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Theory and simulation of diffusion-influenced, stochastically gated
ligand binding to buried sites
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We consider the diffusion-influenced rate coefficient of ligand binding to a site located in a deep
pocket on a protein; the binding pocket is flexible and can reorganize in response to ligand en-
trance. We extend to this flexible protein-ligand system a formalism developed previously [A. M.
Berezhkovskii, A, Szabo, and H.-X. Zhou, J. Chem. Phys. 135, 075103 (2011)] for breaking the
ligand-binding problem into an exterior problem and an interior problem. Conformational fluctu-
ations of a bottleneck or a lid and the binding site are modeled as stochastic gating. We present
analytical and Brownian dynamics simulation results for the case of a cylindrical pocket contain-
ing a binding site at the bottom. Induced switch, whereby the conformation of the protein adapts to
the incoming ligand, leads to considerable rate enhancement. © 2011 American Institute of Physics.
[doi:10.1063/1.3645000]

I. INTRODUCTION

Many ligand-binding proteins have binding sites located
in deep pockets. To calculate the diffusion-influenced binding
rate coefficient in such a situation, in a previous paper1 we
developed a general formalism for breaking the overall prob-
lem into an exterior problem and an interior problem. In the
exterior problem, the ligand is restricted to the bulk solution
outside the binding pocket and is absorbed by the entrance
to the pocket. In the interior problem, the ligand is confined
to the pocket and binds to the final binding site. To connect
between the exterior and interior problems, an approximation
was invoked that the protein-ligand pair distribution function
stays equilibrated over the cross section of the binding pocket,
resulting in a special boundary condition for the interior prob-
lem. It was assumed that the protein molecule is rigid. In the
present work, we remove this last assumption, allowing the
binding pocket to be conformationally flexible. We focus on
conformational fluctuations of a bottleneck (or lid) and the
binding site, and model these conformational fluctuations as
stochastic gating.

We deal with three gating situations (Fig. 1), all moti-
vated by actual protein-ligand systems. In the first, referred
to as gating binding-site, the binding site switches between
inert and reactive conformations (Fig. 1(a)). The second
situation, referred to as gated access, has a bottleneck or gate,
either at the entrance to or midway along the binding pocket
(Figs. 1(b) and 1(c)), that switches between closed and open
conformations. Acetylcholineseterase features such a gate
midway along a tunnel leading to the active site.2 In the
third situation, referred to as gating binding-pocket, ligand
entrance to the binding pocket induces both the closure of a
lid and the switch of the binding site from being inert to being
reactive (Fig. 1(d)). Oritidine-5-phosphate decarboxylase,3
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trp RNA-binding attenuation protein,4, 5 and many other
ligand-binding proteins are examples of this situation.

The gating binding-site situation was first studied
theoretically by McCammon and Northrup.6 A subsequent
solution by Szabo et al.7 has guided other theoretical and
simulation studies.8–13 In these studies, the binding site was
modeled as switching between a reactive (i.e., absorbing)
conformation and an inert (i.e., reflecting) conformation. The
transition rates, ω+ and ω–, between the two conformations
were assumed to be fixed, regardless of whether the ligand is
far away or near the binding site,

reflecting
ω+−→←−
ω−

absorbing. (1.1)

By making the approximation that the flux of the pair distri-
bution function is constant over the binding site in the absorb-
ing conformation, Szabo et al.7 derived the following result
for the steady-state rate constant kss

G in the gating binding-site
situation:

1

kss
G

= 1

kss
+ ω−

ω+

1

ωk̂(ω)
, (1.2)

where ω = ω+ + ω–; k̂(s) denotes the Laplace transform
of the time-dependent rate coefficient k(t) in the ungated
situation, in which the binding site is always absorbing;
and kss is the steady-state limit of k(t) [i.e., kss = k(∞)
= lims→0 sk̂(s)]. Later it was found that,10 when general-
ized to the time-dependent problem, the constant-flux approx-
imation is equivalent to assuming that the pair distribution
function stays equilibrated over the binding site. The time-
dependent rate coefficient, kG(t), in Laplace space has the
form

