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Calculation of free-energy differences and potentials of mean force
by a multi-energy gap method

Huan-Xiang Zhoua�
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A method is proposed to significantly accelerate the convergence of free-energy calculations. It
introduces a bias factor in Monte Carlo simulations or, equivalently, a bias force in molecular
dynamics simulations. The bias factor targets the energy gap, i.e., the difference in energy function
between two states, and is therefore specifically designed for calculating free-energy differences.
The goal is to make the probability density of the energy gap as uniform as possible, thus allowing
for its accurate determination. An iterative procedure, based on simulations at higher temperatures,
is devised to obtain the bias factor. The same method naturally extends to the calculation of
potentials of mean force. The generalized coordinate, for which the potential of mean force is to be
calculated, now plays the role of the energy gap. Applications to model systems confirm the
expected increase in accuracy of calculated free-energy differences and potentials of mean force.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2841942�

I. INTRODUCTION

Free energy is a fundamental molecular property that
plays an essential role in characterizing chemical and bio-
logical systems.1 It is also a property that is inherently diffi-
cult to calculate. The seminal ideas of thermodynamic inte-
gration, free-energy perturbation, and umbrella sampling
developed by Kirkwood,2 Zwanzig,3 and Torrie and Valleau4

have now been widely implemented in computer simula-
tions. Many more recent free-energy methods have been
proposed.5–10 Given the formidable task of getting conver-
gent results, it is important that diverse methods are ex-
plored. The diversity provides the opportunity to choose
methods most suited for particular problems, and allows for
a combination of several methods to be used on a single
problem, such that the challenge faced by each individual
method is reduced. It is in this spirit that we report here a
method for significantly accelerating the convergence of
free-energy calculations.

The free-energy difference �G between two states, 0 and
1, is given by

exp�− ��G� =
� exp�− �V1�x��dx

� exp�− �V0�x��dx
�1a�

=
� exp�− ��V�x��exp�− �V0�x��dx

� exp�− �V0�x��dx
�1b�

=�exp�− ��V�x���0, �1c�

where �= �kBT�−1, V0�x� and V1�x� are the potential energy
functions in the two states, �V�x�=V1�x�−V0�x� is the en-

ergy gap function, dx denotes the volume element in con-
figurational space, and �¯�0 signifies an average with the
Boltzmann distribution exp�−�V0�x��. The probability den-
sity of the energy gap in state 0 is

�0��V� = ����V�x� − �V��0, �2�

where �V without an argument denotes a specific value
taken by the energy gap function. �G can then be expressed
as

exp�− ��G� =� d�V�0��V�exp�− ��V� . �3�

The difficulty in obtaining accurate values for �G can be
appreciated through Eq. �3�.11 It stems from the disparate
dependences of the probability density �0��V� and the Bolt-
zmann factor exp�−��V�. �0��V� is generally peaked at a
value at which exp�−��V� contributes a negligible weight.
Conversely, at low values of �V where exp�−��V� is sig-
nificant, �0��V� is exceedingly small and hence challenging
to determine accurately in computer simulations. The larger
the magnitude of the energy gap, the more difficult it is to
determine �G.

For future reference, let us briefly summarize the basic
ideas of free-energy perturbation and thermodynamic inte-
gration. If the energy gap function is decomposed into many
“small” pieces,

�V�x� = 	
l=1

L

�Vl�x� , �4�

then
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exp�− ��G� =
� exp
− ��V0�x� + �V1�x���dx

� exp�− �V0�x��dx

�
� exp
� − ��V0�x� + �V1�x�� + �V2�x���dx

� exp
− ��V0�x� + �V1�x���dx

� ¯ �
� exp
− ��V0�x� + 	l=1

L �Vl�x���dx

� exp
− ��V0�x� + 	l=1
L−1�Vl�x���dx

= �
l=0

L−1

�exp�− ��Vl+1�x����, �5�

where �
 l /L and �¯�� signifies an average over the Bolt-
zmann distribution with the energy function V��x�
V0�x�
+�V��x�
V0�x�+	l=1

�L �V1�x�. Note that �V1�x�=�V�x�.
Each of the factors in Eq. �5� is similar to that in Eq. �1c�, but
an individual piece of the energy gap, �Vl+1�x�, is smaller
than the full energy gap and hence the averaging can be more
accurately determined. If � is taken to be continuous, this
free-energy perturbation technique turns into the thermody-
namic integration technique. The final result can be most
conveniently obtained with the help of a free-energy function
�G��� defined by

exp�− ��G���� = �exp�− ��V��x���0. �6�

Note that �G�1� is the desired free-energy difference �G.
Taking the derivative of �G��� with respect to �, one obtains

