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o Historical Context

9 How does matter organize itself?

e Gravitationally Bound Neutron Stars
Q Anatomy of a Neutron Star

e The Nuclear Symmetry Energy

@ Laboratory Constraints on the EOS
e Astrophysical Constraints on the EOS

Q Conclusions and Outlook
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Death of a Star — Birth of a Pulsar: Core-Collapse Supernova

@ Big Bang creates H, He, and traces of light elements

@ Massive stars create all chemical elements: from 6Li to *°Fe

@ Once *°Fe is produced the stellar core collapses

@ Core overshoots and rebounds: Core-Collapse Supernova!

@ 99% of the gravitational energy radiated in neutrinos

@ An incredibly dense object is left behind: A neutron star or a black hole

Neutron stars are solar mass objects with 10 km radii
Core collapse mechanism and r-process site remain uncertain!

... see “Blingnova: The origin of gold” (Washington Post)
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S. Chandrasekhar and X-Ray Chandra

@ White dwarfs resist gravitational collapse through electron degeneracy pressure rather
than thermal pressure (Dirac and R.H. Fowler 1926)
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S. Chandrasekhar and X-Ray Chandra

@ White dwarfs resist gravitational collapse through electron degeneracy pressure rather
than thermal pressure (Dirac and R.H. Fowler 1926)

@ During his travel to graduate school at Cambridge under Fowler, Chandra works out the
physics of the relativistic degenerate electron gas in white dwarf stars (at the age of 19!)
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@ For masses in excess of M =1.4 M, electrons becomes relativistic and the degeneracy
pressure is insufficient to balance the star’s gravitational attraction (P~ n®/8 — n*/3)
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@ For masses in excess of M=1.4 M, electrons becomes relativistic and the degeneracy
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@ “For a star of small mass the white-dwarf stage is an initial step towards complete
extinction. A star of large mass cannot pass into the white-dwarf stage and one is left
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S. Chandrasekhar and X-Ray Chandra

@ White dwarfs resist gravitational collapse through electron degeneracy pressure rather
than thermal pressure (Dirac and R.H. Fowler 1926)

@ During his travel to graduate school at Cambridge under Fowler, Chandra works out the
physics of the relativistic degenerate electron gas in white dwarf stars (at the age of 19!)

@ For masses in excess of M =1.4 M, electrons becomes relativistic and the degeneracy
pressure is insufficient to balance the star’s gravitational attraction (P~ n®/8 — n*/3)

@ “For a star of small mass the white-dwarf stage is an initial step towards complete
extinction. A star of large mass cannot pass into the white-dwarf stage and one is left
speculating on other possibilities” (S. Chandrasekhar 1931)

@ Arthur Eddington (1919 bending of light) publicly ridiculed Chandra’s on his discovery
@ Awarded the Nobel Prize in Physics (in 1983 with W.A. Fowler)
@ In 1999, NASA lunches “Chandra” the premier USA X-ray observatory
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Some Historical Facts

@ Chandrasekhar shows that massive stars will collapse (1931)
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@ Chadwick discovers the neutron (1932)
... predicted earlier by Ettore Majorana but never published!
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Some Historical Facts

@ Chandrasekhar shows that massive stars will collapse (1931)

@ Chadwick discovers the neutron (1932)
... predicted earlier by Ettore Majorana but never published!

@ Baade and Zwicky introduce the concept of neutron stars (1933)

@ Oppenheimer-Volkoff compute masses of neutron stars using GR (1939)
Predict M, ~0.7 M5 as maximum NS mass or minimum black hole mass

@ Jocelyn Bell discovers pulsars (1967)

@ Gold and Pacini propose basic lighthouse model (1968)
Pulsars are rapidly rotating Neutron Stars!
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Jocelyn Bell

@ Worked with Anthony Hewish on constructing a radio telescope to study quasars
@ In 1967 as a graduate student (at the age of 24!) detected a bit of “scruff”
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@ Speculated that the signal might be from another civilization (LGM-1)
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@ Jocelyn Bell discovers amazing regularity in the radio signals (P=1.33730119 s)
@ Speculated that the signal might be from another civilization (LGM-1)

@ Paper announcing the first pulsar published in Nature (February 1968)
A Hewish, S J Bell, J D H Pilkington, P F Scott, R A Collins
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@ Jocelyn Bell discovers amazing regularity in the radio signals (P=1.33730119 s)
@ Speculated that the signal might be from another civilization (LGM-1)

@ Paper announcing the first pulsar published in Nature (February 1968)
A Hewish, S J Bell, J D H Pilkington, P F Scott, R A Collins

