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1. INTRODUCTION

It is now increasingly recognized that proteins function in the context of multi-
component complexes. This review aims to cover recent progress in modeling
fundamental properties of proteins in their interactions among themselves and
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with nucleic acids. We pay special attention to computational papers which ap-
peared in the past three years, but experimental papers and earlier computational
papers which we find particularly relevant are also discussed.

We focus on four interrelated aspects of protein–protein and protein–nucleic
acid interactions. Section 2 deals with building structural models for protein com-
plexes. In Section 3 we present an overview of the various methods for computing
contributions to the stability of protein complexes. In Section 4 the focus shifts to
the rates of forming protein complexes. Finally in Section 5 we discuss the impacts
of protein dynamics on the structures, thermodynamics, and kinetics of protein
complexes.

2. BUILDING STRUCTURAL MODELS

As a result of favorable interactions, a protein and its partner(s) will form a stere-
ospecific complex. Under favorable conditions, the structure of this complex can
be determined by X-ray crystallography, NMR, or electron microscopy. The struc-
ture holds the key to understanding the interactions involved and is the basis for
making computations on the stability and rate of complex formation.

In many cases, for practical or technical reasons (as opposed to any fundamen-
tal physical reasons), the structures of protein complexes cannot be determined
experimentally. If the structure of a protein complex with adequate sequence sim-
ilarity is available, one can build the structure of a query complex by homology
modeling [1–3]. The applicability of homology modeling to protein complexes is
still limited because the current structural database provides only a sparse cover-
age of the protein interaction space.

The general approach which aims to build the structure of a complex, start-
ing from the structures of the unbound partners, is now referred to as docking.
A forum that provides a fair and critical assessment of various docking methods
is the CAPRI “experiment” (http://www.ebi.ac.uk/msd-srv/capri/) run by Joël
Janin. We strongly urge method developers to participate in CAPRI, and at the
minimum, use the CAPRI targets as a test set. Interested readers can find the latest
progress report on CAPRI in a special issue of Proteins (Vol. 69, Issue 4, December
2007).

In general, docking methods aim to maximize the shape and/or physiochem-
ical complementarity between binding partners through generation of large sets
of possible poses. Both the sampling of relevant poses and the discrimination of
near native poses from the large number of non-native alternatives present signif-
icant challenges. The task becomes even more daunting when complex formation
is accompanied by rearrangement of loops or relative movement of domains. In
our (admittedly biased) opinion, a fruitful approach is to make use of any experi-
mental information available on the interaction [4–7]. Interaction sites can also be
predicted by various bioinformatics approaches (for a recent review, see [8]), and
from a set of known interfaces by screening [9,10].

We briefly mention two related subjects. For obvious reasons, the interfaces of
protein complexes have been a target for developing drug molecules. This subject

http://www.ebi.ac.uk/msd-srv/capri/
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has been reviewed in this series [11]. In addition, it has now become possible to de-
sign de novo complexes, either by modifying a monomeric protein into a dimeric
form [12] or by grafting from an unrelated protein complex [13].

3. PREDICTION OF BINDING AFFINITIES

The stability of protein complexes is measured by the binding constant (Ka). Ex-
perimentally determined values of Ka span over 10 orders of magnitude (see Fig-
ure 4.1). It is clear that no simple correlations exist between structures of protein
complexes and their binding affinities. General approaches to calculating binding
affinities have been reviewed [14]. Here we focus on aspects specific to protein–
protein and protein–nucleic acid complexes.

The binding constant is given by [14,15]:

(1)Ka =
∫

Γ

dr dω e−W(r,ω)/kBT

where W(r, ω) is the potential of mean force of for the interaction between a pro-
tein and its partner at a relative separation r and relative orientation ω, kBT is
thermal energy, and Γ denotes the region of configurational space defining the
bound state. Contributing factors to W(r, ω) include hydrophobic and electrostatic
interactions, and the change in conformational entropy of the binding partners
upon complex formation. Typically, computations aim to predict the change in the
binding free energy, −kBT ln Ka, e.g., due to a point mutation.