1

sk̂G(s)
= 1

sk̂(s)
+ ω−

ω+

1

(s + ω)k̂(s + ω)
, (1.3)

which at s = 0 reduces to Eq. (1.2). The formalism presented
in the previous paper1 can be used to find k̂(s) when the bind-
ing site is located inside a deep pocket.
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FIG. 1. Gating situations studied in the present paper. (a) A buried bind-
ing site that switches between inert and reactive conformations. (b) A buried
binding site that has gated access. The gate is at the entrance of the bind-
ing pocket. (c) The gated access situation, with the gate midway along the
binding pocket. (d) A binding pocket that switches between an open lid/inert
binding-site state and a closed lid/reactive binding-site state.

We first studied the gated access situation in 1998.14 The
transition rates between the closed and open conformations of
the gate were fixed (also denoted by ω±), regardless of where
the ligand was located. By making the approximation that the
flux of the pair distribution function is constant over the gate
when it is in the open conformation, it was possible to break
the overall problem into an exterior problem and an interior
problem. The exterior and interior regions are separated by
the gate. The overall rate constant can be written as

1

kss
G

= 1

kss
E;G

+ 1

kss
I;G

, (1.4a)

where kss
E;G is the rate constant for ligands in the exterior re-

gion being absorbed by the fluctuating gate and can be found
by Eq. (1.2). The other quantity kss

I;G is a rate constant from
the interior problem, in which the ligands are reflected by the
closed gate but maintain the equilibrium distribution over the
open gate, leading to

1

kss
I;G

= 1

kss
I

+ ω−
ω+

1

ωĵI(ω)
, (1.4b)

where ĵI(s) is the Laplace transform of the total flux,
jI(t), across the open gate, and kss

I = jI(∞) = lims→0 sĵI(s).
Equations (1.4) have been used to study substrate binding to
acetylcholinesterase15 and permeant ion binding to an internal
site in a transmembrane ion channel.16, 17

Recently, it was recognized that more realistic modeling
requires variable transition rates between the alternative con-
formations of the binding site and the gate.18 In the gating
binding-site situation, we expect that the transition rates fa-
vor the reflecting conformation while the ligand is far away
but would favor the absorbing conformation while the ligand
is inside the binding pocket. The change in transition rates
comes about due to the protein-ligand interactions inside the
binding pocket. With such variable transition rates, two pop-
ular binding mechanisms, conformational selection and in-
duced fit, emerge as extremes when the timescale of the con-
formational transitions is either much longer or much shorter
than the timescale of the diffusional approach to the bind-
ing pocket. The conformational-selection and induced-fit ex-
tremes provide lower and upper bounds of the ligand binding
rate constant, respectively, and the values of the two bounds

become close when the range of the protein-ligand interac-
tions is longer than the binding pocket.19 A similar conclu-
sion was reached regarding how the conformational switch of
a protein nonspecifically bound to DNA affects the binding
rate to a specific site.20 Following the terminology of that pa-
per, we refer to the scenario of fixed transition rates between
alternative conformations as “indifferent switch,” and the sce-
nario of variable transition rates as “induced switch.”

As mentioned above, Eqs. (1.2)–(1.4) were obtained by
applying the constant-flux approximation, either over the
binding site or over the gate. Compared to the constant-
flux approximation, the formalism presented in the previous
paper1 appears to be superior for dealing with a binding site
located inside a deep pocket, leading to more accurate results
for the rate coefficient in the ungated situation. Here, we adapt
the basic idea of that paper1 to derive a boundary condition
over the entrance to the binding pocket for the three gating sit-
uations illustrated in Fig. 1. We go beyond previous studies by
treating both the indifferent-switch scenario and the induced-
switch scenario. We present explicit results for the case of
a cylindrical pocket containing a binding site at the bottom.
We find that induced switch leads to significant enhancement
of the protein-ligand binding rate over the indifferent-switch
scenario. We also use Brownian dynamics (BD) simulations
to obtain exact results for the protein-ligand binding rate co-
efficient and show that the analytical results derived in this
paper are accurate to within 1.5%.