@ Antony Hewish and Martin Ryle awarded the Nobel Prize in Physics in 1974
@ The “No-Bell” roundly condemned by many astronomers (Fred Hoyle)
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Jocelyn Bell

@ Worked with Anthony Hewish on constructing a radio telescope to study quasars
@ In 1967 as a graduate student (at the age of 24!) detected a bit of “scruff”
iww‘\,u\m‘\‘mwwm

W E]

Tino )

Jocelyn Bell discovers amazing regularity in the radio signals (P=1.33730119 s)
Speculated that the signal might be from another civilization (LGM-1)

Paper announcing the first pulsar published in Nature (February 1968)
A Hewish, S J Bell, J D H Pilkington, P F Scott, R A Collins

Antony Hewish and Martin Ryle awarded the Nobel Prize in Physics in 1974
The “No-Bell” roundly condemned by many astronomers (Fred Hoyle)

“I believe it would demean Nobel Prizes if they were awarded to research students, except
in very exceptional cases, and | do not believe this is one of them”
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Biography of a Neutron Star: The Crab Pulsar

@ SN 1054 first observed as a new “star”in the sky on July 4, 1054
@ Event recorded in multiple Chinese and Japanese documents

@ Event also recorded by Anasazi residents of Chaco Canyon, NM
@ Crab nebula and pulsar became the SN remnants

Name: PSR B0531+21 Distance: 6,500 ly
POB: Taurus Temperature: 10° K
Mass: 1.4 M., Density: 10'4g/cm?
Radius: 10 km Pressure: 10%° atm
Period: 33 ms Magnetic Field: 10'% G
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A Grand Challenge: How does subatomic matter organize itself?
“Nuclear Physics: Exploring the Heart of Matter” (2010 Committee on the Assessment and Outlook for Nuclear Physics)
@ Consider nucleons (A) and electrons (Z) in a volume V at T=0
@ Enforce charge neutrality protons = electrons + muons
@ Enforce conservation laws: Charge and Baryon number
n—p+e- +v (betadecay) p+e —n+v (electron capture)

Impossible to answer such a question under normal laboratory
conditions — as such a system is in general unbound!
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Solution: Gravitationally Bound Neutron Stars

@ Neutron Stars are bound by gravity NOT by the strong force
Binding Energy/nucleon ~ 100 MeV (neutron matter is unbound!)
@ Gravity is the catalyst for the formation of novel states of matter
Coulomb (“Wigner”) crystal of neutron-rich nuclei
Coulomb frustrated pasta structures
Strange quark matter, meson condensates, color superconductors
@ None of these exotic states can be produced in the laboratory!

Neutron stars are the natural meeting place of astrophysics, general

relativity, atomic, nuclear, particle, and condensed-matter physics.

J. Piekarewicz (FSU) Neutron Stars Santa Tecla, September 2013

12/33



From Crust to Core (Figures courtesy of Dany Page and Sanjay Reddy)

@ Outer Crust: 107199 < p <1073
“Coulomb Crystal” of progressively more neutron-rich nuclei

@ Inner Crust: 103y < p < 107" pg
“Nuclear Pasta” Exotic shapes immersed in a neutron vapor

@ Outer/Inner Core: 10~ "pg < p < 10pp
“Fermi Liquid” of uniform neutron-rich matter (“Exotic Phases?”)
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The Outer Crust: 10710, < p <107 3pg

At p < po/2, B/A(uniform) ~ B/A(*°Fe)

Broken symmetry (non-uniform) state energetically favorable
Nuclear Crystal immersed in a uniform Fermi sea of electrons
E/Ao = M(N,Z)/A+ 3/4Y5"* Keermi + lattice

As density increases in the outer crust, *°Fe, 52Ni, ..., \J¥Krgs(?)
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Critical point?
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~—— assamun Apeg

_
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The Inner Crust: 107 3py < p <1077 pg

“Dynamical Frustration and Nuclear Pasta”
@ Emerges from a dynamical competition
@ Impossibility to minimize all elementary interactions
@ Emergence of a multitude of competing (quasi)ground states
@ Universal in complex systems (nuclei, spin glasses, proteins,...)
@ Short-range attraction and long-range (Coulomb) repulsion
@ Emergence of complex topological shapes “Nuclear Pasta”
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Theory of Electronic Micro-Emulsions (2D Electron Gas)

Steve Kivelson, Reza Jamei, and Boris Spivak

“Phases Intermediate Between the Two Dimensional
Fermi Liquid and the Wigner Crystal”

A Universal Theorem:

|

“In the presence of long range interactions V(r) ~ r—*, no first order phase
transition is possible for d — 1 < x <d. Rather, in place of the putative first
order phase transition there are intermediate microemulsion phase(s)”

A sequence A sequence

of more of more
Blue  Bubbles; complicated | gyjnes complicated | Bupbles, Green
phase of green Ppatterns. patterns.  of blue | phase

Ng N
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The Outer/Inner Core: 10~ py < p < 10pg

Neutron Stars are made of Neutrons!

