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The M2 protein from influenza A is a proton channel as a

tetramer, with a single transmembrane helix from each

monomer lining the pore. Val27 and Trp41 form gates at either

end of the pore and His37 mediates the shuttling of protons

across a central barrier between the N-terminal and C-terminal

aqueous pore regions. Numerous structures of this

transmembrane domain and of a longer construct that includes

an amphipathic helix are now in the Protein Data Bank. Many

structural differences are apparent from samples obtained in a

variety of membrane mimetic environments. High-resolution

structural results in lipid bilayers have provided novel insights

into the functional mechanism of the unique HxxxW cluster in

the M2 proton channel.
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Introduction
The M2 protein from Influenza A has a long history as a

drug target, indeed before it was known to be a proton

channel [1–3]. However, the drug resistant M2 S31N

mutation has become dominant in the recent seasonal

flu seasons and recent swine flu pandemic. Today, there is

no effective drug that targets the M2 protein and a major

effort has been underway to characterize the detailed

structure and conductance mechanism of this proton

channel for lead development efforts [4]. Multiple struc-

tures of M2 constructs are now in the Protein Data Bank
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(PDB). A consensus is emerging with regard to the back-

bone structure of this channel in the closed state. How-

ever, a consensus has not been achieved for the sidechains

of the unique HxxxW sequence associated with proton

conductance, nor for the structure of the conducting state,

although models exist.

High resolution structural biology techniques do not per-

mit the characterization of membrane protein structures in

their native membrane environment. Since structure is the

result of the total set of molecular interactions experienced

by the protein, its environment is important [5]. The

environment of membrane proteins is very complex and

heterogeneous. Small proteins experience a greater frac-

tion of their interactions with the environment, conferring

the latter with a particularly significant potential for mod-

ulating protein structures [6��]. Typically, solution NMR

and X-ray crystallography are dependent on the use of

detergents that have limitations as a membrane mimetic

for membrane protein sample preparation. Furthermore, it

is not always obvious what the native lipid environment is

for a protein. Hong and coworkers have pioneered the use

of a model membrane environment that mimics the bulk

membrane environment of the influenza viral coat [7�].
However, it has recently been shown that M2 is not evenly

distributed over the virion, but is localized to the neck of

the budding virus where the raft-like environment meets

the liquid crystalline bilayer environment [8��]. Appar-

ently, the antiviral drugs that bind M2 do not bind M2

in a raft-like lipid environment [9]. Consequently, mem-

brane protein PDB submissions, such as those for the M2

protein may or may not reflect native functional states [6��].

Solid state NMR (ssNMR) is a technique that permits

spectroscopy of proteins that do not undergo rapid iso-

tropic motions, such as the limited motions that occur

when proteins are solubilized in lipid bilayers. To date,

this new approach for structural characterization has

resulted in a dozen small membrane protein structures

deposited in the PDB and a total of 52 ssNMR PDB

submissions [10,11,12��,13,14]. However, unlike

solution NMR, it has the option to look at large structures

and to characterize the structures in a variety of lipid

environments [15]. This technique was used recently to

characterize the M2 protein structure in synthetic

bilayers of dioleoylphosphatidyl choline (DOPC) and

ethanolamine (DOPE) using liposome preparations

and uniformly aligned samples with approximately

50% by weight water [12��].
www.sciencedirect.com
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The M2 protein is small, having 97 amino acid residues

that form an N-terminal segment of 25 residues in the

viral exterior, a single transmembrane (TM) helix of 21

residues, and a C-terminal segment in the viral interior.

M2 carries out at least three functions as a homo-tetramer.

The TM helix and the immediately following amphi-

pathic helix (residues 47–62), which binds to the lipid

interface form the proton conductance domain. The

amphipathic helix is also associated with viral budding,

as influenza lacks the ESCRT proteins to facilitate bud-

ding [8��]. Finally the C-terminal segment is involved in

M1 binding. Early structures determined by ssNMR with

or without amantadine were of the TM domain (residues

22–46), which functions as a proton selective channel

(PDB IDs: 1NYJ and 2H95) [16,17]. The initial crystal

structure was also determined for this construct (PDB ID:

3BKD), and a refinement of the original ssNMR structure

in the presence of amantadine has been accomplished

(PDB ID: 2KQT) [18,19�]. The first solution NMR

structure was of the longer conductance domain (PDB

ID: 2RLF) [20]. Recently, an ssNMR structure (PDB ID:

