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ABSTRACT: We present theory showing that confining a protein to a small inert space (a “cage”) should
stabilize the protein against reversible unfolding. Examples of such spaces might include the pores within
chromatography columns, the Anfinsen cage in chaperonins, the interiors of ribosomes, or regions of
steric occlusion inside cells. Confinement eliminates some expanded configurations of the unfolded chain,
shifting the equilibrium from the unfolded state toward the native state. The partition coefficient for a
protein in a confined space is predicted to decrease significantly when the solvent is changed from native
to denaturing conditions. Small cages are predicted to increase the stability of the native state by as much
as 15 kcal/mol. Confinement may also increase the rates of protein or RNA folding.

A protein inside a confined space will be stabilized by
folding forces different from those for proteins in “bulk”
solutions, i.e., away from any confining walls. In particular,
some expanded configurations of the unfolded chain will not
be allowed inside the confined space, due to excluded
volume. Our interest in this problem is partly motivated by
recent experimental work (1-3). Wei et al. (1) have
developed techniques for encapsulating proteins in meso-
porous host materials with tunable pore sizes, while Kumar
and Chaudhari (2) have developed techniques for immobiliz-
ing proteins in the spaces between two parallel layers of
R-zirconium. Of particular interest is the work of Eggers and
Valentine (3), who encapsulated proteins in the pores of a
silica glass and found that the melting temperature of
R-lactalbumin was increased by as much as 32°C. In this
paper, we consider the folding equilibrium of proteins inside

cages of various sizes and shapes. Figure 1 illustrates the
restricting effect of the cage on the configurational space of
the native (N) and unfolded (U) states.
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FIGURE 1: Effect of a wall or boundary (thick vertical line) on the
configurations of a protein. In the unfolded state U shown at the
left, configuration a is not viable since the protein chain would
pass across the steric boundary. Configuration b, however, is viable.
In the native state N shown at the right, the protein is modeled as
a sphere, so there is only a single configuration. The native protein
cannot be located in position c but can be located in position d.
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The idea that confinement may shift the equilibrium
between two states of a molecule with different shapes was
first investigated by Minton (4). Minton found that a
molecule that switches between a spherical shape and a cubic
shape when confined in a cage will have an equilibrium
constant significantly different from that in bulk solution
because the volumes accessible to the two shapes are very
different. Minton (5) also considered the effect of volume
exclusion by crowding on the folding equilibrium of a
protein. Here blocking of expanded configurations of the
unfolded chain is due to the presence of other stable
macromolecules at high concentrations (as opposed to the
walls of a cage). The effect was found to be relatively small
(∆∆G ∼ -2 kcal/mol at room temperature with high
cosolute concentrations).

We assume that the protein in the unfolded state can be
modeled as a random-flight Gaussian chain. Let the number
of residues in the protein beN and the effective bond length
be b. The probability densityG(R, R0, n) that the chain
starting at positionR0 will end at positionR aftern residues
satisfies a diffusion equation (6-8):

We treatn as a continuous variable even though it is discrete
[a good approximation whenN . 1 (9); see further
discussion below].n plays the role of time in the diffusion
equation. Since the chain cannot cross the cage wall, we have
G(R, R0, n) ) 0 at the wall (6-8). The partition function
for the ensemble of chain configurations with every residue
restricted to be within the cage is (8)

where the integration is over the interior cage volume. In eq
2, it is implicitly assumed that the probability density for
the first segment (n ) 0) is uniform within the cage.

Folding between Two Parallel Walls

We first consider a denatured protein chain confined
between two infinite parallel walls atz ) 0 andz ) s. This
is a model of the experimental system devised by Kumar
and Chaudhari (2). Solution of the diffusion equation subject
to absorbing boundary conditions at the walls gives (6, 10)

whereâ ) 3/2Nb2. When the wall separations is much larger
than the average dimension of the chain (∼N1/2b), the
exponential function in eq 3 approaches 1 and we haveZU-
(2 walls)≈ s. Thus, in the limit of large cage size, the chain
freely explores the space between the two walls. Therefore,
the partition function equals the volume of the cage. In the
opposite limit wheres , N1/2b, only the first term in the
summation is important andZU(2 walls) ≈ (8s/π2)
exp(-π2Nb2/6s2).

