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Abstract: A recent workshop titled ‘‘Quantitative Computational Biophysics’’ at Florida State University provided

an overview of the state of the art in quantitative modeling of biomolecular systems. The presentations covered a

wide range of interrelated topics, including the development and validation of force fields, the modeling of protein–

protein interactions, the sampling of conformational space, and the assessment of equilibration and statistical errors.

Substantial progress in all these areas was reported.
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Introduction

A workshop on ‘‘Quantitative Computational Biophysics’’

(QCBP2007), held February 17–21 at Florida State University,

brought together scientists working in the field of biomolecular

simulations and modeling to discuss their most recent research.

Talks and posters presented at the workshop detailed substantial

progress along different directions, which can be broadly divided

into four areas: 1. New force fields and their validation by

experiment; 2. Protein–protein interactions and electrostatics; 3.

Enhanced sampling techniques; and 4. Statistical convergence.

Most speakers reported on their research in one or several of

these areas, including work that has not yet been published,

which was often followed by extensive discussions. Because of

the format of this review we focus on work that has appeared in

the literature or is in press.

New Force Fields and Their Validation

by Experiment

In a new generation of AMBER and CHARMM molecular

mechanics force fields, the polypeptide backbone u,w Rama-

chandran map was refined to provide an improved representation

of the conformational ensemble of folded protein systems.1–3 In

the case of the AMBER99SB force field these modifications

were made based on quantum-chemical energy calculations of

glycine- and alanine tetrapeptides.2 To assess the consequences

of these force field modifications, comparison with high quality

experimental data is essential. For sub-ns time-scale dynamics,

NMR spin relaxation parameters are well suited for this task. It

is quite common to compare model-free S2 order parameters4 of

protein backbone N��H bond vectors, reflecting the restriction

in angular motion, with those extracted from MD trajectories.

For short trajectories in the hundreds of ps using previous force

fields, agreement with experiment was often found to be reason-

able, but trajectories in the ns range and beyond, made possible

by the ever increasing computer power, revealed overestimation

of motion, especially for loop regions.5 The recent modifications

have largely overcome this problem, showing much better agree-

ment.1,2 Because NMR spin relaxation data are sensitive to the

internal motional timescales, direct back-calculation of relaxa-

tion parameters provides a stringent test of the trajectory and its

underlying force field as is demonstrated by a MD simulation of

ubiquitin using AMBER99SB in explicit SPC water.6 Although

overall molecular tumbling is still too rapid in the simulation, it

Contract/grant sponsors: FSU School of Computational Science (SCS)

and the Institute of Molecular Biophysics (IMB)

Correspondence to: R. Brüschweiler; e-mail: bruschweiler@magnet.

fsu.edu

q 2007 Wiley Periodicals, Inc.



is found that the internal motional aspects of the correlation

functions are reproduced with nearly quantitative agreement.

Recently introduced enhanced sampling methodology in the

form of accelerated MD (AMD)7 has been applied to the calcu-

lation of spin-relaxation S2 N��H order parameters of the immu-

noglobulin binding domain GB3. The observed good conver-

gence of the computed values toward experimental values8

reflects the high quality of these new force fields and shows that

substantial time savings are possible using enhanced sampling

techniques once the acceleration parameters are properly

adjusted.

In contrast to NMR spin relaxation data, which are only sen-

sitive to sub-ns motions, NMR residual dipolar couplings

(RDCs), which occur when proteins are weakly aligned in the

external magnetic field, probe a much wider range of timescales,

from ps to ms.9 Because RDCs can be measured with high accu-

racy for many spin pairs and in different alignment media and

because they simultaneously reflect structure and dynamics,

these parameters represent benchmarks that are both rigorous

and comprehensive. Agreement is achieved between RDCs cal-

culated from the ensemble of ubiquitin conformations generated

using extended MD trajectories with AMBER99SB, mentioned

above, and RDCs measured in multiple alignment media that is

comparable to or better than for the highest resolution X-ray or

NMR structural model.10 Taken together, the canonical ensemble

of ubiquitin based on this latest force field shows a high level of

consistency with experimental NMR data reflecting both rapid

and slower motional processes.

Although similar comparisons will need to be carried out for

other protein systems, the results for GB3 and ubiquitin suggest

that the most recent generation of MD force fields has made a

formidable stride toward the quantitative structural dynamic

description of protein behavior at ambient conditions. As com-

puter power continues to increase, MD ensembles will become

available that will probe dynamics on an ever wider range of

timescales and thereby will continue to allow stringent assess-

ments of the quality of force fields by comparison with experi-

mental RDCs, which, in turn, may guide future force-field

improvements.