��G���
��

−
�exp�− ��V��x����V��x�/���0

�exp�− ��V��x���0

= ���V��x�/����. �7�

Integration then leads to the familiar result

�G = �
0

1

d����V��x�/����. �8�

In practice the integration has to be approximated as
the sum of a finite number of terms. Therefore the same
configurations, sampled from the Boltzmann distribution
exp�−�V��x��, can be used to implement both the free-
energy perturbation and thermodynamic integration tech-
niques. A common choice of the intermediate gap function is

�V��x� = ��V�x� . �9�

In that case Eq. �8� can be written, in terms of the probability
density of the energy gap ����V� in the intermediate state, as

�G = �
0

1

d�� d�V����V��V . �10�

Two types of approaches to free-energy calculations
have been a focus of recent methodological developments.
One has its roots in Jarzynski’s identity5

exp�− ��G� = �exp�− �W��0, �11�

where

W = �
0

ts

dt
��V�

��

d�

dt
�12�

is the work done on the system over a path which brings the
energy function from V0�x� from V1�x� over the time period
from 0 to ts. The average in Eq. �11� is over an ensemble of
paths started from a Boltzmann distribution in state 0. A
particular area of development is to make the implementa-
tion of Eq. �11� practical.6,9

The second type of approaches introduces biases to “flat-
ten” the energy landscape,8,10 borrowing ideas from sampling
methods exploiting generalized �i.e., non-Boltzmann distri-
bution� ensembles. In the well-known multicanonical
ensemble,12,13 the desired bias factor is inversely propor-
tional to the density of states, so the resulting probability
density of energy is uniform. A recent variant of the multi-
canonical approach is multioverlap,14 which introduces a
bias factor that is determined by the overlap of the current
configuration with a reference configuration. In analogy to
the multicanonical method, the desired bias factor is in-
versely proportional to the probability density of the overlap.

The method proposed here follows the long tradition of
exploiting generalized ensembles. Unlike previous develop-
ments, the bias is on the energy gap �V�x� instead of the
energy function V0�x�. The method is specifically designed
for calculating free-energy differences. To highlight the focus
on energy gap, the method is given the name multi-energy
gap �MEGA�. When some �to be specified� MEGA bias fac-
tor, wMEGA��V�x��, is introduced, the overall statistical
weight becomes wMEGA��V�x��exp�−�V0�x��
W�x�. The
resulting probability density of the energy gap is �cf. Eq. �2��

�MEGA��V� =
����V�x� − �V�W�x�dx

�W�x�dx
�13a�

=
����V�x� − �V�wMEGA��V��0

�wMEGA��V�x���0
�13b�

=
�0��V�wMEGA��V�
�wMEGA��V�x���0

. �13c�

The ideal MEGA bias factor is inversely proportional to the
probability density of the energy gap, �0��V�, in the canoni-
cal ensemble, which would lead to a uniform distribution for
�MEGA��V�. The uniform distribution allows �MEGA��V� to
be determined accurately in the region where contributions
to �G are important �but, as noted above, where �0��V� is
too small to be determined accurately�. Once �MEGA��V� is
obtained, one can recover �0��V� via

�0��V� =
�MEGA��V��wMEGA��V�x���0

wMEGA��V�
, �14�

which is obtained simply rearranging Eq. �13c�. �G can then
be calculated according to Eq. �3�. Note that Eqs. �13� and
�14� are valid for an arbitrary bias factor w��V�. The goal of
MEGA is to find a bias factor such that �MEGA��V� is as
uniform as possible.

The remainder of this paper is organized as follows. In
Sec. II we present an iterative procedure for obtaining the
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MEGA bias factor wMEGA��V� through Monte Carlo �MC�
simulations. For illustration, in Sec. III this procedure is
implemented on two model systems to calculate the free-
energy differences. In Sec. IV the MEGA method is extended
to calculating potentials of mean force. While the method
can be naturally implemented by MC simulations, given the
popularity of molecular dynamics �MD� simulations, it is
desirable to develop a MD version of MEGA. This version is
presented in Sec. V. Finally, we give some concluding re-
marks in Sec. VI.

