ELECTRICITY AND MAGNETISM II

Homework set #22: Special Theory of Relativity II

Problem # 22.1 :

(a) In classical mechanics, Newton's law can be written in the more familiar form $\mathbf{F} = m\mathbf{a}$. The relativistic equation, $\mathbf{F} = d\mathbf{p}/dt$, cannot be so simply expressed. Show, rather, that

$$\mathbf{F} = \frac{m}{\sqrt{1 - u^2/c^2}} \left[\mathbf{a} + \frac{\mathbf{u}(\mathbf{u} \cdot \mathbf{a})}{c^2 - u^2} \right] ,$$

where $\mathbf{a} = d\mathbf{u}/dt$ is the ordinary acceleration.

(b) Show that it is possible to outrun a light ray, if you're given sufficient head start, and your feet generate a constant force.

Problem # 22.2 :

Show that the ordinary acceleration of a particle of mass m and charge q, moving at velocity **u** under the influence of electromagnetic fields **E** and **B**, is given by

$$\mathbf{a} = \frac{q}{m}\sqrt{1 - u^2/c^2} \left[\mathbf{E} + \mathbf{u} \times \mathbf{B} - \frac{1}{c^2}\mathbf{u}(\mathbf{u} \cdot \mathbf{E}) \right]$$

Hint: Use the result of problem #22.1.

Problem # 22.3 :

A parallel-plate capacitor, at rest in S_0 and tilted at a 45° angle to the x_0 axis, carries

charge densities $\pm \sigma_0$ on the two plates (see figure). System S is moving to the right at speed v relative to S_0 .

- (a) Find \mathbf{E}_0 , the field in \mathcal{S}_0 .
- (b) Find **E**, the field in \mathcal{S} .
- (c) What angle do the plates make with the x axis?
- (d) Is the field perpendicular to the plates in S? Find \mathbf{E}_0 , the field in S_0 .

Problem # 22.4 :

In system S_0 , a static uniform line charge λ coincides with the z axis.

- (a) Write the electric field \mathbf{E}_0 in *Cartesian* coordinates, for the point (x_0, y_0, z_0) .
- (b) Use the transformation rules for the fields to find the electric field in S, which moves with speed v in the x direction with respect to S₀. The field is still in terms of (x₀, y₀, z₀); express it instead in terms of the coordinates (x, y, z) in S. Finally, write E in terms of the vector S from the *present* location of the wire and the angle θ between S and x̂. Does the field point away from the instantaneous location of the wire, like the field of a uniformly moving point charge?

Problem # 22.5 :

(a) Charge q_A is at rest at the origin in system S; charge q_B flies by at speed v on a trajectory parallel to the x axis, but at y = d. What is the electromagnetic force on q_B as it crosses the y axis?

- (b) Now study the same problem from system \overline{S} , which moves to the right with speed v. What is the force on q_B when q_A passes the \overline{y} axis? Do it two ways:
 - (i) by using your answer to (a) and transforming the force;
 - (ii) by computing the fields in $\overline{\mathcal{S}}$ and using the Lorentz force law.