While traditional molecular mechanics potentials use fixed

atomic charges, new force fields are emerging that include polar-

izability effects. Of the two major models presently employed in

biophysical applications, one is based on the fluctuating charge

method11 and the other on the classical Drude oscillator treat-

ment.12 The former has been developed to treat not only solvent

molecules13 but also protein systems,14 while the latter has

mostly been used to treat various solvent molecules.15–17 Signifi-

cant efforts have been made in the parameterization of polariz-

able force fields11,18 to provide more accurate physical descrip-

tions, such as small-molecule liquid-vapor interfaces19–21 and

atomic level anisotropy,22 so as to better reproduce various mo-

lecular properties in the condensed phase.

Advances in computer power and methodology have also led

to new trends in quantum mechanical (QM) calculations. First,

semi-empirical QM methods have been further improved, such

as the PDDG/PM3 method,23 which improves upon the tradi-

tional PM3 method via the employment of a pairwise distance

directed Gaussian modification. Recently, this method has been

extended to the treatment of various elements24,25 such as halo-

gen atoms, sulfur, phosphor, and silicon. Because of the fact that

the PDDG/PM3 method shows competitive capability against

B3LYP/6-31G(d) and overall better performance than SCC-

DFTB and AM1 methods in reproducing the experimental en-

thalpy changes,26 efficient and reliable studies on various chemi-

cal reactions can be achieved.27–29 The classical specific reaction

parameter (SRP) method still shows its usefulness, in particular

for chemical reactions, which are challenging to study. For

instance, based on the newly developed AM1/d Hamiltonian, the

parameterization of hydrogen, oxygen, and phosphor atoms

allows the modeling of the phosphorylation reactions to be in

agreement with the model chemistry of B3LPY/6-

31111G(3df,2p).30 Besides the improvement in QM methods, a

more accurate treatment of the interactions between the QM por-

tion and the classical portion in the hybrid quantum mechanical

and molecular mechanical (QM/MM) approach is provided in

the QM/MM based generalized solvent boundary potential

(GSBP) method,31 which can more rigorously treat the long-

range electrostatic interactions. In terms of property calculations,

efficient semi-empirical NMR chemical shift prediction was

recently made possible using a divide-and-conquer scheme32

with application to structural refinement and drug discovery.33–35

Protein–Protein Interactions and Electrostatics

Many proteins operate in the context of multi-component com-

plexes whereby both binding affinity and binding rate are likely

to play important roles in their proper functioning.36 Progress in

the quantitative understanding of both binding affinity and bind-

ing rate were reported at the Workshop.

In principle, the binding constant of two proteins can be cal-

culated from configurational integrals of the proteins in the

unbound state and in the bound state.36,37 While a rigorous

implementation of such a formulation poses a significant chal-

lenge, considerable insights into binding affinity can be gained

from studying effects of pH, ionic strength, and point muta-

tions.38–40 These effects can be calculated from the electrostatic

free energies (solute Coulombic interaction energies plus solva-

tion energies) of the unbound proteins and their complex, based

on the Poisson–Boltzmann equation. These calculations often are

able to quantitatively rationalize experimental data on binding

affinity and can suggest mutations for achieving desired binding

properties. An important technical detail is the specification of

the boundary between the low protein dielectric and the high

solvent dielectric. The solvation energy is apparently very sensi-

tive to the precise specification of the dielectric boundary. In

particular, changing the dielectric boundary from the van der

Waals surface to the molecular surface typically changes the

electrostatic interaction free energy between two oppositely

charged proteins from negative to positive.38,39,41 Comparison

against experimental data and against results from MD simula-

tions in explicit solvent will hopefully bring a resolution to this

rather fundamental issue in the near future.

An essential step in the formation of a stereospecific complex

between two proteins is the diffusional process which brings

them together in appropriate relative orientations. Reaching such

669Quantitative Computer Simulations of Biomolecules

Journal of Computational Chemistry DOI 10.1002/jcc



a transient complex becomes rate-limiting, typically for proteins

with binding rates higher than �105 M21 s21. Long-range elec-

trostatic attraction can enhance the binding rate; this rate

enhancement, as shown analytically, can be predicted from the

electrostatic interaction free energy in the transient complex.42

Predictions based on this theory are found to agree closely with

experimental data in a comprehensive study of protein–protein

binding rates.36

It should be emphasized that dynamics is a critical element

in the complex formation process, with potentially significant

effects on both the binding affinity and binding rate. Motions up

to tens of ns can now be readily modeled by molecular dynam-

ics simulations to study their specific role in the binding pro-

cess.40,43 After reaching the transient complex, conformational

rearrangements toward the stereospecific complex appear to

occur on these timescales.43 Such conformational rearrangements

are found to be highly cooperative, a behavior that is closely

analogous to protein folding.