@ Uniform neutron-rich matter in chemical equilibrium
neutrons, protons, electrons, muons, ??7?

@ Structurally the most important component of the star
~ 90% of the radius and all the mass reside in the core

@ What is the maximum mass of a neutron star?
@ What is the radius of a “canonical” neutron star?
@ What are the phases of baryonic matter at such high densities?

v

Quarks and Gluons
\ Critical point?
100] I Y Hadrcns%
2 ,
&
) / Color Super-
Neutron stars  conductor?

Net Baryon Density

asianun e

Temperature T [MeV]
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Neutron Stars as Physics Gold Mines

@ Neutron Stars satisfy the Tolman-Oppenheimer-Volkoff equation
General-Relativistic extension of Newtonian gravity

VRs/Ri=Vesc/C~1/2

@ Only Physics sensitive to is: Equation of State
@ EOS must span 10-11 orders of magnitude in baryon density

st
:?L‘p Q‘ﬁo{\\' ddM =X % r25( )
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2 15¢ ot som—-f&s” , ] B dr 8([’)
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The Outer Crust: Extreme sensitivity to nuclear masses
Wolf et al., PRL110, 041101 (2013)

@ Mass per nucleon: M(N,Z)/A—my=my(N—-Z)/A— B(N,Z)/A
56Fe: B/A=8.790 MeV — 8.744 MeV
82Ni: B/A=8.794 MeV — 8.732MeV

@ ISOLTRAP@CERN: The case of §3Zns,
MECERN(AMEZOO}) =—42.31 4(*42460) MeV
@ 857ns, is still far away from }18Krg, [(N—2)/A=0.27 —0.39]

Depth (km)
0.1

liquid core
neutron-rich
matter

center at 10 km

core L neutron
0 :
sl superfluid

nuclei
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The Composition of the Outer Crust

Roca-Maza and JP, PRC 78, 025807 (2008) ; Pearson et al., PRC 83, 065810 (2011) ; Wolf et a/., PRL 110, 041101 (2013)
@ Composition emerges from relatively simple dynamics:
All that is needed is a mass table in the 26 < Z <50 range
@ Subtle competition between electronic and symmetry energy
@ High-precision mass measurements of exotic nuclei are essential!

A B e et e T PRL 110, 041101 (2013) PHYSICAL
80| Moller and Nix L FHH S “Wolfetal =
E E RARAAN e
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= | |(Wsebe Dg B £ AME2DM2 vees » =, b o
| 4| ||Wolfetal (2013) [3 ISOLTRAP measuremer .[Ru PR crust e SRS
;i N o | v [ oogr
v ] HFB-19 pecion i o o
S
: . 1 £ 3 HFB-2 predcion L | s s
Gl vl cownd ool ool sl § i o |
i s o e paEn|s ¢ | - &
80 Duflo and Zuker on I e *
d &u o s 10km
= k4 HNARI T v 3
= 30| R i) T reutn dipIne n
B i
| 25T L N
Koj 26 Tt il ] N
R vl .. Pearsonetal (2011) -
4 3 2 al 0 1 % Cr
100100 a0 e a0n 10010 228 3052 5 36 9 40 42 44 4 4 59 52 54 5 5 60 2 64 6 66 7072 74 10 16 0 82 84 86 85 |
p(10" g/em’) Nettron rumoer, N HFB-19 | HFB-21

Starquakes—much like earthquakes—may be used to probe the
composition of the stellar crust (Steiner, Strohnmayer, Watts, . . .)
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The Stellar Core: 10~ 1py < p <107

The Critical Role of the Symmetry Energy

@ Most of the size and all of the mass is contained in the stellar core
@ Stellar (maximum) mass strongly sensitive to the high-density EOS

@ Stellar radius sensitive to density dependence of the symmetry energy
radii controlled by the EOS in the immediate vicinity of p,
radii strongly correlated to the symmetry pressure at p, (L)

