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Single-Qubit Gates
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2π2π2π π

ππ

ππ

π

Zeuch, NEB, Phys. Rev. A (2016)

Full Sequence



π

23π

π

ππ

ππ

2π

2π2π 23π 23π

23π23π

23π 23π

23π23π

ππ

23π23π23π

23π23π23π 2π2π2π

2π2π2π π

ππ

ππ

π

 Original version of the Fong-Wandzura Sequence

Full Sequence









New Sequences? 

Zeuch, NEB, Phys. Rev. B (2020)

Strategy:  “Elevate” simple three-spin pulse sequence to a two-qubit gate.



Another Simple Sequence

Zeuch, NEB, Phys. Rev. B (2020)

Strategy:  “Elevate” simple three-spin pulse sequence to a two-qubit gate.

t
π π

π π



Another Simple Sequence

t
π π

π π

Zeuch, NEB, Phys. Rev. B (2020)

Strategy:  “Elevate” simple three-spin pulse sequence to a two-qubit gate.



Another Simple Sequence

t
π π

π π

Zeuch, NEB, Phys. Rev. B (2020)

Strategy:  “Elevate” simple three-spin pulse sequence to a two-qubit gate.

t



Another Simple Sequence

t
π π

π π

Zeuch, NEB, Phys. Rev. B (2020)

Strategy:  “Elevate” simple three-spin pulse sequence to a two-qubit gate.

t



Sequence Identity

t
π π

π π

Zeuch, NEB, Phys. Rev. B (2020)

Strategy:  “Elevate” simple three-spin pulse sequence to a two-qubit gate.

t









−ite

1
t Identity holds for any t, not just t=0,π



1
𝑒𝑒𝑖𝑖𝑖𝑖

“Elevating” 𝑡𝑡 Pulse

𝑡𝑡

𝐼𝐼
𝑀𝑀T

Zeuch, NEB, Phys. Rev. B (2020)

M can be any 2x2 unitary.
No longer require  M 2 = I



1
−1

“Elevating” 𝑆𝑆𝑊𝑊𝑊𝑊𝑊𝑊 Pulse

𝜋𝜋

𝐼𝐼
−𝐼𝐼Π

Zeuch, NEB, Phys. Rev. B (2020)



= t

Sequence Elevation

t
π π

π π

Zeuch, NEB, Phys. Rev. B (2020)



π π

Π T Π
= T

Sequence Elevation

Zeuch, NEB, Phys. Rev. B (2020)



π π

Π
= T

T Π

Sequence Elevation

Zeuch, NEB, Phys. Rev. B (2020)



π π

Π
= T

T Π

Sequence Elevation

Zeuch, NEB, Phys. Rev. B (2020)

Applies𝑀𝑀 to bottom qubit only if top qubit is in state ⟩|1

𝐼𝐼
𝑀𝑀



π π

Π
=

T Π

Sequence Elevation

𝑀𝑀

Zeuch, NEB, Phys. Rev. B (2020)



Constructing T

VT = 1−V =
2
π

2
3π

2
π

2
3π

t

t

t

t

T 







M

I

Zeuch, NEB, Phys. Rev. B (2020)

𝜙𝜙 𝑡𝑡 = 2 arccos 5 cos 𝑡𝑡/2 + 3 cos 3𝑡𝑡/2 /8
𝑀𝑀 𝑡𝑡 = 𝑒𝑒𝑖𝑖 𝜉𝜉(𝑡𝑡)𝑒𝑒𝑖𝑖𝜙𝜙(𝑡𝑡)�𝒏𝒏(𝑡𝑡)�𝝈𝝈/2

𝜉𝜉 𝑡𝑡 = −𝑡𝑡/2

𝑎𝑎 = 0 1

𝑎𝑎



Constructing Π

Π =
π

π

Zeuch, NEB, Phys. Rev. A (2016)

𝑎𝑎

Basis change

1

1

1 1

= 0
1/2

Constraint

=

Solution

𝑊𝑊−1W

W W 1t 1t
2π/3



Constructing Π

Π =

Zeuch, NEB, Phys. Rev. A (2016)

𝑎𝑎

1

1

1 1

= 0
1/2

Constraint

=

Solution

W W 1t 1t
2π/3

1t 1t

2π/3 π

π

π

π

4π/3
s1 s1

s1

t1=1.34004…,s1= 2π−t1,… 



Full Sequence

ππ

23π

23π 2π

2ππ

π

t

t

2π/3 4π/3

s1 s1t1 t1
t1 s1

π

π

4π/3 2π/3

t1 t1s1 s1

s1 t1 







φie

1
=

Π T Π

Zeuch, NEB, Phys. Rev. B (2020)



Full Sequence

ππ

23π

23π 2π

2ππ

π

t

t

2π/3 4π/3

s1 s1t1 t1
t1 s1

π

π

4π/3 2π/3

t1 t1s1 s1

s1 t1








φie

1
=

t1=1.34004…,s1= 2π−t1,… 

Zeuch, NEB, Phys. Rev. B (2020)

𝜙𝜙 𝑡𝑡 = 2 arccos 5 cos 𝑡𝑡/2 + 3 cos 3𝑡𝑡/2 /8



Summary

a

c

t t t
π π 21

a

b T T T
π π

21

T T Ta

c

π π

Analytic Derivation of Fong-Wandzura CNOT sequence:

a

c

t
π π 21

a

b Π T Π
π π

21

Π T Πa

c

π π

π π

Generalization leading to new sequences:

1) Can we prove Fong-Wandzura sequence is truly optimal? 
2) More efficient general gate constructions?
3) Can these tools be used to construct more “robust” sequences?

Open questions:

Zeuch, NEB, Phys. Rev. A 98, 010303 (2016)
Zeuch, NEB, Phys. Rev. B 102, 075311 (2020)
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