II. MEGA FOR FREE-ENERGY DIFFERENCE

Berg et al.14 devised an iterative procedure for obtaining
the multioverlap bias factor. This procedure is adapted here
to find the MEGA bias factor. The key observation is that the
probability density of the energy gap is temperature depen-
dent, and is more easily determined at high temperatures
�i.e., small values of ��. From here on the dependence on �
will be explicitly denoted. Suppose that the MEGA bias fac-
tor, wMEGA��V ;���, at an inverse temperature ���� is ob-
tained from a simulation at that temperature. If this bias fac-
tor is introduced to a simulation at the desired inverse
temperature �, then the resulting MEGA probability density
is �see Eq. �13c��

�MEGA��V;�;��� =
�0��V;��wMEGA��V;���

�wMEGA��V�x�;����0
. �15�

From this the MEGA bias factor can be found as

wMEGA��V;�� �
1

�0��V;��
�

wMEGA��V;���
�MEGA��V;�;���

. �16�

The above description can be expanded to include inter-
mediate values of the inverse temperature, resulting in an
iterative procedure. The procedure starts with a Metropolis
simulation at a small value �0, from which �0��V ;�0� is
obtained. A bias factor wMEGA��V ;�0��1 /�0��V ;�0� is
then introduced to a new simulation at a larger value �1. The
MEGA probability density of the energy gap,
�MEGA��V ;�1 ;�0�, is obtained from the simulation at �1 by
histogram, and the result is used to find the new bias factor,
wMEGA��V ;�1�, according to Eq. �16�. The new bias factor is
fed to yet another simulation at a still larger value �2, and the
process is repeated until the desired value � is reached. We
note that operationally this iterative procedure is very similar
to a sampling procedure, proposed by Berg,15,16 in which the
Boltzmann distribution obtained at a higher temperature is
used for proposing new positions in a Metropolis17 MC
simulation.

It is straightforward to implement in MC simulations the
iterative procedure for obtaining the MEGA bias factor. At
�=�i, if a move from x0 to x is proposed from a distribution
	i�x0→x�, then the acceptance probability is17

min�1,
	i�x → x0�wMEGA��V�x�;�i−1�exp�− �iV0�x��

	i�x0 → x�wMEGA��V�x0�;�i−1�exp�− �iV0�x0��� .

�17�

We see that it is very convenient to adapt Berg’s recipe15,16

for the distribution 	i�x0→x�. In the original method,
	i�x0→x� is obtained as a histogram of x in a Metropolis
simulation in the preceding temperature; by design 	i�x0

→x� mimics the Boltzmann distribution exp�−�i−1V0�x��
and is independent of x0. In our simulations, a histogram
in x would mimic the distribution wMEGA��V�x� ;�i−2�
�exp�−�i−1V0�x��; hence the distribution for proposing a
new position x would be

	i�x0 → x� � wMEGA��V�x�;�i−2�exp�− �i−1V0�x�� .

�18�

The presentation of the MEGA method has so far been
directed to the full energy gap function �V�x�. It applies just
as well to each of its small pieces, i.e., �Vl+1�x�, appearing in
Eq. �5�. Such an application will incorporate MEGA into the
free-energy perturbation technique. This application pro-
duces the probability density of the energy gap ����V� in an
intermediate state, which in turn will allow for the calcula-
tion of the free-energy difference via thermodynamic integra-
tion according to Eq. �10�.

III. ILLUSTRATION OF FREE-ENERGY CALCULATION
BY MEGA

We now illustrate the use of the MEGA method for cal-
culating free-energy differences in model systems. The first
system is one dimensional. The two states have harmonic
potentials, with

V0�x� = x2/2, �19a�

V1�x� = a�x − x0�2/2, a 
 1. �19b�

The energy gap function is thus

�V�x� = a�x − x0�2/2 − x2/2

= �a − 1��x − ax0/�a − 1��2/2 + �Vm, �19c�

where �Vm=−ax0
22�a−1� is the minimum value of �V�x�.