3.1 Electrostatic contribution

It is well understood that hydrophobic interactions make favorable contributions
to binding. However, the effects of electrostatic interactions are subtle. Neglecting
conformational changes, the electrostatic contribution is given by

(2)Wel = Gel(AB) − Gel(A) − Gel(B)

where Gel is the electrostatic free energy of each subunit (A or B) or the complex
(AB), which can be calculated by solving the Poisson–Boltzmann (PB) equation.
The subtlety of the electrostatic contribution can be appreciated by decomposing
it into two components: the desolvation cost Wdesol and the solvent-screened inter-
action energy Wint (Figure 4.2). To obtain Wdesol, the electrostatic solvation energy
of each subunit is calculated twice, first by itself and then in the presence of its part-
ner, which has its partial charges zeroed out. The difference in the results between
these two calculations gives the desolvation cost for that subunit, and adding the
corresponding quantity for its partner gives Wdesol. The difference between Wel
and Wdesol comes from the interactions between the partial charges of the two
subunits in the solvent environment.

It is clear that Wdesol opposes binding. Wint will favor binding when the charges
on the two subunits have complementary charge distributions, which should be
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FIGURE 4.1 The spectrum of protein affinities. The locations of seven protein–protein complexes within the spectrum, along with their
structures, are shown. Adapted from Dong and Zhou [17].
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FIGURE 4.2 Decomposition of the electrostatic contribution to binding affinity into desolvation cost and solvent-screened interaction.
Interactions of protein charges with the solvent (represented by shadows around binding molecules) are indicated by outgoing arrows. Upon
binding, the binding molecules are desolvated within their interface and charge–charge interactions, as indicated by a double-headed arrow,
emerge.
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true in general. There Wel consists of two opposite components. Whether electro-
static interactions make a net positive or net negative contribution to binding rests
on the balance between the two components. In particular, the balance is very sen-
sitive to how the boundary between the protein low dielectric and the solvent high
dielectric is precisely specified. As shown on a large number of protein–protein
and protein–RNA complexes [16–19], when the dielectric boundary is chosen as
the molecular surface (MS), as is often done in the literature, Wdesol outweighs
Wint, leading to net destabilization. However, when the dielectric boundary is
switched to the van der Waals (vdW) surface, the situation is reversed and electro-
static stabilization is now predicted.

How can one then decide on the choice of the dielectric boundary? One possi-
bility is to benchmark PB calculations against explicit-solvent molecular dynamics
(MD) simulations. Most of such efforts have been limited to small solute molecules
[20–22]. However, it has been shown that the difference between MS and vdW
results for electrostatic solvation energies depends on solute size [23]. Therefore
parameterization on small solutes (either against explicit-solvent MD results or
against experimental data) may not be reliable for calculating electrostatic contri-
butions to protein–protein and protein–nucleic acid binding.

One can benchmark PB calculations directly against experimental data on
protein–protein and protein–nucleic acid binding affinities. Potentially one type
of useful data is the dependence of binding affinities on salt concentration. The
screening of electrostatic interactions by salts can be captured by the PB equation
(it should be mentioned that salts can also specifically bind to proteins and nu-
cleic acids; such specific salt effects require special treatment). Unfortunately, it
has been found that the screening effects predicted by MS and vdW calculations
are essentially identical and thus cannot discriminate between the two choices of
the dielectric boundary [16,18]. On the other hand, effects of mutations involving
charged or polar residues have been found to have discriminating power, with
experimental data favoring the vdW surface as the choice for the dielectric bound-
ary [16–18]. Experimental data for mutational effects on binding affinity continue
to accumulate in the literature [24,25], providing opportunities for comprehensive
benchmarking of PB calculation protocols.

In the literature, the MS is still widely chosen as the dielectric boundary. The
difference between this choice and the vdW surface is that, according to the latter
protocol, the many crevices in the protein interior are treated as part of the sol-
vent high dielectric. These crevices are not accessible to a spherical solvent used
in defining the MS, and hence their being treated as part of the solvent dielec-
tric is perceived as unrealistic or undesirable. However, this perception is open
to question. Water molecules can access protein interiors, as demonstrated by
many protein X-ray structures with water occupying interior positions, by the ob-
servation of positionally disordered water molecules in a hydrophobic cavity of
interleukin 1β [26] (Figure 4.3), and by molecular dynamics simulations [27]. In
proteins like myoglobin and acetylcholinesterase (featuring a deeply buried ac-
tive site connected to the exterior only through a narrow gorge), access by small
molecules like water, made possible by the dynamics of the proteins, is essential
for biological functions. We suggest that the vdW protocol provides a way to ac-
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FIGURE 4.3 The presence of water molecules inside a hydrophobic cavity of interleukin 1β .
The cavity is separated from the bulk solution according to the MS criterion but connected to
the bulk solution according to the vdW criterion. When the three water molecules are moved
from separate positions in the bulk solution to the configurations shown inside the cavity, the
MS protocol predicts an increase of 0.9 kcal/mol in electrostatic free energy whereas the vdW
protocol predicts a decrease of −2.2 kcal/mol.