2L0J) and a solution NMR structure (PDB ID: 2KWX) of

the conductance domain as well as a crystal structure of

the TM domain (PDB ID: 3LBW) have been obtained
Figure 1

(a) (b)

Comparison of three recent structures of M2, shown with the backbone as a 

obtained by solid state NMR spectroscopy on the M2 conductance domain (

was obtained by solution NMR spectroscopy on the conductance domain (

obtained by X-ray crystallography on the TM domain (residues 22–46) in an

structures of the TM helices superimpose very well, with a slight deviation at

than in the other two structures. Relative to the ssNMR structure, the amphip

regard to both depth in the ‘membrane’ environment and lateral position. Th

histidine sidechains in the three M2 structures displayed in (a) as viewed fro

angles for 2KWX are similar to those for 2L0J, but the imidazole–imidzolium

conformations in 2KWX appear to be unstable due to charge repulsion. The 

limited mechanism through cation–p interactions for charge dispersion and 
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[12��,21�,22�]. Here, the focus will be on these three most

recent structures for an understanding of proton conduc-

tance.

Overview of recent structural
characterizations
The early ssNMR structures for the TM domain showed

that the four-helix bundle was left-handed, with a helical

tilt to the bilayer normal of more than 308 [16,17]. Earlier,

crosslinking and modeling studies showed that the chan-

nel was formed by a tetramer and that the hydrophilic

residues, Ser31, His37, and Trp41, of the TM helix all

faced the aqueous pore of the tetrameric bundle [23–25].

The 2010 crystal structure of the G34A mutant (PDB ID:

3LBW; Figure 1 magenta carbons) [22�] lacks the distor-

tions present in the earlier crystal structure [26] and has

helix tilt angles similar to the ssNMR structure (PDB ID

2L0J: Figure 1 green carbons) [12��]. Both solution NMR

structures for the conductance domain [20,21�] show

significantly smaller TM helix tilt angles, and the first

solution NMR structure (PDB ID: 2RLF) showed a

water-soluble tetrameric bundle for the amphipathic

helix [20]. The ssNMR structure of the conductance

domain (PDB ID: 2L0J) [12��] shows a 328 helical tilt
3LBW

2KWX

2L0J
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helical ribbon and the His37 and Trp41 sidechains as sticks. (a) 2L0J was

residues 22–62) in liquid crystalline lipid bilayers at pH 7.5 (green). 2KWX

residues 18–60) in detergent micelles at pH 7.5 (yellow). 3LBW was

 octylglucoside environment at pH 6.5 (magneta). The ssNMR and X-ray

 the C-terminus. The tilt of the solution NMR TM helix is significantly less

athic helices in the solution NMR structure have a different location with

e His37 and Trp41 sidechains are shown for 2L0J. (b) Comparison of the

m the viral interior (amphipathic helix side). The His37 sidechain torsion

 hydrogen bonds are not formed. As such the His37 sidechain

His37 sidechain conformations in 3LBW provide an alternative, but more

for structural stabilization [22�].

Current Opinion in Virology 2012, 2:128–133
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and an amphipathic helix tilt of 1058, with this later helix

buried in the lipid interface. The second solution NMR

structure of a V27A mutant (PDB ID: 2KWX; Figure 1

yellow carbons) [21�] has the amphipathic helices rotated

by 908 so that the hydrophobic surface now interacts with

the bilayer interface. The M2 backbone structures of the

most recent characterizations are compared in Figure 1a,

showing great similarity in the TM helix except for a

somewhat smaller tilt angle for the solution NMR TM

helix. A somewhat different location is also evident for the

amphipathic helix of the ssNMR versus solution NMR

structure.