@ Neutron skin also strongly correlated to the symmetry pressure L

@ Neutron skin as proxy for neutron-star radii . .. and more!

y
ﬁlmu’sphere T T *
T ot plasma —— Linear Fit, = 0.979 5%
Outer Crust ) ) . ©  Nonrelativistic models z
200 m deep - fluid or solid lattice .3 ¢ Relativistic models % % 71
of heavy nuclei - pressure from % 225
degenerate electrons 5 %%.9 @boo,
% 3% e ern %
Inner Crust ) n Py A3 9 % u;:ﬁ’: 1
600 m deep - lattice of heavy nuclei ® ® o0 %
- superfluid of free neutrons - L %%ﬁ%% 2 A4 wens ¢
pressure from degenerate electrons [ %ge g B
° % %, %
Quter Core 5 % ;_f‘w;;_‘ %
Superfluid neutrons - small number of o & o, O %
superconducting protons - degenerate L% ) ‘?f"'; 1
neutrons supply main pressure 5.9 , %% Roca-Maza et al
S8 o0
—— [, A PRL 106, 252501 (2011)
Uncertain, but there may be a solid core H L L
consisting of elementary particles - 0 50 100 150
density is 1015 g/cm3 L (MeV)
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Bethe-Weizsacker Mass Formula (circa 1935-36)

@ Nuclear forces saturate = equilibrium density

@ Nuclei penalized for developing a surface

@ Nuclei penalized by Coulomb repulsion

@ Nuclei penalized if N+ Z

@ B(Z,N) = —a,A+ a,A?8 + a.Z%/A'? + a,(N-Z)? /A + ...
-+ shell corrections (2, 8,20, 28,50, 82,126, ...)

a,~16.0, a;~17.2, a.~0.7, a,~23.3 (in MeV)\
Neutron stars are gravitationally bound!

BIA MaV
O
=
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Neutron Skins and Density Dependence of the Symmetry Energy

@ Proton (charge) densities known with enormous precision
Started with Hofstadter in the late 1950’s and continues to this day

@ Neutron densities are as fundamental as proton densities
Yet still elusive after more than 80 years of nuclear physics

@ Hinders our understanding of density dependence symmetry energy
Penalty for breaking N=Z symmetry [B(Z,N) = —a,(N—-2)?/A+ .. ]

@ Neutron skin strongly correlated to the symmetry pressure L o< Ppay
Slope (pressure) of pure neutron matter poorly constrained
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Where do the extra neutrons go?

@ The EOS of asymmetric matter {aE(N—Z)/A, XE(p—pu)/3po}

1 1
E(p,a) = &(p) + a®S(p) = (eo + 2K0X2) + (J—|—X + 2Ksme2> o?

@ In 2%8Pp, 82 protons/neutrons form an isospin symmetric spherical core
Where do the extra 44 neutrons go?

@ Competition between surface tension and density dependence of S(p)
Surface tension favors placing them in the core where S(p, ) is large
Symm. energy favors pushing them to the surface where S(p,,,) is small

@ If difference S(p,)—S(p,) o< L is large, then neutrons move to the surface
The larger the value of L the thicker the neutron skin of 2°Pb
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The Enormous Reach of the Neutron Skin

Reinhard-Nazarewicz, PRC 81 (2010) 051303; Fattoyev-Piekarewicz, PRC 86 (2012) 015802; PRC 84 (2011) 064302

@ Neutron skin as proxy for neutron-star radii . .. and more!

@ Calibration of nuclear functional from optimization of a quality measure
@ Predictions accompanied by meaningful theoretical errors

@ Covariance analysis least biased approach to uncover correlations

@ Neutron skin strongly correlated to a myriad of neutron star properties:
Radii, Enhanced Cooling, Moment of Inertia, . ..
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The Modern Approach: PV in Elastic Electron-Nucleus Scattering

Donnelly, Dubach, Sick, NPA 503, 589 (1989); Abrahamyan et al., PRL 108, (2012) 112502
@ Charge (proton) densities known with enormous precision
charge density probed via parity-conserving eA scattering
@ Weak-charge (neutron) densities very poorly known
weak-charge density probed via parity-violating eA scattering

PP G Fa(@)
o - (@)
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@ Use parity violation as Z, couples preferentially to neutrons
@ PV provides a clean measurement of neutron densities (and r,)

~
~

up-quark | down-quark | proton | neutron
~-coupling +2/3 -1/3 +1 0
Zy-coupling || ~ +1/3 ~—2/3 ~0 —1
gv=2t, — 4Qsin by ~2t,— Q
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PREX: The Lead Radius EXperiment Abrahamyan et al., PRL 108, (2012) 112502