count for water access to protein interiors. Failure to account for this important
property is perhaps the cause for overprediction of pKa shifts by the MS proto-
col (which is often “corrected” by increasing the protein dielectric constant to 20).
In principle the vdW protocol can be mimicked by the MS protocol with appro-
priately reduced atomic radii. However, it has been found the precise amount of
radius reduction varies from protein to protein and thus mimicking one protocol
by the other appears to be a futile exercise [23]. We will come back to the debate
between MS and vdW in Section 4.3.

The generalized Born (GB) model has been developed as a fast substitute of
the PB equation [28–31]. The GB model can be tailored to match PB results for
electrostatic solvation energies obtained by either the MS or the vdW protocol.
The errors of GB results in reproducing the PB counterparts are at least of the
order of typical mutational effects on binding affinities. Therefore caution should
be exercised when applying the GB model to calculate mutational effects.

There is also progress in the opposite direction, i.e., toward more accurate mod-
eling of electrostatic effects, by accounting for electronic polarization via quantum
mechanical treatments [32,33]. Such treatments have not been used to directly pre-
dict the effects of mutations on the binding free energy, but it is already clear
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that electronic polarization can significantly influence electrostatic contributions
to binding.

Comparing PB or GB calculations against experimental data for mutational ef-
fects on binding affinity is premised on the assumption that the mutational effects
are assumed to be dominated by electrostatic contributions. That is, possible con-
tributions by hydrophobic interactions and by changes of conformational entropy
are not taken into consideration.

3.2 Other contributions
The limitations listed in the last paragraph are dealt with by the molecular me-
chanics Poisson–Boltzmann surface area (MM-PBSA) method [34,35]. Like before,
the electrostatic contribution is calculated by solving the PB equation, but now
the hydrophobic contribution is also calculated (as a linear function of the buried
surface area), as is the change in conformational entropy [from (quasi)harmonic
analyses of conformational fluctuations]. (There is also a version in which PB is
replaced by GB [36].) In recent applications, this method has been used to validate
homology models of protein–protein complexes [37] and to elucidate molecular
bases of promiscuity and selectivity of protein–protein binding [38,39]. Extensions
include using different protein dielectric constants for different types of mutated
residues [40] and a simplified way of calculating the change in conformational
entropy [41].

Another approach, called linear interaction energy (LIE) [42], is somewhat sim-
ilar to the MM-PBSA method. Here the electrostatic and van der Waals interactions
energies of the residue under mutation with its surroundings are calculated in MD
simulations of the complex and of the subunit. The changes of these two energies
upon binding are then used in a linear regression against a training data set. In this
context, we note that many other quantities, including the various components of
MM-PBSA calculations [43,44] and physical descriptors such the number of inter-
facial salt bridges and hydrogen bonds [45] have been used for linear regression.
A limitation of all these methods is the requirement of a training data set.

Particularly worth mentioning are computational redesigns which have led to
increased protein–protein binding affinities [46–48] or specificity [49]. These re-
design methods use physically-based energy functions. These functions involve a
large number of parameters, but these parameters are pre-fixed and not adjusted
for predicting binding affinities.

4. PREDICTION OF BINDING RATES

The critical role of protein–protein and protein–nucleic acid binding rates is ob-
vious in biological processes in which speed is of the essence [50]. One such
example is provided by the purple cone snail, which captures its prey with re-
markable efficiency and speed through releasing a polypeptide toxin that rapidly
binds to a potassium channel [51]. Compelling arguments can be made for the
biological roles of rapid binding in general [52]. In particular, when several pro-
teins compete for the same receptor or when one protein is faced with alternative
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pathways, kinetic control, not thermodynamic control, dominates for much of the
time. Differences in binding rate between related proteins may serve as an addi-
tional mechanism for specificity. In short, rapid binding may be as important as
high affinity in the proper functioning of proteins. In designing drugs targeting
protein–protein interactions, both binding affinity and binding rate may have to
be taken into consideration.

