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Master equations are widely used for modeling protein folding. Here an approximate solution to
such master equations is presented. The approach used may be viewed as a discrete variational
transition-state theory. The folding rate constant kf is approximated by the outgoing reaction flux J,
when the unfolded set of macrostates assumes an equilibrium distribution. Correspondingly the
unfolding rate constant ku is calculated as Jpu / �1− pu�, where pu is the equilibrium fraction of the
unfolded state. The dividing surface between the unfolded and folded states is chosen to minimize
the reaction flux J. This minimum-reaction-flux surface plays the role of the transition-state
ensemble and identifies rate-limiting steps. Test against exact results of master-equation models of
Zwanzig �Proc. Natl. Acad. Sci. USA 92, 9801 �1995�� and Muñoz et al. �Proc. Natl. Acad. Sci.
USA 95, 5872 �1998�� shows that the minimum-reaction-flux solution works well. Macrostates
separated by the minimum-reaction-flux surface show a gap in pfold values. The approach presented
here significantly simplifies the solution of master-equation models and, at the same time, directly
yields insight into folding mechanisms. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2929824�

I. INTRODUCTION

Master equations have been used to develop both con-
ceptual and quantitative models for protein folding.1–15 In
such models, the conformational space of a protein is re-
duced to a discrete collection of macrostates, and transitions
between the macrostates are described as rate processes.
With the increase in the number of macrostates, the folding
problem can be modeled more and more realistically. How-
ever, concomitantly the solution of the master equations be-
comes more cumbersome, and moreover, mechanistic insight
becomes more difficult to be gained from such a solution.
Here we present an approximate solution, based on a varia-
tional transition-state theory approach. This approach signifi-
cantly simplifies the solution of master-equation models and,
at the same time, directly yields insight into folding
mechanisms.

The approach presented here can trace its origin to a
2005 review paper.15 It was recognized that an approximate
solution, proposed by Zwanzig2 based on a local thermody-
namic equilibrium assumption for his master-equation model
can be obtained from a transition-state theory. Zwanzig’s
model is one dimensional, i.e., the macrostates are specified
by a single discrete variable, which is the number of ordered
residues in a protein. There is a natural choice for the divid-
ing surface between the unfolded and folded states. The idea
of applying transition-state theory to master-equation models
seems promising. However, for higher-dimensional models it
was not clear how to determine the dividing surface.

In a transition-state theory for calculating the folding

rate constant kf,
15 the unfolded set of macrostates is assumed

to take an equilibrium distribution �and the folded state un-
occupied�. One then obtains

kf = J , �1�

where J is the outgoing reaction flux. Because the transition-
state theory overestimates the folding rate constant, we thus
determine the dividing surface between the unfolded and
folded states by minimizing the reaction flux J. This way of
obtaining kf is similar in spirit to a variational transition-state
theory, which was originally developed for the �continuous�
phase space of a three-body system.16 Our approach is spe-
cifically applied to problems with discrete macrostates, mod-
eled by master equations, and will be referred to as the
minimum-reaction-flux �MRF� approach.

In Sec. II we outline the MRF approach. Section III pre-
sents applications to master-equation models of Zwanzig2

and of Muñoz et al.5 Implications and extensions of the
present approach are discussed in Sec. IV.

II. MRF APPROACH

We consider a model for protein folding in which the
protein conformational space is reduced to discrete mac-
rostates specified by more than one index. For concreteness,
we consider the case of two indices, i and j. For example, in
the model of Muñoz et al.,5 all but one macrostate are speci-
fied by a single stretch of contiguous ordered peptide bonds,
with i representing the start position and j representing the
length of the ordered stretch. Let the transition rate from
macrostate �i , j� to macrostate �i� , j�� be ��i , j→ i� , j��.
These rates are always assumed to satisfy the detailed bal-
ance condition:
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Peq�i, j���i, j → i�, j�� = Peq�i�, j����i�, j� → i, j� , �2�

where Peq�i , j� is the equilibrium probability of macrostate
�i , j�, which is normalized, i.e.,