Amantadine and rimantadine were two effective pharma-

ceuticals against the seasonal flu prior to the widespread

distribution of the S31N M2 mutation. In recent years

there has been considerable debate as to the binding

location for these drugs that result in their inhibition of

proton conductance. Pore binding in the vicinity of Gly34

and Ser31 had been supported by initial structural efforts

on the TM domain (PDB ID: 2H95 and 3BKD) [17,18],

but an external binding site was elucidated with the first

solution NMR structure (PDB ID: 2RLF) [20]. This

latter binding site is adjacent to the native position for

these drugs in the lipid bilayer, where they are prefer-

entially soluble [27,28]. However, in performing an MD

refinement on the 2H95 structure, it was shown that

amantadine bound in the pore below the secondary

Val27 gate [29]. Furthermore, in refining the 2H95 struc-

ture by measuring distances from the protein to the drug,

a similar strong binding site in the pore and a weak

binding site adjacent to the lipid environment were

identified [19�]. Moreover, the stoichiometry was deter-

mined to be one drug per tetramer [30]. Finally, in solving

the structure of the conductance domain in liquid crystal-

line lipid bilayers, it was found that two hydrophobic

amino acid side chains from the amphipathic helix filled

the binding pocket adjacent to the lipid environment,

thereby eliminating the binding site adjacent to the lipid

environment in this preparation [12��]. It should be noted

that, in the solution NMR structure 2RLF [20], the pore

itself was more restricted due to the smaller tilt angle of

the TM helices (Figure 1a). Therefore, it now seems clear

that the effective binding site of amantadine and riman-

tadine is in the pore.

History of mechanistic studies
Functionally, measurements of reversal potentials have

demonstrated that voltage-clamped M2-transfected cells

transport protons in preference to sodium, potassium, and

chloride by a factor of �10, in spite of �five orders of

magnitude concentration handicap [31]. The proton trans-

port rate is �200 s�1 in transfected oocytes [32,33] and

proteoliposomes [33]. Although the direction of channel

current is reversible with changes in membrane potential

[2,31], as is common in (but not exclusive to) electrodiffu-

sion through an aqueous pore, the low transport rate and
Current Opinion in Virology 2012, 2:128–133 
high selectivity against alkali metal cations strongly

suggest a dehydrated selectivity step rather than an open

aqueous pore. Replacement of His37 with other residues

enhances conductance [34] and reduces selectivity [31],

suggesting that the His37 tetrad is the location for this

selectivity step. M2 channels display evidence of ligand-

gating. Namely, unless the exterior bulk solution is acidic,

proton transport in either direction is inhibited [31]. Effects

of site mutations on proton efflux and the accessibility of

interior Cu2+ to coordinate and block the H37 tetrad

indicate that the W41 sidechains form the primary gate

[35]. V27 appears to form a secondary gate at the N-

terminal entrance to the pore [12��,22�,29].

In 2006 the individual pKas of the His37 tetrad were

determined from liposome preparations of the TM

domain [36]. The protonation of two of the four histidine

residues occurs at a proton concentration (pH 8.2) nearly

two orders of magnitude lower than that necessary for

protonating histidines exposed to a bulk aqueous environ-

ment. These two pKas suggest cooperative binding of

protons, generating two charges in close proximity in a

low dielectric environment, against potentially destabi-

lizing electrostatic repulsion. The solution to this con-

undrum was the observation of strong hydrogen bonds

between pairs of histidine residues distributing the

charges and hence greatly reducing the electrostatic

repulsion suggested by the two high pKas. The channel

activation pH is approximately 6 [31], coincident with the

approximate value of the third pKa, and so it appears that

the third protonation activates the channel.

Quantum mechanics/molecular mechanics (QM/MM)

calculations of the +2 charged HxxxW quartet restrained

by the backbone geometry of 2L0J led to a dimer-of-

dimers structure for the His37 residues (Figure 1b green)

[12��]. The stabilization of charge is achieved not only

through the sharing of a proton between rings (resulting in

a strong hydrogen bond), but one of the residues in each

histidine pair hydrogen bonds back to the backbone

carbonyl and the other forms a cation–p interaction with

the indole of the tryptophan residues. Furthermore, it has

been suggested that hydrogen bond exchange could occur

among the four His37 residues, resulting in overall

stability enhancement of the tetramer [12��]. The dis-

persion of charge and formation of interhelix and intra-

helix hydrogen bonds fully explains how the full length

M2 protein can have a tetramer stability (as measured by

Kapp) that is three orders of magnitude higher at pH 6 than

at pH 9 [37]. When a third proton is added to the histidine

tetrad, an activated state results by forming an additional

cation–p interaction with Trp41 while one of the imida-

zole–imidazolium hydrogen bonds is broken along with

the unique charge stabilization mechanism, and hence

the activated state is thought to be an unstable configur-

ation. As long as the indoles form cation–p interactions

with the imidazoles there is no transport of the protons
www.sciencedirect.com
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Figure 2

(a) (b)
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Mathematical model for calculating the rate of proton transport. (a) Illustration of the model. A permeant proton, starting from the exterior bulk solution,

diffuses toward the N-terminal pore, passes through the Val27 gate, and binds to the +2 charged His37 tetrad. A proton then dissociates from the