The rest of the paper is organized as follows. In Sec. II,
we summarize the results of the previous paper1 for an un-
gated cylindrical pocket and compare them against BD sim-
ulations. We then present the gating binding-site situation in
Sec. III. In Sec. IV, we consider a gating circular binding site
on an otherwise inert plane, which is a special case of the
cylindrical binding pocket when the depth is zero. We test the
results of Sec. III in this special case both analytically and
against BD simulations. This is followed by the gated access
situation in Sec. V and the gating binding-pocket situation in
Sec. VI. We end the paper with some concluding remarks,
drawing particular attention on how the present work can be
the basis for treating molecular flexibility in BD simulations
of protein-ligand binding.

II. THE UNGATED CYLINDRICAL POCKET

A. Formalism for breaking into exterior
and interior problems

The formalism developed in the previous paper1 for
breaking the overall problem into an exterior problem and an
interior problem can be illustrated by the case of a binding
site located at the bottom of a cylindrical pocket. In the exte-
rior region, the pair distribution function G(r, t) satisfies the
Smoluchowski equation

∂G

∂t
= ∇ · {De−βU (r)∇[eβU (r)G]}, (2.1)

with the initial condition

G(r, 0) = e−βU (r) (2.2)
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and the boundary condition

G(r, t) = 1 as r → ∞. (2.3)

The basic assumption of the previous paper is that the distri-
bution function undergoes rapid equilibration over the cross
section of the cylindrical pocket:

G(r, t) ≈ e−βU (r)f (x, t) if 0 ≤ x ≤ L, (2.4)

where x is the coordinate along the cylindrical axis and L is
the length of the cylindrical pocket. Then the reduced one-
dimensional distribution function in the pocket, g(x, t), de-
fined as

g(x, t) =
∫∫

dydzG(r, t), (2.5)

satisfies

∂g

∂t
= ∂

∂x

[
De−βV (x) ∂e−βV (x)g

∂x

]
≡ Lg, (2.6)

where
∫∫

dydz represents an integration over the cylindrical
cross section at position x; V(x) is the one-dimensional poten-
tial of mean force given by

e−βV (x) = σ−1
∫∫

dydze−βU (r), (2.7)

with σ denoting the cross sectional area of the cylindrical
pocket. Binding at x = 0 is specified by a radiation bound-
ary condition

J g(0, t) ≡ De−βV (x) ∂eβV (x)g(x, t)

∂x

∣∣∣∣
x=0

= κ0g(0, t),

(2.8)
where κ0 is the reactivity. Either side of the last identity gives
the overall rate coefficient k(t). The initial value of the rate
coefficient is

k0 = κ0σe−βV (0). (2.9)

The approximation of Eq. (2.4) is the basis of an ansatz
for the distribution function in the exterior region. In Laplace
space, this takes the form

Ĝ(r, s) = Â1(s)Ĥ (r, s) + Â2(s)e−βU (r), (2.10)

which involves H (r, t), the distribution function for the ex-
terior problem that satisfies an absorbing boundary condition
on the entrance to the cylindrical pocket. To determine the co-
efficients Â1(s) and Â2(s), we note that G(r, t), H (r, t), and
exp[–βU(r)] all go to 1 as r → ∞. Therefore,

Â1(s) + sÂ2(s) = 1. (2.11)

To find a second identity, we specializing Eq. (2.10) to x
= L, the entrance to the cylindrical pocket. Here, H (r, t)
= 0 since the entrance is absorbing for H (r, t). Integrating
over the entrance, we have

ĝ(L, s) = Â2(s)σe−βV (L). (2.12)