�
i,j

Peq�i, j� = 1. �3�

The detailed balance condition guarantees that, once all the
macrostates take their equilibrium probabilities, they will
stay in that distribution. If the macrostates start from a dif-
ferent distribution, the time dependence of the probabilities
P�i , j , t� is governed by

dP�i, j,t�
dt

= �
�i�,j����i,j�

P�i�, j�,t���i�, j� → i, j�

− P�i, j,t��
i�,j�

��i, j → i�, j�� . �4�

In matrix-vector, this equation can be written as

dP�t�
dt

= − � · P�t� . �5�

No matter what the initial conditions are, P�i , j , t� will relax
to the equilibrium value, Peq�i , j�, at long times. Note that
P�i , j , t� is normalized at all times. The exact solution of Eq.
�4� can be obtained by numerical integration,2,5 by diagonal-
izing the transition matrix4,6,11 or by kinetic simulation.8

Experimental observables such as fluorescence intensity
can be obtained as a weighted average of the probabilities of
the macrostates,

y�t� = �
i,j

��i, j�P�i, j,t� . �6�

Let the unfolded and folded sets of macrostates be denoted
by �u and � f, respectively. Then the fractional populations
u�t� and f�t� of the two states can be calculated as

u�t� = �
�i,j���u

P�i, j,t� , �7a�

f�t� = �
�i,j���f

P�i, j,t� = 1 − u�t� , �7b�

which can be viewed as special cases of Eq. �6� �the second
identity of Eq. �7b� is derived from the normalization condi-
tion of P�i , j , t��. The equilibrium probabilities, pu and pf

=1− pu, are obtained when P�i , j , t� takes the equilibrium
value, Peq�i , j�,

pu = �
�i,j���u

Peq�i, j� , �8a�

pf = �
�i,j���f

Peq�i, j� = 1 − pu. �8b�

Master-equation models typically produce a single-
exponential relaxation for y�t�,

y�t� = y��� + �y�0� − y����e−kRt �9�

after a brief transient period. A single-exponential relaxation
occurs when the smallest nonzero eigenvalue �1 of the tran-

sition matrix � is much smaller than other nonzero eigenval-
ues. The relaxation rate constant kR is then simply �1. Single-
exponential relaxation is an indication that equilibration
among the macrostates follows a two-state rate process

U�
ku

kf

F . �10�

In such a process, u�t� and f�t� are governed by

du�t�
dt

= − kfu�t� + kuf�t� , �11a�

df�t�
dt

= kfu�t� − kuf�t� . �11b�

The folding and unfolding rate constants kf and ku can be
obtained from the following relations:

kf + ku = kR, �12a�

kf/ku = pu/pf = pu/�1 − pu� . �12b�

Let us consider a special initial condition, with the un-
folded set of macrostates occupied according to an equilib-
rium distribution and the folded state unoccupied. That is,

P�i, j,0� = Peq�i, j�/pu if �i, j� � �u �13a�

=0 if �i, j� � � f . �13b�

Correspondingly u�0�=1 and f�0�=0. Summing Eq. �4� over
the unfolded state set of macrostates and evaluating at t=0,
we find

�du�t�
dt

�
t=0

= − �
�i,j���u

P�i, j,0� �
�i�,j����f

��i, j → i�, j��

= − pu
−1 �

�i,j���u

Peq�i, j� �
�i�,j����f

��i, j → i�, j��

� − J , �14�

where J represents the total reaction flux, at t=0, from the
unfolded set of macrostates to the folded set of macrostates
�see Fig. 1�. If we assume that the rate equation, Eq. �11a�, is
valid at t=0, then

�du�t�
dt

�
t=0

= − kfu�0� + kuf�0� = − kf . �15�

Comparison of Eqs. �14� and �15� leads to Eq. �1�. Corre-
spondingly the unfolding rate constant ku is given by
Jpu / �1− pu� �see Eq. �12b��.