4.1 Overview of protein binding rates

Experimentally observed binding rates cover a wide spectrum, from < 103 M−1 s−1

to ∼1010 M−1 s−1 (Figure 4.4). To gain an overview on the wide variation in bind-
ing rates, we have considered the binding of two proteins (A and B) as going
through an intermediate state (A*B), in which the two proteins have near-native
separations and orientations [53,54]. We refer to the intermediate state as the tran-
sient complex (its precise specification is given below; a related but more loosely
defined term is encounter complex). It is of interest to note that NMR has enabled
visualization of the transient complex [55]. From the transient complex, conforma-
tional rearrangement can lead to the native complex (AB). Accordingly we have
the kinetic scheme

(3)A + B
kD

A ∗ B
k−D

kc
C .

The overall binding is

(4)ka = kDkc

k−D + kc

which is bounded by the diffusion-controlled rate, kD, for reaching the transient
complex. This limit is reached when conformational rearrangement is fast (i.e.,
kc � k−D), leading to

(5)ka ≈ kD.

At the other end of the spectrum, conformational rearrangement is rate-limiting
(i.e., kc � k−D), and

(6)ka ≈ kckD/k−D ≡ kR.

Note that kD/k−D is the equilibrium constant for forming the transient complex.
In the transient complex the two protein molecules must satisfy transla-

tional/rotational constraints, which severely hinder the diffusion-controlled ra-
te kD. In the absence of any biasing force, theoretical estimates put the basal
value, kD0, in the range of 105 to 106 M−1 s−1 [56–58]. In particular, antibody-
protein binding rates are typically observed in this narrow range [59–61]. The
value 105 M−1 s−1 thus marks the start of the diffusion-controlled regime (Fig-
ure 4.4). A rate much lower than 105 M−1 s−1 is an indication that conformational
change plays a significant role in the association.
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FIGURE 4.4 The spectrum of protein binding rates. The different regimes are indicated by arrows. For protein complexes in the
electrostatically-enhanced regime are shown. Adapted from Alsallaq and Zhou [19].
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To go beyond the basal rate kD0 and reach rates like 108 to 109 M−1 s−1 as
observed for many protein complexes [62–69] (Figure 4.4), intermolecular forces
must be present. For a force to speed up a diffusion-controlled binding, it must
be present in the diffusion process that leads to the transient complex, and thus
be long-ranged. Indeed, analytical results on model systems show that, when the
range of the force is reduced, the resulting rate enhancement decreases drasti-
cally [57,70,71]. For protein–protein and protein–nucleic acid binding, the domi-
nant long-range force is provided by electrostatic interactions. Rates higher than
kD0 require favorable electrostatic interactions, which are manifested by comple-
mentary charge distributions on the two binding partners.

4.2 Brownian dynamics simulations
Many groups have used Brownian dynamics (BD) simulations to calculate the
diffusion-controlled rate kD [56,72–84] or to generate the loosely defined encounter
complex [85–87]. In rate calculations one must specify a precise set of conditions,
which when satisfied signifies the formation of the native complex. Specifying this
set of conditions, typically implemented as an absorbing boundary in BD simula-
tions, is equivalent to defining the transient complex. Rather than being guided
by any theoretical considerations, the location of the absorbing boundary is typ-
ically proposed in an ad hoc way, and often adjusted for best agreement with
experiment. Two alternative algorithms are available for obtaining kD from statis-
tics accumulated on BD trajectories. In one the trajectories of a protein are started
from a spherical surface around the receptor [88]. In the other, the pair of binding
molecules are started in the vicinity of the absorbing boundary [89].

Electrostatic interactions are accounted for by their influence on the transla-
tional and rotational Brownian motion of the binding molecules. In principle, the
electrostatic force and torque on the molecules can be calculated from solving the
PB equation. However, solving the PB equation on the fly during a BD simula-
tion is prohibitively expensive. One thus has to rely on approximations, such as
treating one of the proteins as a set of test charges [72] (which leads to signifi-
cant errors from neglecting the low-dielectric region of the protein interior [73]) or
a more elaborate effective-charge model [90]. Unfortunately, the approximations
are worst when the proteins are in close proximity, precisely where electrostatic
interactions are expected to have the strongest influence on kD.