The free-energy difference is given by

exp�− ��G� =
� exp�− �a�x − x0�2/2�dx

� exp�− �x2/2�dx
= a−1/2. �20�

Note that the Boltzmann distribution exp�−�V0�x�� is a
Gaussian function. For later reference, the probability den-
sity of the energy gap is

114104-3 Calculation of free energy differences J. Chem. Phys. 128, 114104 �2008�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.186.102.207 On: Tue, 05 Jan 2016 16:46:59



�0��V� =� �
�a − 1��x − ax0/�a − 1��2/2 − ��V − �Vm��exp�− �x2/2�dx/�2�/��1/2

=
exp
− ���v − ax0�/�a − 1��2/2� + exp
− ���v + ax0�/�a − 1��2/2�

�2�/��1/2v
, �21�

where �= �2�a−1���V−�Vm��1/2.
Though the result in Eq. �20� is temperature indepen-

dent, for specificity the MC simulations implementing
MEGA are for �=1. Details of the simulations are as fol-
lows. The initial � value is �0=0.01, and four intermediate �
values are used: 0.1, 0.2, 0.4, and 0.8.18 The probability den-
sity of the energy gap is obtained from a histogram with a
bin size of 1; a total of 600 bins starting at �Vm are used. In
the Metropolis simulation at �0=0.01, the Gaussian Boltz-
mann distribution is generated by the Box–Muller method.19

At each of the larger � values, the probability density for
proposing moves is taken as the Boltzmann distribution at
the preceding � value �Eq. �18� without the bias factor�. The
number of simulated configurations at the desired inverse
temperature, �=1, is 10 times that at each of the smaller �
values. Therefore the total number of simulated configura-
tions in the iterative procedure is 1.5 times that for the pro-
duction run at �=1, or an overhead of 50%. To benchmark
the accelerating effect of MEGA on the convergence of cal-
culated free-energy difference, a Metropolis simulation at �
=1 is also carried out.

Table I shows the simulation results for five sets of a and
x0 values. Each reported value and the associated error for
exp�−��G� are obtained as the average and the standard
deviation over 10 repetitions, each with the reported total
number of simulated configurations �under Nconf�. It can be
seen that, to reach comparable accuracy in calculated value
for exp�−��G�, the Metropolis simulation requires at least 3
to 12 times as many configurations as the MEGA simulation.

Figure 1 illustrates why calculating the free-energy dif-
ference by a Metropolis simulation is difficult and how a
MEGA simulation reduces the calculation error, with results
for a=2 and x0=5. As Fig. 1�a� shows, the exponential func-
tion exp�−���V−�Vm�� decreases rapidly from 1 at �V
=�Vm to 5�10−12 at �V=�Vm+26. The integration for ob-
taining exp�−��G� �according to Eq. �3�, with �0��V� given
by Eq. �21�� is complete around this value of �V. Thus it is
essential to determine �0��V� accurately below this value.

However, as can be seen from Fig. 1�b�, at this value �0��V�
is only 3.4% of its maximum �at �V=�Vm+49�. In a Me-
tropolis simulation with 15�106 configurations, values of
�V below �Vm+12 are never sampled. On the other hand, in
a MEGA simulation with the same number of configurations,
the lowest �V value sampled decreases to �Vm+8, at which
�0��V� is smaller than its maximum value by over seven
orders of magnitude. Within the sampled ranges of the en-
ergy gap, the exact result for �0��V� �given by Eq. �21�� is
well reproduced by both simulations �Fig. 1�b��. The wid-
ened range of the MEGA simulation therefore accounts for
the higher accuracy in calculated free-energy difference.

The implementation of the MEGA in higher-dimensional
systems does not introduce additional difficulty. We further
illustrate the method on a two-dimensional system first stud-
ied by Ytreberg and Zuckerman,9 with the energy functions

V0�x,y� = �x + 2�2/2 + y2, �22a�

V1�x,y� = 0.1
��x − 1�2 − y2� + 10�x2 − 5�2

+ �x + y�4 + �x − y�4� . �22b�

State 0 has a single energy minimum at �−2,0�, but state 1
has two minima, one around �−2,0� and the other around �2,
0�. The exact free-energy difference, as obtained according to
Eq. �1a� by numerical integration, is �G=6.55kBT. It is
found that an initial � value at �0=0.5, without additional
intermediate � values, leads to efficient MEGA simulations
at �=1. These simulations are essentially the same as those
for the one-dimensional system described earlier. Minor dif-
ferences include binning the probability density of the energy
gap at a bin size of 0.5 �again with a total of 600 bins� and a
lower bound of −20. The distribution for proposing new po-
sitions in simulations at both �0=0.5 and �=1 is taken as the
Boltzmann distribution in state 0, which is Gaussian for both
x and y.