Predicting the folding rate constant by the reaction flux
calculated under the special initial condition given by Eq.
�13� may be viewed as a general form of transition-state
theory. This prediction actually overestimates the folding rate
constant �see Appendix�. The “derivation” of Eq. �1� for the
folding rate constant presented above hinges on the use of
the rate equation, Eq. �11�, at t=0. This use is not rigorous
because single-exponential relaxation takes place only after a
transient period and thus does not strictly apply at t=0. In
approximating the folding rate constant by the reaction flux
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J, we still have the freedom of choosing the dividing surface
between the unfolded and folded states. To make this ap-
proximation as accurate as possible, it is then necessary to
choose the dividing surface which would minimize the reac-
tion flux �in the spirit of variational transition-state theory�.
A procedure to locate the MRF surface is presented in the
next section.

III. APPLICATIONS

Here we first give the procedure for locating the dividing
surface leading to the minimum reaction flux and then
present its applications to two well-known master-equation
models of protein folding.

A. Location of MRF surface

Our simple procedure consists of the following steps:

�1� Start with a subset of manifestly unfolded macrostates;
calculate the outgoing flux J0 for this subset and iden-
tify all macrostates not in the initial subset but are
“connected” to it. A connection from one macrostate,
�i , j�, to another, �i� , j��, exists if the transition rate
��i , j→ i� , j�� is nonzero.

�2� For each macrostate connected to the initial subset, cal-
culate the change in the reaction flux if this macrostate
is included in the unfolded subset. If there are more
than one such connected macrostate, the one leading to
the largest decrease in J0 is included. The expanded
subset is then taken as the new initial subset and the
process is repeated until J0 can be no longer decreased.

�3� The last subset is taken as the unfolded set and the last
J0 taken as the minimized reaction flux.

The applications below will further illustrate this procedure.

B. Model of Zwanzig

In this model,2 each of N residues in a protein can be
either ordered or disordered. There are thus a total of 2N

microstates. A macrostate is specified by the total number i
of ordered residues, regardless where these residues occur
within the protein sequence.17 There are a total of N+1 mac-
rostates. The multiplicity �i, i.e., the number of microstates
corresponding to a single macrostate with i ordered residues,
is CN

i =N! / i!�N− i�!. Each additional ordered residue brings
changes of �H in enthalpy and of �S in entropy. In addition,
when the last residue becomes ordered, the free energy of the
protein is lowered by �. The free energy of macrostate i
�with i ordered residues� is

�G�i� = i��H − T�S� − 	iN� , �16�

where T is the absolute temperature and 	iN is a Kronecker
delta. The partition function is

Q = �
i=0

N

CN
i e−�G�i�/RT = �1 + e−��H−T�S�/RT�N

+ �e�/RT − 1�e−N��H−T�S�/RT, �17�

where R is the gas constant. The equilibrium probabilities of
the macrostates are

Peq�i� = Q−1CN
i e−i��H−T�S�/RT, 0 
 i 
 N − 1 �18a�

=Q−1e�/RTe−N��H−T�S�/RT, i = N . �18b�

To assign the transition rates, the rate constant for the
disorder-to-order transition of a single residue is assumed to
be k0. For each of the microstates comprising macrostate i,
any of the �N− i� disordered residues can undergo a disorder-
to-order transition to reach macrostate i+1. The transition
from macrostate i to macrostate i+1 thus has rate

��i → i + 1� = �N − i�k0, 0 
 i 
 N − 1. �19�

The rate for the reverse transition can be obtained by detailed
balance �see Eq. �2��. The result is

��i + 1 → i� = �i + 1�k0e��H−T�S�/RT, 0 
 i 
 N − 2

�20a�

=Nk0e−�/RTe��H−T�S�/RT, i = N − 1. �20b�

Rates for all other transitions are zero.
To obtain the MRF solution, we take the subset of mac-

rostates from 0 to i as the initial guess for the unfolded state.
From this subset, there is only one outgoing transition, i.e.,
the one from macrostate i to macrostate i+1. The outgoing
reaction flux �see Eq. �14�� is

