Homework \#5

phy 5246
due: Wednesday, October 8 (in class)

P1: Let F be a fixed point (the focus) and ℓ the fixed line (the directrix) which does not pass through F. Without loss of generality, you can choose them to be at the origin and at $x=d$, respectively (see the figure). Let e be a positive number (the eccentricity) and consider the set of points P that satisfy

$$
\frac{\text { distance form } P \text { to } F}{\text { distance form } P \text { to } \ell}=e \text {. }
$$

a) Show that the set of all points that satisfy the above, is described by the polar equation

$$
r=\frac{e d}{1+e \cos \theta} .
$$

b) Show that if $0<e<1$, the equation is an ellipse of eccentricity e by recasting the above into the equation

$$
\frac{(x+c)^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-c^{2}}=1
$$

Determine a and c.
c) Show that if $e=1$, the equation represents a parabola given by

$$
y^{2}=-4 \frac{d}{2}\left(x-\frac{d}{2}\right) .
$$

d) Show that if $e>1$, the equation is a hyperbola of eccentricity e by recasting the above into the equation

$$
\frac{(x-c)^{2}}{a^{2}}-\frac{y^{2}}{c^{2}-a^{2}}=1 .
$$

Determine a and c.
From Goldstein Poole, and Safko, Classical Mechanics (Third Edition):
P2: Chapter 3 Problems 11.
P3: Chapter 3 Problem 14.
P4: Chapter 3 Problem 20.

