ELECTRICITY AND MAGNETISM II

Homework set #18: Potentials and Fields I

Problem # 18.1 :

(a) Find the fields, and the charge and current distributions, corresponding to

$$V(\mathbf{r},t) = 0$$
 , $\mathbf{A}(\mathbf{r},t) = -\frac{1}{4\pi\epsilon_0} \frac{qt}{r^2} \hat{\mathbf{r}}$

(b) Use the gauge function $\lambda = -(1/4\pi\epsilon_0)(qt/r)$ to transform the potentials, and comment on the result.

Problem # 18.2 :

A time-dependent point charge q(t) at the origin, $\rho(\mathbf{r}, t) = q(t)\delta^3(\mathbf{r})$, is fed by a current $\mathbf{J}(\mathbf{r}, t) = -(1/4\pi)(\dot{q}/r^2)\hat{\mathbf{r}}$, where $\dot{q} = dq/dt$.

- (a) Check that charge is conserved, by confirming that the continuity equation is obeyed.
- (b) Find the scalar and vector potentials in the Coulomb gauge. If you get stuck, try working on (c) first.
- (c) Find the fields, and check that they satisfy all of Maxwell's equations.

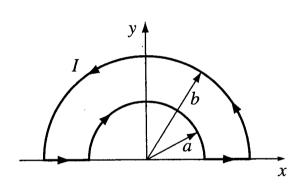
Problem # 18.3 :

Suppose V = 0 and $\mathbf{A} = A_0 \sin(kx - \omega t)\mathbf{\hat{y}}$, where A_0 , ω , and k are constants. Find \mathbf{E} and \mathbf{B} , and check that they satisfy Maxwell's equations in vacuum. What condition must you impose on ω and k?

Problem # 18.4 :

The vector potential for a uniform magnetostatic field is $\mathbf{A} = -\frac{1}{2}(\mathbf{r} \times \mathbf{B})$. Show that $d\mathbf{A}/dt = -\frac{1}{2}(\mathbf{v} \times \mathbf{B})$, in this case, and confirm that

$$\frac{d}{dt}(\mathbf{p} + q\mathbf{A}) = -\vec{\nabla}U_{vel} \quad , \quad U_{vel} = q(V - \mathbf{v} \cdot \mathbf{A})$$


yields the correct equation of motion.

Problem # 18.5 :

A piece of wire bent into a loop, as shown in the figure, carries a current that increases linearly with time:

$$I(t) = kt \quad (-\infty < t < \infty) .$$

Calculate the retarded vector potential \mathbf{A} at the center. Find the electric field at the center. Why does this neutral wire produce an *electric* field? Why can't you determine the *magnetic* field from this expression for \mathbf{A} ?