The mean and standard deviations of �G, calculated
over 10 repetitions, are shown in Fig. 2 for different numbers
of total configurations �Nconf� used in each repetition. The

TABLE I. Exact and simulation results for the free-energy difference �G of the one-dimensional system.

Parameters
e−��G

exact

Metropolis MEGA

Nconf �106� e−��G Nconf �106� e−��G

a=1.2, x0=5 0.913 120 0.89
0.17 30 0.86
0.15
a=2, x0=5 0.707 45 0.73
0.15 15 0.68
0.15
a=2, x0=6 0.707 1200 0.49
0.16 300 0.61
0.15
a=8, x0=5 0.354 45 0.375
0.053 15 0.366
0.057
a=8, x0=6 0.354 900 0.30
0.18 75 0.35
0.17
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MEGA simulations require 22�106 configurations to reduce
the standard deviation to below 0.1. In comparison, Metropo-
lis simulations require 4000�106 configurations to reach the
same level of standard deviation in �G, suggesting that the
MEGA simulations are �100-fold more efficient. A method
devised by Ytreberg and Zuckerman9 showed a similar gain
in efficiency �their calculations were done by dividing the
energy gap into 10 pieces, i.e., with 10 � values�.

IV. MEGA FOR POTENTIAL OF MEAN FORCE

The potential of mean force is typically defined as a
free-energy function that depends on a few remaining de-
grees of freedom when all other degrees of freedom have
been thermodynamically averaged out. For example, if a co-
ordinate x is of interest and all the other coordinates are
collectively denoted as x�, then the potential of mean force
U�xv� at a particular value xv of x is given by

exp�− �U�xv�� =
� exp�− �V0�xv,x���dx�

� exp�− �V0�x��dx
. �23a�

The integration over x� in the numerator is equivalent to an
integration over x with a delta function ��x−xv� inserted,

exp�− �U�xv�� =
���x − xv�exp�− �V0�x��dx

� exp�− �V0�x��dx
�23b�

=���x − xv��0. �23c�

In practical implementations, one counts the number of con-
figurations with values of x falling within a small bin around
xv. The resulting histogram is equivalent to the probability
density for x. Indeed the right-hand side of Eq. �23c� is the
mathematical definition of this probability density for x �cf.
Eq. �2��, thus

exp�− �U�x�� = �0�x� . �23d�

More generally the variable of interest may not be a
single coordinate like x but a generalized coordinate, involv-
ing many degrees of freedom. Examples include the distance
of a group of atoms from two end positions in a group-
transfer reaction and the “distance” from two end conforma-
tions of a protein during a conformational transition. Let this
function be u�x�. A general definition for the potential of
mean force U is given by

exp�− �U�u�� =
���u�x� − u�exp�− �V0�x��dx

� exp�− �V0�x��dx
�24a�

=�0�u� , �24b�

where u without an argument attached denotes a particular
value of u�x�.

When U�u� has a high energy barrier, its values there are
difficult to determine because the chance of sampling them is
very small in a canonical ensemble. Umbrella sampling is
designed precisely to counter this problem.4 One introduces a
bias potential, typically of the harmonic type,

FIG. 1. Factors contributing to the free-energy difference �G of the one-
dimensional system. �a� The exponential function exp�−��V� �scaled by the
maximum exp�−��Vm�� and the integration of �0��V�exp�−��V� with a
moving upper limit �integrated numerically and scaled by exp�−��G�, with
�0��V� given by Eq. �21��. �b� The probability density for the energy gap in
the canonical ensemble, as calculated from a MEGA simulation �via first
obtaining �MEGA��V�, also shown�, from a Metropolis simulation, or by Eq.
�21�. Each curve is normalized by its maximum value.

FIG. 2. Averages and standard deviations of the free-energy difference,
calculated by MEGA and Metropolis simulations, for the two-dimensional
system.
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Vum�u� = k�u − u��2, �25�

where the target value u� is to be shifted successively. By
inserting exp��Vum�u�x���exp�−�Vum�u�x���=1 into the inte-
grals in Eq. �24a� and denoting an average with the overall
weight exp�−�Vum�u�x���exp�−�V0�x��
Wum�x� as �¯�um,
Eq. �24a� becomes

exp�− �U�u�� = ���u�x� − u��um
exp��Vum�u��

�exp��Vum�u�x����um

�26a�

=�um�u�
exp��Vum�u��

�exp��Vum�u�x����um
, �26b�

where �um�u� is the probability density of u�x� calculated
when x is distributed according to Wum�x�. A popular imple-
mentation of umbrella sampling is the weighted histogram
analysis method.20