The last two identifies allow us to find

Â1(s) = 1 − sĝ(L, s)

σe−βV (L)
. (2.13)

Finally, the boundary condition for g(x, t) at x = L is ob-
tained by calculating the flux of Eq. (2.10). Noting that total
flux of H (r, t) at x = L is the rate coefficient kE(t) for lig-
ands in the exterior region being absorbed by the entrance to
the cylindrical pocket and that the flux of exp[–βU(r)] is zero,
we find

J ĝ(L, s) =
(

1 − sĝ(L, s)

σe−βV (L)

)
k̂E(s). (2.14)

B. A formal solution

In Laplace space, Eq. (2.6) takes the form

sĝ(x, s) − σe−βV (x) = Lĝ(x, s). (2.15)

The radiation boundary condition of Eq. (2.8) takes the form

J ĝ(0, s) = κ0ĝ(0, s). (2.16)

We construct the solution in the form

ĝ(x, s) = 1

s
σe−βV (x) + B̂(s)q̂(x, s), (2.17)

where q̂(x, s) satisfies

sq̂(x, s) = Lq̂(x, s), (2.18a)

subject to the boundary conditions

− J q̂(L, s) = sk̂E(s)

σe−βV (L)
q̂(L, s), (2.18b)

q̂(0, s) = 1

s
σe−βV (0). (2.18c)

It can be verified that Eq. (2.17) satisfies Eq. (2.15) and the
boundary condition of Eq. (2.14). Using the remaining bound-
ary condition of Eq. (2.16), we have

B̂(s)J q̂(0, s) =
(

1

s
+ B̂(s)

)
k0. (2.19)

Solving for B̂(s), we finally find

1

sk̂(s)
≡ 1

sJ ĝ(0, s)
= 1

k0
+ 1

−sJ q̂(0, s)
. (2.20)

A number of results in Sec. III will be expressed in
terms of q̂(x, s). Its boundary condition at x = L, given by
Eq. (2.18b), is a radiation type in Laplace space, with reactiv-
ity given by sk̂E(s)

σe−βV (L) . k̂E(s) must be determined by solving the
exterior problem. If the potential is zero outside the cylindri-
cal pocket, an excellent approximation is21

sk̂E(s)

4Da
= 1 + π

4
aλ + (π/4 − 1)aλ

π (4 − π )/(π2 − 8) + aλ
, (2.21)

where a is the radius of the absorbing disk, which is also the
top of the cylindrical pocket. Equation (2.21) was constructed
to reproduce the first two terms of the expansions of k̂E(s) in
s for both large s and small s, corresponding to short and long
times, respectively. In particular, it gives the correct steady-
state limit kss

E = 4Da.22 In Sec. IV, we will extend this result
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to the case where the disk is partially absorbing and stochas-
tically gated, by applying Eq. (2.18b) to the special case
L = 0.

The steady-state rate constant kss is of particular interest,
which can be obtained by taking the s → 0 limit. Solving the
steady-state version of Eqs. (2.18), we find

1

−J qss(0)
= 1

kss
E

+
∫ L

0
dx

1

Dσe−βV (x)
. (2.22)

Using this in the steady-state limit of Eq. (2.20), we obtain the
expression for the steady-state rate constant:

1

kss
= 1

kss
E

+ 1

kss
I

, (2.23a)

where

1

kss
I

= 1

k0
+

∫ L

0
dx

1

Dσe−βV (x)
(2.23b)

can be recognized as the rate constant for ligands in the inte-
rior region when the pair distribution function on the entrance
is maintained at its equilibrium value exp[–βU(r)].14 This ex-
pression for kss was given in the previous paper.1

C. A constant-linear potential in the cylindrical pocket

An explicit expression for k̂(s) was given in the previ-
ous paper1 for the case of a linear potential in the cylindri-
cal pocket. For a constant potential: βV (x) = βV0 for 0 ≤ x