FIG. 1. Illustration of the MRF approach. Circles, as specified by indices i
and j, represent macrostates. Open and filled circles are located in the un-
folded and folded states, respectively. The dividing surface, as shown by the
dotted curve, minimizes the outgoing reaction flux J. This flux consists of
individual transitions, as indicated by block arrows, from macrostates in the
unfolded state to those in the folded state.
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J0�i� =
Peq�i���i → i + 1�

�i�=0
i Peq�i��

. �21�

In Fig. 2�a� we show the values of J0 as the upper bound i of
the putative set of unfolded macrostates expands from 0 to
N−1. Model parameters are those selected by Zwanzig �N
=100, �H /RT0=−2, �S /R=−ln 2, and � /RT0=24; T0 is a
reference temperature�. It can be seen that J0 decreases
monotonically with increasing i. The minimum of the reac-
tion flux occurs at i=N−1, when the unfolded set includes
all but the last macrostate. That macrostate, with all the N
residues ordered, then constitutes the folded state. The values
of J0 span 11 orders of magnitude, and the decrease becomes
very sharp near the minimum. The disparity in J0 between
i=N−1 and nearly all preceding values of i is an indication
that equilibration among macrostates with i�N−1 is fast
and that the transition from macrostate N−1 to macrostate N
is the rate-limiting step for folding.

The minimum J0 gives the predicted folding rate con-
stant

kf = J0�i = N − 1� =
Nk0e��H−T�S�/RT

�1 + e��H−T�S�/RT�N − 1
. �22a�

Correspondingly the unfolding rate constant is

ku =
�1 − Peq�N��kf

Peq�N�
= Nk0e�−�+�H−T�S�/RT. �22b�

These results are identical to those obtained by Zwanzig2 by
“guessing” that the unfolded state is comprised of mac-
rostates 0 to N−1 and assuming that equilibration within the
unfolded state is fast. As noted previously,15 Eq. �22a� and
�22b� is what is predicted by transition-state theory if the
unfolded state is as specified by Zwanzig. What we show
here is that such a specification is indeed optimal, in the
sense that the predicted folding rate constant is the most
accurate among all possible specifications for the unfolded
state.

In Fig. 2�b� the predicted relaxation rate constant, kR

=kf +ku, by Eq. �22a� and �22b� is compared against the ex-
act result obtained by numerically integrating the master
equation and then fitting the time dependence of the frac-
tional population of macrostate N to a single exponential.18

We find that P�N , t� fits well to a single exponential in the
temperature range 0.8�T /T0�1.2 but poorly outside this
range. In line with what is reported by Zwanzig, the agree-
ment between the exact result and the prediction by Eq. �22a�
and �22b� is very good.

C. Model of Muñoz et al.

Muñoz et al.5 developed a model for �-hairpin formation
and used it to analyze their experimental data19 on a peptide
consisting of residues 41-56 of streptococcal protein G B1
�Fig. 3�. Instead of residue, peptide bond is used as the basic
unit of the peptide. Each of the 15 peptide bonds can be
either ordered or disordered, resulting in a total of 215

=32 768 microstates. Each microstate with a single stretch of
ordered peptide bonds constitutes a unique macrostate,
which is specified by two indices: i, the starting position of
the stretch, and j, the length of the stretch. The microstate
without any ordered peptide bonds and all microstates with
more than one stretch of ordered peptide bonds are lumped
into a single macrostate. This macrostate will be assigned
indices �i , j�= �0,0�. There are 15 macrostates with j=1,14
macrostates with j=2, . . ., and 1 macrostate with j=15.
Along with the �0, 0� macrostate, there are a total of 121
macrostates. Below we denote the total number of peptide
bonds in the peptide as n and use n and 15 interchangeably.