In the random-flight model, the residues are assumed to
be point particles. Hence, each residue can sample every
point between the two walls. The finite size of the residue
could readily be accounted for by moving the location of

each wall inward by a distance (∼b) equal to the effective
size of the residue. We neglect this small correction here. It
should also be noted that the treatment ofn as a continuous
rather discrete variable introduces an outward shift of the
boundary (11). The neglect of the finite residue size and the
treatment ofn as a continuous variable act in opposite ways
on the size of the allowed space; for simplicity, we neglect
both effects.

We model the native state as a sphere of radiusaN. The
center of the protein is excluded from a boundary layer of
that thickness. The partition function for the native protein
is just the effective volume (VN ) s - 2aN) of the cage (4).
The cage changes the difference in free energy between the
native and unfolded states by

wherekB is the Boltzmann constant andT is the absolute
temperature.

Folding Inside a Cube or a Sphere

For a protein confined in a cube with side lengths, the
partition function is now the product of three independent
terms, each of the type described above, representingx, y,
and z components (7). Hence, the change in folding free
energy is 3 times that in the two-wall situation.

For an unfolded chain confined to a sphere with diameter
d, the partition function is (6, 10)

The effective volumeVN for the native state isπ(d - 2aN)3/6.
Figure 2 shows∆∆G as a function of the cage size. When

the cage decreases to the size of the native state,VN decreases
more steeply thanZU. Hence,∆∆G exhibits a minimum
(corresponding to maximal stabilization) when the cage is
just slightly larger than the native protein. In this range of
cage sizes, only the first term in the summation of eq 3 or
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) b2

6
∇2G(R, R0, n) (1)

ZU ) ∫dR dR0 G(R, R0, N) (2)

ZU )
8s

π2
∑

k)1,3,5,...

1

k2
exp(-π2k2/4âs2) (3)

FIGURE 2: Effect of confinement on the folding free energy as a
function of the cage size. The top two curves are for a cubic cage,
and the bottom two curves are for a spherical cage. Solid curves
are forN ) 100, and dashed ones are forN ) 200. The radius of
the protein in the native state (aN) was given by 3.73N1/3 (13). Cage
size (in units of 2aN) is given on a log scale.
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5 is important. Thus, we have∆∆G/kBT(cube)) -π2Nb2/
2s2 - 3 ln(1 - 2aN/s) + 3 ln(8/π2) and∆∆G/kBT(sphere))
-2π2Nb2/3d2 - 3 ln(1 - 2aN/d) + ln(6/π2). Setting the
derivative with respect tos or d to zero, we obtain the cage
size for maximal stabilizationsM/2aN and dM/2aN )
2[1 - (1 - γ)1/2]/γ ≈ 1 + γ/4, whereγ ) 12(2aN)2/π2Nb2

for a cube and 9(2aN)2/π2Nb2 for a sphere. The maximal
change in folding free energy∆∆GM/kBT ≈ -6/γ - 3 ln-
(γ/4) + C, whereC ) 3 + 3 ln(8/π2) for a cube and 3+
ln(6/π2) for a sphere. WhenN ) 200, we have∆∆GM )
-21.6kBT and -31.7kBT, or -12.8 and-18.8 kcal/mol,
respectively, at room temperature when the effective bond
length (b) for the unfolded state is chosen to be 8 Å. This
choice of bond length is justified by hydrodynamic measure-
ments on the unfolded states of a large number of proteins
(12). A smaller bond length would lead to less stabilization
by the confinement. However, even when the effective bond
length is 5 Å,∆∆GM ) -2.4 and-4.4 kcal/mol for the
cube and sphere, respectively. It is also interesting to note
that even when the cage size is 6 times that of the native
protein, the confinement still provides stabilization of the
native state on the order ofkBT.

Analysis of the Eggers-Valentine Experiment

Confinement is predicted to decrease the folding free
energy and lead to an increase in the melting temperature.
The folding free energy in bulk solution for many small
proteins has been described by (14)

where∆Cp is the specific heat upon unfolding. ForR-lact-
albumin [which has 123 ()N) residues], Eggers and Valen-
tine (3) found a melting temperature of∼343 K (corre-
sponding to∆G0 ) 0) in bulk solution. This allows us to
determine the unfolding specific heat change (∆Cp) to be
2.48 kcal mol-1 K-1. If the folding free energy is decreased
by 15kBT due to confinement (see Figure 2), the melting
temperature will become 374 K. Hence we predict an
increase of 31°C, which agrees with the measurements of
Eggers and Valentine.