His37 tetrad, either back to the N-terminal pore, or into the C-terminal pore, from which it passes by the Trp41 gate and diffuses into the interior bulk

solution. The insets illustrate the fluctuating Val27 and Trp41 gates. (b) Comparison of calculated (curve) and measured (symbols) rates of proton

transport as functions of the exterior pH, pHe. The experimental data are from Ref. [13] (the membrane potential was �114 mV and the interior pH was

8), In the calculations, the rate constant for binding to the His37 tetrad for a proton from the interior side is 1.2 � 108 M�1 s�1, the rate constant for

releasing the proton from the His37 tetrad to the interior side is 3.6 � 103 s�1, and the probability for the Trp41 gate to be open is �5%.
through the pore. Motions of the helices (such as kinking)

could result in the breaking of these interactions and

hence the opening of the tryptophan gate [22�,38,39].

Recently, clear evidence for the dimer-of-dimers struc-

ture extending to the polypeptide backbone has been

obtained by MAS ssNMR data from multiple backbone

sites [40�], supporting the above conductance mechan-

ism. It is anticipated that the structural differences in the

backbone between the monomers of a dimer is small and

that the monomers comprising the two dimers intercon-

vert on a millisecond timescale. The dimer-of-dimers

conformation and the histidine pKas are crucial elements

for understanding the proton conductance mechanism.

While a mechanism has been outlined here, this is still a

contentious field based on the diversity of the His tetrad

conformations (Figure 1b) [7,22�,41,42].

Channel conductance measurements [12��,37,43,44] pro-

vide the ultimate, quantitative test of any conductance

mechanism. For the M2 proton channel, that test has

been made possible by a mathematical model for pre-

dicting the rate of proton transport (Figure 2a) [45�]. The

model envisions that a permeant proton entering the

channel pore from the exterior bulk solution would obli-

gatorily bind to the +2 charged His37 tetrad. When the

Trp41 gate is open, the permeant proton would then be

released to the interior bulk solution. The rate of proton

transport is determined by several factors: firstly, the rate

constant for the proton, starting from the external side,

passing through the V27 gate, and binding to the His37

tetrad; secondly, the probability that the Trp41 gate is
www.sciencedirect.com 
open; and thirdly, the rate constant for the proton to be

released to the internal side when the gate is open. These

quantities can be estimated, based on the structure of the

channel and its dynamic fluctuations observed exper-

imentally or through molecular dynamics simulations.

The mathematical model has been able to quantitatively

reproduce measured current–voltage relations and depen-

dence of proton transport rate on pH (Figure 2b) [45�].
Moreover, it has now [46] explained the H2O/D2O iso-

tope effect of the proton transport rate observed by Mould

et al. [47]. When the solvent is changed from H2O to D2O,

two parameters of the mathematical model are changed:

the diffusion constant of the permeant ion (and hence the

rate constants for binding to the His37 tetrad and for

being released to the intracellular side) is decreased by

�40%; and the pKa for the permeant ion to dissociate from

the His37 tetrad is upshifted by �0.4 pH units (corre-

sponding to a further 2.5-fold decrease in the rate constant

for being released to the intracellular side). The net effect

of these two changes quantitatively reproduces the

observed isotope effect.

Conclusions
Important structural information has been achieved for

M2 from many experimental methods. Molecular

dynamics simulations and QM/MM calculations are

rapidly improving and have provided unique insights

where experimental data have been difficult or cannot

be obtained. Through all of these efforts a great deal has

been learned not only about the M2 channel, but also

about the biophysics of membrane proteins and the need

to model the membrane environment well in order to
Current Opinion in Virology 2012, 2:128–133
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obtain functionally relevant data. It is reassuring that a

near consensus has been achieved for the backbone of the

M2 conductance domain in the closed state, but even so

we do not have a high-resolution backbone structure of

the dimer of dimers, nor detailed information on the

structure as a function of pH, nor a detailed characteriz-

ation of the dynamics associated with the dimer-of-dimers

interconversion, helix kinking, or the His37 and Trp41

sidechain motions. In addition there are many fascinating

conductance properties associated with mutations that

have yet to be explained. So while excellent progress has

been made on characterizing the M2 structure and func-

tional mechanism there remains much more to be

fathomed on this small membrane protein that displays

considerable sensitivity to the membrane mimetic

environment.
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