4.3 Transient-complex theory
From BD simulations [54,73,91,92] and analytical results [57,93], it was discovered
that the diffusion-controlled rate can be accurately approximated as

(7)kD = kD0 e−〈Wel〉∗/kBT

where kD0 is the basal rate, i.e., the rate when electrostatic interactions are turned
off, and the average 〈· · ·〉∗ is over the configurational space of the transient com-
plex. This equation resolves one of the two main obstacles to reliable prediction
of binding rates, by making it possible to rigorously treat electrostatic interac-
tions. The effect of electrostatic interactions is captured by the Boltzmann factor
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e−〈Wel〉∗/kBT, which can be obtained by averaging over a relatively small number
of representative configurations in the transient complex. The basal rate kD0 still
needs to be obtained through force-free BD simulations, but these simulations are
inexpensive.

The remaining obstacle to reliable prediction of protein association rates is
the specification of the transient complex. The ad hoc way by which the set
of conditions for complex formation—which is the equivalent of the transition
complex—is specified in BD simulations is noted above. The application of Eq. (7)
for predicting kD faces a similar situation. In an early application to the binding
of barnase and barstar [94], the transient-complex ensemble was specified by ad-
justing the ranges of translation and rotation between the two proteins to match
the experimental data at high ionic strength. Similarly, Miyashita et al. [95] used
experimental data for the binding of cytochrome c2 and bacterial reaction center
to locate the transient-complex ensemble in the 6-dimensional translation-rotation
configurational space.

For Eq. (7) to have predictive power, the transient-complex ensemble has to be
specified without reference to experiment. A solution to this challenging problem
was proposed in a recent paper [15], based on analyzing the interaction energy
landscape of binding proteins. The basic idea is as follows. In a complete theory,
the overall binding rate ka should not be sensitive to where the transient com-
plex is placed. If it is placed far away from the native complex, then kD will be
large but kc will be small. Conversely, if it is placed very close to the native com-
plex, then kD will be reduced but kc will become very large. Either way, Eq. (4)
is expected to give nearly the same result for ka. However, given the consider-
able difficulty and uncertainty in the calculation of kc, it is highly desirable to use
kD as a good approximation for ka. Then there is an optimal location for placing
the transient complex [96]. If it is placed too far from the native complex, then
the resulting kD would not be a useful approximation for ka. On the other hand,
placing the transient complex too close to the native complex would mean that
short-range interactions and conformational rearrangement have to be dealt with
in calculating kD. The native complex sits in a deep well in the interaction energy
landscape [15]. The optimal placement for the transient-complex ensemble is at
the outer boundary of the native-complex energy well [15,96].

The specific procedure implementing this basic idea was based on the follow-
ing observation: inside the native-complex energy well, translation and rotation
are restricted, but once outside the two proteins gain significant translational and
rotational freedom [15]. Thus the outer boundary of the native-complex energy
well coincides with the onset of translational and rotational freedom. This onset
was located by monitoring the allowed range of a relative rotation angle between
the proteins as they move out of the native-complex energy well.

This structural model for the transient-complex ensemble along with Eq. (7)
constitutes the transient-complex theory for predicting protein binding rates.
In this theory, both of the obstacles faced by the traditional approach of BD
simulations are resolved. Electrostatic interactions can be treated rigorously, and
the transient complex is specified solely based on theoretical consideration.
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In Eq. (7), only the electrostatic contribution to the interaction energy of the
transient complex is included. The neglect of short-ranged non-electrostatic effects
from the Boltzmann factor in Eq. (7) can be understood from two considerations.
First, the transient-complex configurations are typically separated by at least one
layer of solvent [15], therefore short-ranged forces such as hydrophobic and van
der Waals interactions are relatively weak in the diffusion process leading to the
transient complex. Second, as already noted in Section 4.1, compared to long-range
interactions, short-range interactions, even when present within the transient com-
plex, contribute much less to rate enhancement (i.e., kD/kD0). Including their con-
tribution to the interaction energy in the Boltzmann factor will significantly over-
estimate their effect on rate enhancement. However, short-ranged interactions are
essential for determining the location and size of the transient-complex ensemble
in configurational space, which in turn affect the magnitude of kD0. A transient-
complex ensemble that is less restricted in translation and rotation will lead to a
higher kD0. Variation of the restriction in translation and rotation within the tran-
sient complex with solvent conditions or among different protein complexes can
be viewed as a configurational entropy effect. The basal rate kD0 captures this en-
tropy effect.