Folding Inside a Cylinder

For an unfolded chain inside a cylinder with diameterd
and infinite length, the partition function is (6, 10)

wherexk are the roots ofJ0(x), the Bessel function of the
first kind of order zero.

The central cavity of the GroE chaperonin is roughly
cylindrical (15). It is blocked at the top by the bound GroES
and at the bottom by the C-termini of the subunits of GroEL.
An important caveat is that the interior of GroEL may not
be inert (the protein may bind to the chaperonin walls).
Hence, the theory is just intended as an indication of the
confinement component of the free energy, since the interac-
tions surely require a more detailed model. If the two ends

of the cylinder are capped by flat surfaces with separation
h, the partition function becomes

Figure 3 shows how the folding free energy depends on
the protein chain length within a capped cylinder with a
volume of 175 000 Å3 (roughly the size of the central cavity
in the GroE system). It appears that there is an optimal chain
length for which the stabilization by the confinement is
maximized. The maximal stabilization is as much as 22 kcal/
mol. It is interesting to note that the set of newly synthesized
polypeptides, with molecular masses between 10 and 55 kDa,
that are observed to pass through the GroE system in vivo
(16) falls within the range of chain lengths with negative
∆∆G values in the capped cylinder cage. The upper limit
for chain length can be estimated by setting 2aN equal to
the cylinder diameterd ()heighth), and the result isN )
544. In bacteriophage T4, an analogue of GroES, Gp31, has
a larger central cavity and thus can accommodate larger
proteins (17). Compared to a capped cylinder, a sphere has
a wider “operating” range of chain lengths (see Figure 3),
simply because the latter can better accommodate the
spherical native protein. A cube, on the other hand, has an
even narrower operating range.

Confinement Effect of a Single Wall

Even when a protein approaches a single planar wall, it
can affect the equilibrium between the native and unfolded
states (18). Consider the situation in which the unfolded chain
has its center of mass a distances away from the wall. A

∆G0 ) -1.54N + 4.35× 10-3NT -
∆Cp[T - 385- T ln(T/385)] (6)
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1
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FIGURE 3: Effect of confinement on the folding free energy as a
function of the chain length of the polypeptide. The effective bond
length for the unfolded stateb was 8 Å. The radius of the protein
in the native state (aN) was given by 3.73N1/3. The dimensions of
the cages were as follows:s ) 55.9 Å for the cube,d ) h ) 60.9
Å for the cylinder, andd ) 69.4 Å for the sphere. These give the
same cage volume of 175 000 Å3.
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fraction of the configurations will be eliminated by the
presence of the wall. Let the allowed fraction befU. Provided
that the center of mass is more than a radiusaN away from
the wall, the protein will not lose configurational entropy in
the native state. The change in folding stability by the wall
is thus

which applies whens > aN.
Because of the constraint on the center of mass position

(which involves all the residue positions), we are unaware
of an analytical solution forfU. However,fU can be easily
obtained by sampling configurations of a Gaussian chain.
When the center of mass for each configuration was moved
to the origin,fU was calculated as the fraction of configura-
tions with all theN residues havingz coordinates greater
than -s. Figure 4 shows the corresponding free energy
change for the folding equilibrium of a protein with 200
residues. Near the wall, the native state is stabilized by 3
kcal/mol.