Each ordered peptide bond brings a change of �S in
entropy. Additional changes in free energy only apply to
macrostates with a single stretch of ordered peptide bonds
�i.e., j
0�. First, hydrogen bonds are formed between pep-
tide bonds i and 16− i if they are ordered �which means that
the intervening peptide bonds are also ordered due to the
single-stretch restriction�. Each hydrogen bond brings a
change of �H in enthalpy. Second, three hydrophobic inter-
actions, between residues W43 and F52, between Y45 and
F52, and between W43 and V54, can occur. The first inter-
action occurs when peptide bonds 3 and 11 are both ordered;
for the second and third hydrophobic interactions, the pairs
of peptide bonds involved are 5 with 11 and 3 with 13, re-
spectively. Each hydrophobic interaction changes the free en-
ergy by �Gh�. If the total numbers of hydrogen bonds and

FIG. 2. �a� Dependence of the outgoing reaction flux on the putative upper
bound of the unfolded set of macrostates in the model of Zwanzig. Results
at T /T0=1 are shown, but the same qualitative dependence on i is also found
for other temperatures. �b� Comparison of the MRF prediction for kR against
the exact result. The exact result is obtained from numerical integration of
the master equation, with the initial condition P�i , t=0�=	i0. All numerical
integration is done by the LSODE program �Ref. 24�.
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hydrophobic interactions in macrostate �i , j� �with j
0� are
nhb�i , j� and nh��i , j�, respectively, then the free energy of
this macrostate is

�G�i, j� = nhb�i, j��H + nh��i, j��Gh� − jT�S . �23�

The partition function is

Q = �1 + e�S/R�n − �
j=1

n

�
i=1

n−j+1

ej�S/R + �
j=1

n

�
i=1

n−j+1

e−�G�i,j�/RT,

�24�

where the first line is the statistical weight, denoted as
w�0,0� for future reference, of the �0, 0� macrostate, and the
exponential factor inside the double summation in the second
line is the statistical weight of macrostate �i , j� �with j
0�.
The ratios of these statistical weights and Q give the equi-
librium probabilities of the macrostates.

Transitions between macrostates with j
0 are assumed
to occur through extension or contraction at the ends of the
single stretch of ordered peptide bonds. The rates are

��i, j → i, j + 1� = ��i, j → i − 1, j + 1� = k0e�S/R, �25a�

��i, j → i, j − 1� = k0e�S/Re−��G�i,j−1�−�G�i,j��/RT, �25b�

��i, j → i + 1, j − 1� = k0e�S/Re−��G�i+1,j−1�−�G�i,j��/RT,

�25c�

which by design satisfy the detailed balance condition. Tran-
sitions can also occur between the �0, 0� macrostate and mac-
rostates with j
0. These rates are

��0,0 → i, j� = k0ej�S/R��j − 2� + 	�i, j�e�S/R�/w�0,0� ,

�26a�

��i, j → 0,0� = k0ej�S/R��j − 2� + 	�i, j�e�S/R�e�G�i,j�/RT,

�26b�

where

	�i, j� = 0 if i = 1 and j = n �27a�

=n − j − 1 if i = 1 and i + j − 1 � n or

i 
 1 and i + j − 1 = n �27b�

=n − j − 2 otherwise. �27c�

Applying the procedure presented in subsection III A,
the dividing surface between the unfolded and folded states
which minimizes the reaction flux is found. All the folded
macrostates thus identified, 25 altogether, have at least three
hydrogen bonds, between peptide bonds 5 and 11, 6 and 10,
and 7 and 9, which are accompanied by at least the Y45-F52
hydrophobic interaction. There are 36 transitions going from
the unfolded set of macrostates to the folded set of mac-
rostates, with the contributions to J differing by five orders
of magnitude. Five of these transitions contribute 87.2% of
the total flux. These five transitions and their percent contri-
butions to J are shown in Fig. 3�b�. The two top contributors,
each at 31.6% of J, start from the �5, 6� and �6, 6� mac-
rostates, respectively, with peptide bonds 11 and 5 disor-
dered, thus precluding hydrogen bonding between them.
Both transitions lead to the �5, 7� macrostate, in which the
hydrogen bond between peptide bonds 5 and 11 and simul-
taneously the Y45-F52 hydrophobic interaction are formed.
The third contributor, at 8.2% of J, is the transition to the �5,
7� macrostate from the �0, 0� macrostate. The next two con-
tributors, each at 7.9% of J, start from the �4, 7� and �6, 7�
macrostates, and end at the �4, 8� and �5, 8� macrostates,
respectively.