It has been noted that electrostatically enhanced protein binding exhibits an
interesting tell-tale sign: the binding and unbinding rate constants show disparate
dependences on ionic strength [96,97]. The binding rate decreases significantly
with increasing ionic strength, whereas the unbinding rate is only modestly af-
fected by ionic strength. The structural model for the transient-complex ensemble
provides a nice explanation for the disparate effects of ionic strength. As the tran-
sient complex lies at the outer boundary of the interaction energy well and hence is
close to the native complex, ionic strength is expected to screen electrostatic inter-
actions in the two types of complexes to nearly the same extent. Hence the binding
affinity and the binding rate are expected to have nearly the same dependence on
ionic strength and the dissociation rate would be little affected by ionic strength.

The transient-complex theory has been put to a comprehensive test against ex-
perimental data [62–64,98] for the binding rates of four protein pairs (shown in
Figure 4.4) and 23 of their mutants over wide ranges of ionic strength [52]. The
ionic strength dependences of the binding rates for all the four protein pairs are
predicted well by the theory. Moreover, the predictions for 23 mutants at various
ionic strengths agree closely with experiment. In all there are 81 data points in
the latter comparison, spanning four orders of magnitude in association rate. The
theory thus appears to fulfill the promise of having truly predictive power. It re-
veals that, among the protein pairs and their mutants studied, the basal rate kD0
can differ by ∼20-fold, but the bulk of the variations in kD is due to the variations
in 〈Wel〉∗, which ranges from 0 to −6 kcal/mol (the last value translates into a
104-fold rate enhancement).

The above comparison against experiment was based on calculating the elec-
trostatic interaction energy from the linearized PB equation. It has been found that,
when the full PB equation was used, agreement with experiment improved, albeit
modestly [19]. This underscores the point that a rigorous treatment of electrostatic
interactions is essential for the accuracy of calculated kD.
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FIGURE 4.5 Binding of U1A and U1 RNA. (A) The native complex, with side chains of K20, K22,
K23, and K50 of U1A shown. (B) Representative configurations in the transient complex. (C)
Comparison of calculated and experimental results for the effects of mutating four lysine
residues on the binding rate. Parts (A) and (B) are adapted from Qin and Zhou [71]. The left panel
in (C) is taken from Qin and Zhou [18], and the right panel in (C) is taken from Qin and Zhou [71],
but with the additional result label Schreiber calculated according to Selzer et al. [103].

For the binding between a protein and an RNA, the difference between the
full PB equation and the linearized version is no longer modest because of the
large charge density on the nucleic acid. Then use of the full PB equation be-
comes a necessity. The transient-complex theory has made it possible to realisti-
cally model protein–RNA binding rates for the first time [71]. In this work the
binding of the spliceosomal protein U1A and its target on the U1 small nuclear
RNA (Figure 4.5A) was studied. The binding and unbinding rates of this and
other protein–RNA systems exhibit the disparate dependences on salt familiar to
proteins [99–102], indicating that the structural model for the transient complex
developed for protein–protein binding is applicable to protein–RNA binding. Rep-
resentative configurations in the transient complex of the U1 system are shown in
Figure 4.5B. The binding rates of the wild-type system and eight of its mutants pre-
dicted by the transient-complex theory are in close agreement with experiment [99,
101] (Figure 4.5C).

Comparison of predicted and experimental binding rates also help settle the
debate between MS and vdW as the choice for the dielectric boundary in cal-
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culating the electrostatic interaction energy. The rate predictions summarized
above have all been obtained by using the vdW protocol in calculating 〈Wel〉∗.
With the MS protocol, the sign of 〈Wel〉∗ switches to positive (similar to what
is seen on native complexes [16,17]) and now rate retardation is predicted [19]!
For example, for the barnase–barstar pair, when the ionic strength is varied from
13 mM to 2000 mM, 〈Wel〉∗ calculated with the vdW protocol varied from −3.30
to −0.82 kcal/mol. Correspondingly, 〈Wel〉∗ calculated with MS protocol varied
from 2.50 to 5.13 kcal/mol. For the latter results to be consistent with experiment,
a basal rate in the order of 1010–1011 M−1 s−1 would be required, which clearly
seems unphysical.