MEGA provides an alternative method for calculating
the potential of mean force. To see that, all one needs to do is
to view u�x� as an energy gap function. Once the probability
density of this “energy gap” is obtained by a MEGA simu-
lation, scaling via a relation analogous to Eq. �14� recovers
�0�u�, which then gives the potential of mean force via Eq.
�24b�. In addition, by including the umbrella-sampling bias
factor exp�−�Vum�u�x���, MEGA can also be used to gener-
ate the umbrella-sampling probability density �um�u�. The
introduction of MEGA will likely reduce the number of tar-
get values required in umbrella-sampling simulations. Exten-
sion of MEGA to calculate potentials of mean force for mul-
tiple variables is straightforward.

To illustrate the MEGA method for calculating potentials
of mean force, consider the following potential function:

exp�− �V0�x�� = exp�− �x2/2� + exp�− ��x − x0�2/2� ,

�27�

where x0 is on the x-axis with coordinates �x0 ,0 ,0 , . . . ,0�.
The variable of interest is x. There is no coupling between x
and any other degree of freedom, so the integration over the
latter coordinates is straightforward and the potential of
mean force is given by

exp�− �U�x�� = exp�− �x2/2� + exp�− ��x − x0�2/2� .

�28�

An energy barrier with a height of �x0
2 /8−ln 2�kBT, relative

to the energy minima at x=0 and x=x0, is located at x
=x0 /2.

In Fig. 3 results from a MEGA simulation and a Me-
tropolis simulation for the potential of mean force with x0

=12 and �=1 are shown along with the exact result of Eq.
�28�. The details of the MEGA simulation are very similar to
those reported for the one-dimensional system in Sec. III. In
particular, the initial and intermediate � values are the same
as before. At each �, the distribution for proposing a new x
value is given by Eq. �28� with the appropriate �. The
MEGA bias factor is obtained from binning x, the coordinate
of interest here. The range of x from 0 to x0=12 is repre-
sented by 120 bins. The MEGA simulation, with 75�106

configurations, reproduces the exact result well, even around
the energy barrier �of 17.3kBT in magnitude� at x=x0 /2=6.
In contrast, in the Metropolis simulation at �=1 with
the same number of configurations, the barrier region
5.5�x�6.5 is poorly sampled and the barrier height cannot
be determined.

To demonstrate the application of the MEGA method on
real molecular systems, we implemented the method to cal-
culate the potential of mean force in the torsion angle � of
n-butane. The potential function consists of contributions
from bond stretching, angle bending, and bond rotation �Fig.
4�a��,

V0�x� = Vb0�
bi�� + Va0�
�i�� + Vt0��� . �29�

The first term is the sum of three harmonic functions, one for
each of the three bonds; the second term is the sum of two
harmonic functions, one for each of the two bond angles. The
last term involving the torsion angle is given by21

Vt0��� = K1�1 + cos �� + K2�1 − cos 2��

+ K3�1 + cos 3�� , �30�

where the coefficients K1, K2, and K3 have values of 3.044,
−0.63, and 6.414 kcal /mol, respectively. This function is dis-
played in Fig. 4�b� as the curve labeled “exact.” It has three
minima, illustrating in a small way the rugged energy land-
scapes of complex molecules such as proteins. In the united-
atom representation adopted here, n-butane has four atom
centers, resulting in a total of 12 degrees of freedom. Other
than the six degrees of freedom for overall translation and
rotation, there are six internal degrees of freedom. These
internal degrees of freedom can be specified by the three
bond lengths, two bond angles, and the torsion angle. Be-
cause the potential function, given by Eq. �29�, consists of
additive terms in the six internal coordinates, these coordi-
nates are effectively independent. As a result, U���, the po-
tential of mean force in � is identical to the energy function
given by Eq. �30�.