≤ L, Eq. (2.18a) becomes

sq̂(x, s) = D
d2q̂(x, s)

dx2
. (2.24)

The solution has the form

q̂(x, s) = B̂1(s)eλx + B̂2(s)e−λx, (2.25)

where

λ = (s/D)1/2. (2.26)

After determining B̂1(s) and B̂2(s) by using the boundary con-
ditions of Eqs. (2.18b) and (2.18c), we find

1

sk̂(s)
= 1

k0
+ λ coth(λL) + sk̂E(s)/Dσe−βV0

sk̂E(s)λ coth(λL) + sσe−βV0
. (2.27)

The steady-state rate constant is

1

kss
= 1

kss
E

+ 1

k0
+ L

Dσe−βV0
. (2.28)

For a potential that bridges the linear and constant potentials,

V (x) =
{

V0, if 0 < x ≤ L1

V0(L − x)/	, if L1 < x < L
, (2.29)

where 	 = L − L1, the rate coefficient can also be obtained.
The result is

1

sk̂(s)
= 1

k0
+ λ coth(λL1) + α/Dσe−βV0

αλ coth(λL1) + sσe−βV0
, (2.30a)

where

1

α
= eβV0

λ2 coth(λ2	) − βV0/2	 + sk̂E(s)/Dσ

sk̂E(s)λ2 coth(λ2	) + sσ + βV0sk̂E(s)/2	
,

(2.30b)

with λ2 = [s/D + (βV0/2	)2]1/2.

D. Comparison against BD simulations

The first algorithm for obtaining the steady-state rate con-
stant from BD simulations was developed by Northrup et al.23

From ligand trajectories started on a spherical surface enclos-
ing the entire protein molecule, one obtains the capture prob-
ability, i.e., the fraction of trajectories that lead to reaction at
the binding site rather than escape to infinity. The rate con-
stant is proportional to the capture probability. For a binding
site located in a deep pocket, the capture probability may be-
come extremely small, rendering this algorithm ineffective.24

This algorithm was originally developed for rigid protein
molecules, but has been applied to a gated access situation.25

A potential problem with the algorithm in the induced-switch
scenario will be noted below in Subsection V B.

We developed an alternative algorithm, which yields the
full time-dependent rate coefficient.26 The ligand trajectories
are started from the binding site. One then obtains the survival
probability S(t) as a function of time. The rate coefficient is
given by k(t) = k(0)S(t). Here, we use this algorithm to obtain
k(t) for the cylindrical binding pocket with the constant-linear
potential of Eq. (2.29). The algorithm was recently applied to
a gating binding-site situation under induced switch.19

In Fig. 2, we compare the analytical expression for k(t)
given by Eqs. (2.30) against BD simulation results. Data
are presented for βV0 = –3 and L1/L = 0.2 to 0.8. Very
good agreement is seen (difference < 1%), validating the
formalism developed in the previous paper1 for breaking

FIG. 2. Comparison of analytical (solid lines) and BD simulation (symbols)
results for the rate coefficient in the constant-linear potential of Eq. (2.29).
Results at four values of L1/a are shown in different colors according to the
key in the figure. Other parameters are: κ0 = 0.1D/a; L/a = 5; and βV0 = –3.
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the ligand-binding problem into an exterior problem and an
interior problem.

III. THE GATING BINDING-SITE SITUATION

A. Indifferent switch

In the indifferent-switch scenario, the binding site
switches between a (partially) absorbing conformation and a
reflecting conformation according to Eq. (1.1). The pair distri-
bution function, Gg(r, t), now depending on the conformation
g, which is either a (for absorbing) or r (for reflecting), of the
binding site, satisfies the equations

∂Ga

∂t
= ∇ · {De−βU (r)∇[eβU (r)Ga]} − ω−Ga + ω+Gr,

(3.1a)

∂Gr

∂t
= ∇ · {De−βU (r)∇[eβU (r)Gr]} + ω−Ga − ω+Gr.