The finding on the transitions from the unfolded mac-
rostates to the folded macrostates indicates that the rate-
limiting step for the �-hairpin formation is the formation of
the hydrogen bond between peptide bonds 5 and 11. Muñoz
et al. came to the same conclusion based on considering a
free-energy profile calculated as a function of the number of
ordered residues �essentially the potential of mean force

FIG. 3. �a� The model of Muñoz et al. Filled small circles represent peptide
bonds; position numbers of the first two peptide bonds are labeled. Thin
dashed lines represent hydrogen bonds, and thick dotted lines represent hy-
drophobic interactions. �b� The five transitions making the most contribu-
tions to the minimum reaction flux. Filled and open small circles represent
ordered and disordered peptide bonds, respectively. Macrostates are identi-
fied by a pair of numbers in parentheses, with the first number indicating the
start position of the stretch of ordered peptide bonds and the second number
indicating the length. Position numbers for some peptide bonds are shown.
Percent contributions of the transitions to the reaction flux are shown next to
block arrows.
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along j�. In addition to energetics, our approach also takes
dynamics into consideration, since the reaction flux also de-
pends on the transition rates between macrostates. In the
model of Muñoz et al., all disorder-to-order transitions have
the same rate �see Eq. �25a��. When transition rates are mac-
rostate dependent, the landscape of the flux can be different
from the energy landscape �see Sec. IV for further
discussion�.

In Fig. 4 we compare the relaxation rate constant ob-
tained from the MRF approach with the exact result obtained
by numerical integration. The MRF prediction overestimates
kR by 	50%. Given its simplicity, the MRF approach seems
to perform quite well.

IV. DISCUSSION

We have presented an approach for calculating the fold-
ing and unfolding rate constants in master-equation models,
based on minimizing the reaction flux. Test against exact
results shows that the MRF solution works well. This solu-
tion suggests that the folding and unfolding rate constants are
determined by a small number of transitions. This finding is
important in itself. In designing master-equation models, one
has to assign free energies to macrostates and rates to tran-
sitions between them. The above finding suggests that atten-
tion should be focused on the few parameters that critically
affect the folding and unfolding rates. Below we further dis-
cuss several related issues.

A. Accuracy of the MRF solution

As a transition-state theory, our approach provides upper
bounds on the folding and unfolding rate constants. The use
of the MRF dividing surface makes the upper bounds as tight
as possible.

In comparing the results on the two models tested, the
MRF solution works much better for the model of Zwanzig
than for the model of Muñoz et al. In the former model, the

folded state consists of a single macrostate, which is con-
nected to a single unfolded macrostate. The folded mac-
rostate has a significantly lower free energy �by 	�� than the
unfolded macrostate. Therefore once the protein makes the
forward transition between the two macrostates, it is very
unlikely to go backward. In contrast, the folded state in the
model of Muñoz et al. consists of 25 macrostates, with mod-
est decreases in free energy relative to neighboring mac-
rostates across the dividing surface. There are thus appre-
ciable chances of recrossing the dividing surface. This
situation is typically found in some of the more realistic
master-equation models,7,13 and hence the relatively larger
error found in the model of Muñoz et al. is perhaps more
representative of the performance of our approach.

Accuracy on the calculated folding and unfolding rate
constants aside, we emphasize that the MRF surface directly
yields insight into folding mechanisms.

B. MRF surface and transition-state ensemble

In our approach, the dividing surface between the un-
folded and folded states which minimizes the reaction flux
plays the role of the transition-state ensemble. This specifi-
cation of the transition-state ensemble is more intuitive than
previous proposals such as the eigenvector corresponding to
the smallest nonzero eigenvalue of the transition matrix9–11

or the stochastic separatrix.20 In the latter approach, pfold, the
probability, starting from an arbitrary macrostate, of first
reaching manifestly folded macrostates �as opposed to first
reaching manifestly unfolded macrostates� is calculated from
the eigenvectors of the symmetrized transition matrix. When
this approach is applied to the models of Zwanzig and of
Muñoz et al., we find that, depending on the starting mac-
rostates, pfold values are close to either 0 or 1, with a large
gap between the two subsets of values. Contrary to conven-
tional wisdom, we choose to define the transition-state en-
semble as a collection of transitions rather than a collection
of macrostates, which is supposed to be identified by pfold