In fact, binding and folding meet when one or both of the

binding partners, originally unfolded, become folded upon bind-

ing. Consider the simpler case of one partner staying folded.

That partner can be viewed as providing a template which modi-

fies the energy function of the unfolded partner through their

interactions.44 This approach allows for the identification of a

dominant pathway, along which folding and binding are coupled

that leads from the unfolded, unbound state to the folded, bound

state. However, it neglects the fact that overall translational and

rotational motions become increasingly restricted as binding pro-

gresses36; the overall binding equilibrium also requires consider-

ation of the unbound partners that are free to translate and

rotate. It has been proposed that coupled folding and binding

offer advantages in specificity.45

Enhanced Sampling Techniques

Conformational sampling plays an essential role in computa-

tional biophysics. Because of quasi-ergodicity problems in the

simulations of complex systems, sampling enhancement is often

required to acquire information on longer timescale events,

including ones that are of biological importance. New develop-

ments and applications of generalized ensemble based enhanced

sampling techniques are flourishing, as was clearly observed at

this Workshop.

The basic idea of the generalized ensemble originated in the

umbrella sampling method46 in the Markov chain Monte Carlo

(MCMC) framework. This concept became more practically use-

ful with the introduction of the multicanonical approach,47

where many orders of magnitudes of efficiency improvements

were demonstrated. Interestingly, the efficiency of another early

variant of generalized ensemble methods, replica exchange,48

was realized even later. A unified view of these approaches was

recently presented.49

In terms of molecular applications, generalized ensemble

methods are catalyzing novel solutions to both old and new

biophysical problems. Revisiting a classical problem, a MCMC

calculation based on multi-canonical ensemble algorithm has

accurately resulted in the residual entropy of ordinary ice and

can shed light on possible understanding of the ice-like clusters

in the protein interiors by the same approach.50 Replica

exchange sampling methods have been implemented in continu-

ous constant pH molecular dynamics (CPHMD) simulations,

allowing for reliable reproduction of pKa values of titratable

groups in proteins.51 As noted earlier, application of AMD7

improves the accuracy of NMR order parameter calculations.8

As can be anticipated, the novel applications represented by

these examples will motivate wider application of generalized

ensemble algorithms to deal with other biophysical problems

that have been mainly treated by regular canonical simulation

methods.

With deeper understanding of the existing generalized ensem-

ble methods, various strategies have been proposed to further

optimize sampling efficiency. In particular, with the realization

of the fact that diffusion of the highest temperature (or

‘‘effective temperature’’) replica limits the sampling efficiency in

replica exchange simulations, various ‘‘reservoir’’ based methods

have been proposed to pre-generate the highest temperature sam-

ples for the structural exchanges.52–55 Another way to improve

the diffusion speed is to coarse-grain the potential model; moti-

vated by this idea, resolution replica exchange was proposed to

facilitate the entropy barrier crossing by performing replica

exchanges between the potential models with different resolu-

tions.52 How to set up the temperature distribution in tempera-

ture replica exchange method is a crucial issue. Recently, a

method was introduced to optimize temperature distributions for

the efficient exploration of complex landscapes by systematically

shifting computational resources towards the bottlenecks of a

simulation, which are typically in the vicinity of free energy bar-

riers.56 With the advancement of QM potential based simulation

methods, there is an urgent need for the corresponding sampling

enhancement methods. The conflict between the required activa-

tions (such as increased temperature) for the sampling enhance-

ments and the electronic structural self-consistent-field calcula-

tion instability caused by the resulting twisted structures must be

reconciled. A hybrid replica exchange method is designed to

guarantee robust sampling propagations by combining the regu-

lar replica exchange method, and the resolution replica exchange

strategy, in which the model resolutions are varied between the

MM and QM-based treatments.57

Beyond general methods designed solely for the target-state

conformational sampling, a few new sampling methods have

been proposed to specifically target certain property calculations.