(3.1b)
The outer boundary values are

Gg(r, t) = pg as r → ∞, (3.2a)

where

pa = ω+/ω; pr = ω−/ω. (3.2b)

We now work in Laplace space. By forming the combinations

Ĝ(r, s) = Ĝa(r, s) + Ĝr(r, s), (3.3a)

F̂ (r, s) = prĜa(r, s) − paĜr(r, s), (3.3b)

we transform Eqs. (3.1) to

sĜ − e−βU (r) = ∇ · {De−βU (r)∇[eβU (r)Ĝ]}, (3.4a)

s1F̂ = ∇ · {De−βU (r)∇[eβU (r)F̂ ]}, (3.4b)

where s1 = s + ω.
In analogy to Eq. (2.10), we make the following ansatz:

Ĝ(r, s) = Â1(s)Ĥ (r, s) + Â2(s)e−βU (r), (3.5a)

F̂ (r, s) = B̂1(s)Ĥ (r, s1) + B̂2(s)e−βU (r). (3.5b)

Following the steps of Subsection II A, we arrive at the fol-
lowing boundary conditions for the reduced one-dimensional
distribution functions ĝg(x, s) in the cylindrical pocket:

J ĝ(L, s) =
(

1 − sĝ(L, s)

σe−βV (L)

)
k̂E(s), (3.6a)

− J f̂ (L, s) = s1k̂E(s1)

σe−βV (L)
f̂ (L, s), (3.6b)

where ĝ(x, s) and f̂ (x, s) are linear combinations of ĝa(x, s)
and ĝr(x, s) that are analogous to Eqs. (3.3):

ĝ(x, s) = ĝa(x, s) + ĝr(x, s), (3.7a)

f̂ (x, s) = prĝa(x, s) − paĝr(x, s). (3.7b)

Corresponding to Eqs. (3.4), we have

sĝ − σe−βV (x) = Lĝ, (3.8a)

s1f̂ = Lf̂ . (3.8b)

Following Eq. (2.17), we can write the solution of Eqs. (3.8)
as

ĝ(x, s) = 1

s
σe−βV (x) + Ĉ1(s)q̂(x, s), (3.9a)

f̂ (x, s) = Ĉ2(s)q̂(x, s1), (3.9b)

which by design satisfies the boundary conditions at x = L
given by Eq. (3.6). The boundary conditions at x = 0 are

J ĝa(0, s) = κ0ĝa(0, s), (3.10a)

J ĝr(0, s) = 0. (3.10b)

Using these to determine the coefficients Ĉ1(s) and Ĉ2(s), we
finally find the rate coefficient for the present gating binding-
site situation to be

1

sk̂G(s)
≡ 1

sJ ĝa(0, s)
= 1

pak0
+ 1

−sJ q̂(0, s)

+ pr

pa

1

−s1J q̂(0, s1)
. (3.11a)

Using Eq. (2.20) for the ungated rate coefficient k̂(s), we can
write k̂G(s) as

1

sk̂G(s)
= 1

sk̂(s)
+ ω−

ω+

1

(s + ω)k̂(s + ω)
, (3.11b)

which is just Eq. (1.3).
Taking the s → 0 limit of Eq. (3.11a) and using

Eqs. (2.22) and (2.23b), we obtain the steady-state rate con-
stant

1

kss
G

= 1

kss
E

+ 1

kss
I

+ ω−
ω+

[
1

k0
+ 1

−ωJ q̂(0, ω)

]
. (3.11c)

For a constant potential inside the binding pocket, use of
Eqs. (2.27) and (2.28) in Eq. (3.11b) leads to the following
expression:

1

kss
G

= 1

kss
E

+ 1

paκ0σe−βV0
+ L

Dσe−βV0

+ pr

pa

ν coth(νL) + ωk̂E(ω)/Dσe−βV0

ωk̂E(ω)ν coth(νL) + ωσe−βV0
,

(3.11d)

where ν = (ω/D)1/2.
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B. Induced switch