values close to 0.5. The gap in pfold values presents strong
argument in favor of our way of defining the transition-state
ensemble, as it allows for a clear-cut division of the mac-
rostates into folded and unfolded subsets; the transitions be-
tween the two subsets naturally constitute the transition-state
ensemble. Moreover, for both the models of Zwanzig and
Muñoz et al., we find that the two subsets of pfold values are
precisely separated by the MRF surface!

Conceptually, the MRF surface is just what is repre-
sented by the transition state in classical transition-state
theory.16,21 Among the forward transitions contributing to the
minimized reaction flux, we can further identify the one�s�
making the largest contribution as the “saddle point.” How-
ever, the MRF approach differs from classical transition-state
theory in one important respect: the dividing surface mini-
mizing the reaction flux is determined not only by the free
energies of the macrostates but also by the transition rates. In
principle, dynamic information incorporated by the transition
rates can lead to a landscape significantly different from free
energy landscape. This situation is similar to diffusional
models of protein folding in which the diffusion coefficient

FIG. 4. Comparison of the MRF prediction for kR and the exact result for
the model of Muñoz et al. The exact result is obtained by numerical inte-
gration of the master equation, with initial condition given by the equilib-
rium distribution at a particular initial temperature �Ti�. At t=0, the tempera-
ture is switched to Ti+15 K �modeling a 15 degree temperature jump�.
Thereafter the fractional population of the nine macrostates with all the three
hydrophobic interactions formed is fitted to a single exponential, yielding
the exact result for kR.
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is conformation dependent. A conformation-dependent diffu-
sion coefficient can significantly shift the kinetic transition
state and barrier height of protein folding.22

C. Search for the MRF surface

The procedure outlined in Subsection III A has worked
well for the two models studied here. It is possible that re-
finement has to be introduced for other models. For example,
during the iterative process, we can test for both adding and
removing macrostates.

A procedure that more exhaustively searches for the op-
timal dividing surface can also be contemplated. Each mac-
rostate can belong to either the unfolded state or the folded
state. For a model with M macrostates, there are a total of 2M

possible choices for the dividing surface. This search prob-
lem can be mapped to the problem of finding the protonation
states of titratable groups in a protein �each titratable group
can be either protonated or deprotonated�. Methods23 devel-
oped for protein titration can thus be adapted for searching
for the optimal dividing surface.

D. Beyond two-state folding

The MRF approach has been applied to master-equation
models exhibiting two-state folding behavior. For an on-
pathway intermediate, the folding scheme becomes

U � I � F . �28�

In this case, our approach can still be used. The reaction flux
will have two local minima, one corresponding to the transi-
tion between U and I while the other corresponding to the
transition between I and F. For models with more interme-
diates and more complicated connections among U, F, and
the intermediates, the approach presented here will need
modifications.

In conclusion, the MRF approach significantly simplifies
the solution of master-equation models and, at the same time,
directly yields insight into folding mechanisms.
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APPENDIX: PROOF OF JÐKF

Here we show that Eq. �1� is an overestimate of the
folding rate constant. Let the nonzero eigenvalues, �l, of the
transition matrix � be ordered from small to large. The frac-
tional occupation of the unfolded state can be written as

u�t� = pu + �
l

Ale
−�lt, �A1�

where Al are constants determined by the initial condition.
Applying the initial condition given by Eq. �13�, one has

u�0� = pu + �
l

Al = 1, �A2a�

hence

�
l

Al = 1 − pu. �A2b�

. Taking the time derivatives of both sides of Eq. �A1� and
evaluating at t=0, we find

�J � −
du�t�

dt
�

t=0
= �

l

Al�l 
 �
l

Al�1 = �1 − pu�kR = kf ,

�A3�

which is the desired result. In the second last step we equated
kR with �1, and the last identity is a consequence of Eq. �12�.
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