If the first residue (withn ) 0) in the protein chain is
tethered to the wall, the distribution of the last residue (with
n ) N) in the unfolded state is affected by the steric exclusion
by the wall. The probability density for the last residue is
(19)

whereR0 ) (0, 0, z0) is the position of the first residue.
Single-molecule techniques now offer opportunities to
directly probe the probability densityG(R, R0, N). In recent
experiments, Hochstrasser et al. (20, 21) attached the
disulfide-bonded C-termini of the coiled coil GCN4-p1 to a
surface. Suppose that the C-terminus of one chain is fixed
atR0 ) (0, 0,z0). Then in the unfolded state, the N-terminus
will be distributed according to eq 10. If the C-terminus of
the other chain is located atR′0 ) (l, 0,z0), the corresponding

N-terminus will be distributed according to

The distancer between the two N-termini will have a
distribution

whereQ ) [erf(â1/2z0)]2 (a normalization factor).
In Figure 5, we compare the distributionp(r) with that of

an unperturbed chain in solution. It can be seen thatp(r)
shifts to smallerr values. In a confined space, the two
N-termini are more likely to find each other than they would
in bulk solution. As such, the folding of the coiled coil may
be accelerated by confinement.

Partition Coefficient in Confined Space

As noted above, confinement shifts the folding equilibrium
toward the native state. Now we reverse the logic. How does
the partitioning of a protein into a confined space depend
on solvent conditions? Shifting the solvent toward denaturing
conditions expands the chain, leading to a diminished
propensity to partition into confined spaces. The partition
function for the unfolded chain in a confined space with
volumeV is ZU (see eq 2). In the bulk solution, the partition
function for the chain occupying the same volume will be
V. The corresponding quantities for the folded chain areVN

exp(-∆G0/kBT) andV exp(-∆G0/kBT), respectively, where
∆G0 is the folding free energy in bulk solution. The partition
coefficient is thus

FIGURE 4: Change in the folding free energy due to the presence
of a boundary wall. The distances from the center of mass in either
the unfolded or native state is measured in units of the radius of
the native protein. The result forN ) 200 is shown.

∆∆G ) kBT ln(fU) (9)

G(R, R0, N) )

(âπ)3/2
{exp[-â(z - z0)

2] - exp[-â(z + z0)
2]}

exp[-â(x2 + y2)] (10)

FIGURE 5: Distribution of distances (in angstroms) between the
two N-termini of a coiled coil. The two C-termini are disulfide-
bonded (with a distancel of 5 Å) and fixed to a planar wall
(z0 ) 0). The solid curve shows the result of eq 12 withN ) 40,
whereas the dashed curve is the distribution for a Gaussian chain
with N ) 80.

G′(R′, R′0, N) )

(âπ)3/2
{exp[-â(z′ - z0)

2] - exp[-â(z′ + z0)
2]}

exp{-â[(x′ - l)2 + y′2]} (11)

p(r) )

∫dR dR′ δ(|R - R′| - r)G′(R, R0, N)G′(R′, R′0, N)/Q

(12)

K ) [ZU + VN exp(-∆G0/kBT)]/[V + V exp(-∆G0/kBT)]
(13)
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We note that Casassa (6) many years ago considered the
partition coefficient of the unfolded chain (equivalent to eq
13 without the second terms in both the numerator and
denominator).

Figure 6 shows the predicted partition coefficient for a
protein with 200 residues (N) between two parallel walls.
For native solvent conditions, where∆G0 ) -10kBT, the
partition coefficient is 0.5 at a wall separationsof 4aN. When
the solvent becomes denaturing with a∆G0 of 10kBT, the
partition coefficient of the protein into the cage decreases
by a factor of 10.

Our simple model here treats the denatured protein as a
random-flight chain, neglecting intrachain excluded-volume
interactions (i.e., steric clashes) among the residues [see, e.g.,
Pappu et al. (22)]. Our treatment, therefore, is most applicable
to chains having relatively expanded denatured states.

In summary, we have shown that confined spaces should
increase the folding stabilities of proteins. The theoretical
predictions presented here appear to be in accord with recent
experiments (3). Proteins may have increased stabilities
inside the pores within chromatography columns, Anfinsen
cages, the interiors of ribosomes, or regions of steric
occlusion inside cells. To the extent that confinement shifts

the folding equilibrium toward the native state, it may also
speed the folding process (provided that the folding process
does not involve the transient unfolding of a misfolded
compact intermediate).
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FIGURE 6: Partition coefficient for a protein in a space between
two parallel walls. The top curve is for a native solvent condition
(∆G0 ) -10kBT). The bottom curve is for a denaturing solvent
condition (∆G0 ) 10kBT). Adding denaturant leads to chain
expansion, which leads to a tendency for the chain to avoid the
confined space.
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