitrary CPHASE gates established earlier. Both constructions are
based on building two-qubit sequences out of subsequences with special properties that render each step of the
construction analytically tractable.

DOI: 10.1103/PhysRevB.102.075311



New Sequences?

Strategy: “Elevate” simple three-spin pulse sequence to a two-qubit gate.

Zeuch, NEB, Phys. Rev. B (2020)



Another Simple Sequence

Strategy: “Elevate” simple three-spin pulse sequence to a two-qubit gate.

Zeuch, NEB, Phys. Rev. B (2020)
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Strategy: “Elevate” simple three-spin pulse sequence to a two-qubit gate.
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Strategy: “Elevate” simple three-spin pulse sequence to a two-qubit gate.
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Another Simple Sequence

Strategy: “Elevate” simple three-spin pulse sequence to a two-qubit gate.
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Sequence ldentity

Strategy: “Elevate” simple three-spin pulse sequence to a two-qubit gate.
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“Elevating” t Pulse
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M can be any 2x2 unitary.
No longer require M? =1

Zeuch, NEB, Phys. Rev. B (2020)



“Elevating” SW AP Pulse




Sequence Elevation

Zeuch, NEB, Phys. Rev. B (2020)



Sequence Elevation
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Sequence Elevation
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Sequence Elevation

Applies M to bottom qubit only if top qubit is in state |1)
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Constraint

Constructing 11

Basis change
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Constructing 11
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Full Sequence

Zeuch, NEB, Phys. Rev. B (2020)



Full Sequence
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Summary

Analytic Derivation of Fong-Wandzura CNOT sequence:
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Open questions:

1) Can we prove Fong-Wandzura sequence is truly optimal?
2) More efficient general gate constructions?
3) Can these tools be used to construct more “robust” sequences?

Zeuch, NEB, Phys. Rev. A 98, 010303 (2016)
Zeuch, NEB, Phys. Rev. B 102, 075311 (2020)
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