While the transient-complex theory is not appropriate for binding processes
that are limited by large-scale conformational rearrangements, it can accommo-
date local conformational fluctuations. In particular, MD simulations have shown
that charged side chains that eventually form cross-interface salt bridges in the na-
tive complex can form intramolecular salt bridges prior to reaching the transient
complex [85]. More generally, local conformation populations in the transient com-
plex will be different from those in the native complex. While applications of the
transient-complex theory have so far assumed native conformations in the tran-
sient complex, more accurate calculations may require conformational sampling
specifically within the transient complex.

4.4 Further approximation and rate enhancement by design

Based on Eq. (7), Schreiber and co-workers have made a further simplifica-
tion [103–105]. Instead of using the transient-complex ensemble, they calculated
〈Wel〉∗ by applying an empirical function directly to the native complex. The em-
pirical function effectively reduces the interaction energy calculated on the native
complex to make it appropriate for the transient complex, and is parameterized
on experimental data. Despite the approximation, the simplified approach has al-
lowed them to design charge mutations that lead to as much as 250-fold increase
in binding rate.

As an estimate for 〈Wel〉∗, a weaken version of the electrostatic interaction en-
ergy of the native complex seems capable of capturing general trends, but it has
limitation in accounting for specific contributions of individual residues. This lim-
itation is illustrated by the effects of mutating four lysine residues on the binding
rate of U1A with U1 RNA. In the native complex (Figure 4.5A), K50 protrudes
deeply into the RNA loop and lies above it, while K20, K22, and K23 lie below
the loop. The four lysines have comparable separations from the RNA and their
neutralizations reduce the binding free energy to similar extents (Figure 4.5C, left
panel). The approach of Schreiber and co-workers would predict that the neutral-
izations reduce the binding rate to similar extents (Figure 4.5C, right panel). In the
transient complex (Figure 4.5B), the RNA moves away from U1A, consequently
K20, K22, and K23 are placed further away from the RNA. In contrast, because
of its protruded position, the separation of K50 from RNA is not significantly re-
duced. As a result, in the transient complex the electrostatic contributions of K20,
K22, and K23 are significantly reduced but that of K50 is nearly unchanged when
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compared to the native complex. This contrast between K20, K22, and K23 on the
one hand and K50 on the other is supported by experimental results [99,101] (Fig-
ure 4.5C, right panel).

5. DYNAMICS WITHIN NATIVE COMPLEXES AND DURING COMPLEX
FORMATION

The foregoing discussions make it clear that protein dynamics presents challenges
for building structural models of protein complexes, makes important contribu-
tions to binding affinity, and is an integral part of the binding process. Recent ex-
periments have presented direct evidence for the contribution of protein dynamics
to binding affinity [106,107]. Changes in conformation and in dynamics upon com-
plex formation have been studied by NMR [108–110] and by MD simulations [111].
Conformational rearrangements leading to native complexes have also been re-
vealed by MD simulations [85,112], which as noted above may be required for
more accurate calculations of binding rates within the transient-complex theory.
These studies have laid the groundwork toward a comprehensive understanding
of the roles of dynamics in protein–protein and protein–nucleic acid interactions.

6. SUMMARY POINTS

1. Structures of protein complexes are the basis for understanding protein in-
teractions. Many of these structures will have to be built by docking. CAPRI
provides a forum for critical assessment of docking methods. Methods making
use of experimental or predicted interface information appear promising.

2. Predicting absolute binding free energy is still formidable, but there is sig-
nificant progress in predicting relative binding free energy. Contributions of
electrostatic interactions are sensitive to model details, in particular the choice
of the boundary between the protein low dielectric and solvent high dielectric.
Experimental data such as mutational effects on binding affinity are useful for
selecting calculation models.

3. The wide variation of binding rates among protein complexes can be under-
stood by considering rate-limiting conformational changes in one extreme and
electrostatic rate enhancement in the opposite extreme. Current theory has
shown predictive power for binding rates in the diffusion-controlled regime
(i.e., those above ∼105 M−1 s−1).

4. Experiments and MD simulations are contributing toward a comprehensive
understanding of the roles of dynamics in the various aspects of protein in-
teractions.
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