For an actual protein molecule, the transition rates ω±
between the absorbing conformation and the reflecting con-
formation will depend on the position of the ligand. Con-
comitantly, the protein-ligand interaction potential will be
conformation-dependent. These position-dependent transition
rates ω±(r) and conformation-dependent potentials Ug(r) sat-
isfy the following detailed balance condition:18, 19

ω+(r)

ω−(r)
= ω∞+

ω∞−
e−β[Ua(r)−Ur(r)], (3.12)

in which ω∞± are the transition rates at r = ∞ [where Ug(r)
= 0]. In a typical system, the transition rates will change from
favoring the reflecting conformation while the ligand is far
away to favoring the absorbing conformation while the ligand
is near the binding site. The governing equations for the pair
distribution functions Gg(r, t) become19

∂Ga

∂t
= ∇ · {De−βUa(r)∇[eβUa(r)Ga]}

−ω−(r)Ga + ω+(r)Gr, (3.13a)

∂Gr

∂t
= ∇ · {De−βUr(r)∇[eβUr(r)Gr]} + ω−(r)Ga − ω+(r)Gr.

(3.13b)

We now present explicit results for this induced-switch
scenario. First we make the reasonable assumption that, in
the exterior region, the interaction potential is independent of
the conformation of the binding site, and correspondingly the
transition rates take the fixed values ω±. Second we assume
that, throughout the cylindrical pocket, the one-dimensional
potentials of mean force Vg(x) are constant, and the transi-
tion rates are also constant and denoted as ωI±. The governing
equations for the reduced one-dimensional distribution func-
tions ĝg(x, s) are

sĝa − paσe−βVa = D
d2ĝa

dx2
− ωI−ĝa + ωI+ĝr, (3.14a)

sĝr − prσe−βVr = D
d2ĝr

dx2
+ ωI−ĝa − ωI+ĝr. (3.14b)

For later reference, we define

ωI = ωI+ + ωI−, (3.15a)

pIa = ωI+/ωI, (3.15b)

pIr = ωI−/ωI. (3.15c)

Using the linear combinations of Eqs. (3.7), we transform the
above equations to

sĝ − σe−βVeff = D
d2ĝ

dx2
, (3.16a)

sI1f̂ = D
d2f̂

dx2
, (3.16b)

where

e−βV eff = pae
−βVa + pre

−βVr (3.17)

and sI1 = s + ωI.
The boundary conditions at x = L are analogous to

Eq. (3.6), now given by

J ĝE(s) =
(

1 − sĝE(s)

σe−βVE

)
k̂E(s), (3.18a)

− J f̂E(s) = s1k̂E(s1)

σe−βVE
f̂E(s), (3.18b)

where s1 = s + ω and

eβVE ĝE(s) = eβVa ĝa(L, s) + eβVr ĝr(L, s), (3.19a)

eβVE f̂E(s) = pre
βVa ĝa(L, s) − pae

βVr ĝr(L, s), (3.19b)

J ĝE(s) = J ĝa(L, s) + J ĝr(L, s), (3.19c)

J f̂E(s) = paJ ĝa(L, s) − prJ ĝr(L, s). (3.19d)

The last relations are based on the continuity conditions of
eβVg ĝg and J ĝg. In terms of ĝ and f̂ , we can write them as

eβVE ĝE(s) = eβVeff ĝ(L, s) + (eβVa − eβVr )f̂ (L, s)

= eβVeff [ĝ(L, s) − (	p/pIapIr)f̂ (L, s)],

(3.20a)

eβVE f̂E(s) = eβVa+βVr−βVeff f̂ (L, s)

= eβVeff (papr/pIapIr)f̂ (L, s), (3.20b)

J ĝE(s) = J ĝ(L, s), (3.20c)

J f̂E(s) = 	pJ ĝ(L, s) + J f̂ (L, s), (3.20d)

where

	p = pIapr − pIrpa = pIa − pa = pr − pIr. (3.21)

The boundary conditions at x = 0 are still given by
Eqs. (3.10).