For ‘‘alchemical’’ free energy simulations, dual-topology strat-

egies based on potential-scaling sampling methods (Hamiltonian

replica exchange58 and simulated scaling methods59) have been

developed to synergistically improve the sampling enhancement

and the free energy convergence59,60; here, the scaling parameter

k plays two roles: improving the phase space overlap and

enhancing the conformational sampling. This technique was also

extended to QM-based descriptions using the hybrid replica

exchange treatment.57 On the free energy surface (potential of

mean force) mapping, the multi-overlap technique was general-

ized to enforce the transitions between the reference configura-

tions.61 In contrast to the replica exchange algorithm based on

the ordinary Gaussian ensembles,62 which was formulated in the

framework of Monte Carlo simulation with a fixed Gaussian unit

670 Yang et al. • Vol. 29, No. 4 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc



function description, a Wang–Landau metadynamics method63

was developed using MD to permit both optimal simulation effi-

ciency and the quality of mapped free energy surface by recur-

sively updating the unit Gaussian height. This Wang–Landau

metadynamics method was further generalized to realize essen-

tial energy space random walk and so robustly permit AMD

simulations.64 Extending equilibrium reweighting schemes to the

calculation of dynamical properties, such as time-correlation

functions, continues to be a challenging problem. A path-integral

based method was developed to recover the dynamic properties

of the system from the simulation sped up through potential

scaling strategies.65

Statistical Convergence

With the improvements in force fields and sampling methods,

attention is increasingly turning to the issues of statistical error

and convergence. Convergence estimates are critical for quanti-

tative analysis, but convergence is difficult to assess because of

the possible nonobservance of perfectly viable conformational

states. Such states may be unobserved because they have rela-

tively high free energies, or because they are separated by high

free energy barriers from other regions so that a given simula-

tion may be simply too short to see transitions into those states.

This may introduce significant uncertainty into free energy esti-

mates.

Despite these caveats, it is typically assumed that the simu-

lated data is sufficiently complete to estimate meaningful errors.

Starting from this assumption, a number of approaches exist for

the quantitative estimation of errors. In particular, if the average

value f of a quantity f is estimated from a simulation, then the

variance of f scales with sint/T,
66,67 where sint is the auto-correla-

tion time and T is the total simulation time (this is tantamount

to the notion that the effective number of samples in the simula-

tion is proportional to T/sint). Estimating sint reliably is difficult

unless T � 100 sint, although efficient, semi-automated methods

do exist for determining sint, when sufficient data is available. A

popular method by Flyvbjerg and Petersen67,68 uses block aver-

ages to estimate the amount of simulation time necessary for

var(f) to become block-size independent.

The auto-correlation time for different quantities is not guar-

anteed to be the same, however, because the relaxation of most

quantities is strongly dependent on specific conformational rear-

rangements. Recent work52,67 has shown how to measure this

type of structural parameter by dividing conformational space

into equivalence classes according to their distance from pre-

chosen reference structures and block averaging to determine

when the populations of these equivalence classes become de-

correlated.

Rigorous approaches to ‘‘measuring’’ equilibration have not

been widely applied to computations of biophysical systems,

because it has only recently become possible to routinely simu-

late longer than 10–100 ns or to systematically repeat simula-

tions using different initial conditions. Although modern sam-

pling methods have made these types of calculations possible,

they can deceive one into believing that equilibration exists

because rapid equilibration is achieved along a single coordinate.

For replica exchange MD simulations, for example, if one starts

a replica exchange simulation with half of the replicas in the

native state and half of the replicas in the unfolded state, then

the temperature coordinates will rapidly equilibrate giving the
appearance of equilibration. Real equilibration, however,

requires multiple folding and unfolding events. Recent replica

calculations on large peptides and small proteins have demon-

strated that even with replica exchange methods, equilibration

often requires the simulation of several hundreds of nano-sec-

onds per replica. For example, a simulation of the trpzip peptide

in implicit solvent required at least 140 ns per replica,55 a simu-

lation of the trpcage protein in explicit solvent required at least

100 ns per replica,69 and a simulation of Chignolin in explicit

solvent required more than 500 ns per replica.70

Despite these successes, there is clearly much to be gained

by applying more rigorous measures of equilibration to these

and other kinds of problems, and cross comparisons of existing

methods to eventually fulfill the promise of the title of the work-

shop. These advances in force fields and methods will make

quantitative simulations possible for a rapidly increasing number

of systems and further establish computational biophysics as an

integral tool for the understanding of biomolecular function.
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