Our implementation of the MEGA method on n-butane
used internal coordinates and took advantage of their inde-

FIG. 3. Comparison of simulation and exact results for the potential of mean
force in a system with potential function given by Eq. �27�. The exact result
�shown as solid curve� is given by Eq. �28�. Results from Metropolis and
MEGA simulations are given by crosses and circles, respectively.
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pendence. Effectively, to calculate U��� from simulations,
we only need to be concerned with the sampling in �. To
demonstrate the power of the MEGA method, we obtained
the potential of mean force at T=100 K, a temperature at
which the highest energy barrier is 24kBT from the global
minimum at �=� �see Fig. 4�b��. The MEGA procedure
started with a Metropolis run at T0=10 000 K. The inverse of
the histogram of � �with the full range of 0 to 2� divided
into 120 bins� was taken as an initial estimate for the MEGA
bias factor wMEGA���. Subsequently simulations were carried

out at four intermediate temperatures of 1000, 500, 250, and
125 K,22 and at the final temperature of 100 K. Each time the
MEGA bias factor from the preceding temperature was ap-
plied and, at the end of the simulation, the bias factor was
updated. For comparison, we also carried out an independent
Metropolis simulation at T=100 K.

In Fig. 4�b� we compare the results for the potential of
mean force in � at T=100 K obtained from the MEGA and
Metropolis simulations, each totaling 7.5�106 configura-
tions, against the exact result of Eq. �30�. The potential of
mean force obtained from the MEGA simulation reproduces
the exact result everywhere. In contrast, in the Metropolis
simulation, the three barrier regions are not sampled, thereby
precluding the determination of the barrier heights.

V. IMPLEMENTATION OF MEGA IN MD SIMULATIONS

An overall weight W�x�=wMEGA��V�x��exp�−�V0�x��
for free-energy calculations is equivalent to an effective po-
tential energy function

V�x� = − kBT ln�W�x�� = V0�x� − kBT ln
wMEGA��V�x��� .

�31�

Therefore MEGA can also be implemented by MD simula-
tions with the above potential energy. The second term gives
rise to a bias force, which can be calculated as

FMEGA =
kBT

wMEGA��V�x��
dwMEGA��V�

d�V

��V�x�
�x

. �32�

The derivative dwMEGA��V� /d�V can be approximated ei-
ther by a finite difference or by fitting wMEGA��V� to an
analytic function.

The iterative procedure for obtaining wMEGA��V� can be
implemented by MD simulations at different temperatures. It
starts with a conventional MD simulation at a very high tem-
perature T0 �e.g., 10 000 K�. The histogram of the energy gap
from that simulation gives the MEGA bias factor
wMEGA��V ;T0� for the MD simulation at a lower tempera-
ture T1. As noted already, the required derivative
dwMEGA��V ;T0� /d�V can be obtained as a finite difference
or from a fitted analytic function. This process is repeated at
lower and lower temperatures until the desired temperature is
reached. A similar procedure can be implemented for calcu-
lating potentials of mean force.

As a simple illustration, in Fig. 4�c� we display the
MEGA bias factor wMEGA��� obtained after the MEGA simu-
lation of n-butane at the last intermediate temperature, T�
=125 K. The expected result for ln wMEGA��� from the simu-
lation at T� is U��� /kBT�=Vt0��� /kBT�. It can be seen that
the simulation result for ln wMEGA��� agrees well with
Vt0��� /kBT�. Upon applying this bias factor, according to Eq.
�31�, the simulation at the final temperature T=100 K has an
effective torsion potential of Vt=Vt0���−kBT�Vt0��� /kBT��
��1−T /T��Vt0���=0.2Vt0���. With the MEGA procedure
the barriers are therefore reduced to 20% of the original
heights.

FIG. 4. Implementation of the MEGA method on n-butane. �a� A united-
atom representation of n-butane. �b� Results for the potential of mean force
in � at T=100 K obtained from MEGA and Metropolis simulations, each
totaling 7.5�106 configurations. For comparison, the exact result, given by
Eq. �30�, is also shown. The torsion angle � is in radian. The MEGA simu-
lation consists of 0.5�106 configurations each at the initial and four inter-
mediate temperatures and 5�106 configurations at the final temperature. �c�
Comparison of the MEGA bias factor, obtained from the simulation at the
last intermediate temperature T�=125 K, against the expected result,
exp�Vt0��� /kBT��. The effective torsion potential, Vt���, upon applying the
MEGA bias factor to the simulation at T=100 K, is also shown.
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VI. CONCLUSIONS

We have presented a multi-energy gap method that is
well suited for calculating free-energy differences and poten-
tials of mean force. It can be used both as an alternative but
also as a complement to existing techniques such as free-
energy perturbation, thermodynamic integration, and um-
brella sampling. Applications to model systems demonstrate
that the method is able to significantly accelerate the conver-
gence of calculated results and increase their accuracies. It is
hoped that the results reported here will inspire further ex-
ploitation of the MEGA method.
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