@ Ran for 2 months: April-dJune 2010
@ First electroweak observation of the neutron-rich skin in 2°2Pb
@ Promised a 0.06 fm measurement of r2%8; error 3 times as large!
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We report the first measurement of the parity-violating asymmetry Apy in the elastic scattering of
polarized electrons from 2°®Pb. Apy is sensitive to the radius of the neutron distribution (R,,). The result
Apy = 0.656 = 0.060(stat) = 0.014(syst) ppm corresponds to a difference between the radii of the
neutron and proton distrihutionis” =1, — 0.33741¢ fm[and provides the first electroweak observation
of the neutron skin which is expected 1n a heavy, neutron-rich nucleus.

A Physics case for PREX-Il and beyond!
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The Electric Dipole Polarizability in 2°2Pb

RCNP: A. Tamii et al., PRL 107, 062502 (2011)

@ IVGDR: Coherent oscillations of protons against neutrons
Nuclear symmetry energy as the restoring force

@ Accurate measurement of E1 polarizability: o, =(20.1+0.6) fm®

@ E1 polarizability as a complement to /228
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Electric Dipole Polarizability a Fundamental
Complement to Neutron Skins
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Evidence for Nuclear Pasta and Strange Quark Matter?

nature
; ARTICLES
phySIC S PUBLISHED ONLINE: 9 JUNE 2013 | DOI:10.1038/NPHYS2640

A highly resistive layer within the crust of X-ray
pulsars limits their spin periods

José A. Pons™, Daniele Vigano' and Nanda Rea?

The lack of isolated X-ray pulsars with spin periods longer than 12s raises the question of where the population of evolved
high-magnetic-field neutron stars has gone. Unlike canonical radiopulsars, X-ray pulsars are not subject to physical limits to
the emission mechanism nor observational biases against the detection of sources with longer periods. Here we show that a
highly resistive layer in the innermost part of the crust of neutron stars naturally limits the spin period to a maximum value
of about 10-20s.

ossibly owing to the existence of a nuclear ‘pasta’ phase, Our findings suggest that the maximum period of isolated X-ray
pulsars may be the first observational evidence for an amorphous inner crust, whose properties can be further constrained by
future X-ray timing missions combined with more detailed models.
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Heaven on Earth: Enhanced Cooling of Neutron Stars

@ Core-collapse supernovae generates hot (proto) neutron star 7~ 10K
@ Neutron stars cool promptly by v-emission (URCA) n — p+ e~ + e. ..
@ Direct URCA process cools down the star until 7~10°K

@ Inefficient modified URCA takes over (n) +n— (n) +p+e +ve...

~~., modified Urca -
" .
0822-4247

e - 1207.4-5209

X +8246 .

1 2 3‘ (;) 5\ g 6 7
Logig oge (yr,

@ Neutrino “enhanced” cooling possible in exotic quark matter

@ The pulsar in 3C58 may indeed be a quark star

@ Unless ... symmetry energy is stiff: large Y, < large neutron skin
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George Gamow and URCA Cooling

@ Urca is not an acronym but the name of a casino in Rio de Janeiro at
which George Gamow commented to the Brazilian astrophysicist (Mario
Schénberg): the energy disappears in the nucleus of the supernova as
quickly as the money disappeared at that roulette table.

@ In Gamow’s Russian dialect, urca can also mean a pickpocket, an
individual that can steal your money in a matter of seconds!
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Heaven on Earth: Radius of a M, =1.4 M,

@ Same dynamical origin to neutron skin and NS radius
Same pressure creates neutron skin and NS radius

@ Correlation among observables differing by 18 orders of magnitude!
@ NS radius sensitive to the high-density component of the EOS

@ Large neutron skin and small neutron radius?
May be evidence in favor of a phase transition (quark matter?)
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Exciting times because of the tension between
theory and experiment/observation
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Conclusions and Outlook: The Physics of Neutron Stars

Astrophysics: What is the minimum mass of a black hole?

Atomic Physics: Pure neutron matter as a Unitary Fermi Gas

Condensed-Matter Physics: Signatures for the liquid to crystalline state transition?
General Relativity: Rapidly rotating neutrons stars as a source of gravitational waves?
Nuclear Physics: What are the limits of nuclear existence and the EOS of nuclear matter?

Particle Physics: QCD made simple — the CFL phase of dense quark matter
QCD MADE SIMPLE

Neutron Stars are the natural meeting place for
fundamental and interesting Physics
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