The steady-state solution of Eqs. (3.16) has the form

gss(x) = B1 + B2x, (3.22a)

f ss(x) = C1e
νIx + C2e

−νIx, (3.22b)

where νI = (ωI/D)1/2. Using the boundary conditions of
Eqs. (3.10) and (3.18) to determine the coefficients, we find
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the rate constant under induced switch to be

1

kss
G

= 1

kss
E

+ 1

pIaκ0σe−βVeff
+ L

Dσe−βVeff
+ pIr

pIa

(
1 + 	p2

p2
Ir

)
νI coth(νIL) + papr

pIapIr

ωk̂E(ω)

Dσe−βVeff
+ 2	p

pIr

νI

sinh(νIL)

(papr/pIapIr)ωk̂E(ω)νI coth(νIL) + ωIσe−βVeff
. (3.23)

It can be easily verified that, when ωI± = ω± and Veff

= V0, Eq. (3.23) reduces to the indifferent-switch result of
Eq. (3.11d). When gating is infinitely slow (i.e., ω and ωI

→ 0), conformational selection emerges as the binding mech-
anism and the rate constant is

1

kss
CS

= 1

pa

(
1

kss
E

+ 1

κ0σe−βVa
+ L

Dσe−βVa

)
. (3.24a)

This kss
CS result can be recognized as the product of pa and the

rate constant for an always-absorbing binding site, as to be
expected.18, 19 When gating is infinitely fast (i.e., ω and ωI →
∞), induced fit emerges as the binding mechanism and the
rate constant is

1

kss
IF

= 1

kss
E

+ 1

pIaκ0σe−βVeff
+ L

Dσe−βVeff
, (3.24b)

which is produced by an always-absorbing binding site with
reactivity pIaκ0 and a potential Veff, also to be expected.18, 19

In Fig. 3, we compare kss
G given by Eq. (3.23) for the

induced-switch scenario against the counterpart given by
Eq. (3.11d) for the indifferent-switch scenario. Two signifi-
cant differences can be seen. First, the decrease in kss

G in the
slow-gating limit is smaller under induced switch than under
indifferent switch. More importantly, the shift of kss

G toward
the upper bound in the fast-gating limit occurs at much lower
values of the conformational transition rates. This means that,
under induced switch, the ligand binding rate constant be-

FIG. 3. kss
G (scaled by kss

E = 4Da) for a gating binding site under either in-
duced switch (red curve) or indifferent switch (blue curve). The indifferent-
switch scenario has a constant potential V0 = Veff in the binding pocket. Pa-
rameters are as follows: κ0 = ∞; L/a = 5; pa/pr = 0.01; pIa/pIr = 10; e−βVa

= 103; and e−βVr = 1.

comes maximal even at relatively low conformational tran-
sition rates.

One example of the gating binding-site situation pre-
sented here is a gate located midway along the binding pocket.
That case will be discussed in Subsection V C.

IV. THE GATING CIRCULAR BINDING SITE

The problem of an absorbing disk located on an oth-
erwise inert plane has attracted considerable attention as a
model for protein-ligand binding and for electrode.21, 22, 27–30.
The rate coefficient k̂E(s) for such a binding site is given by
Eq. (2.21). When the depth L = 0, the cylindrical binding
pocket considered in Secs. II and III reduces to a circular bind-
ing site on an inert plane. Therefore, by setting L = 0, the
preceding results for partial absorption and stochastic gating
apply to the circular binding site. The rate coefficient k̂E;G(s)
under stochastic gating will play a key role in Secs. V and VI.
Here, we check the accuracy of the results.

Setting L = 0 in Eq. (2.18b) and using Eq. (2.18c), we
obtain

− J q̂(0, s) = sk̂E(s). (4.1)

Using this result in Eq. (2.20), we obtain the following expres-
sion for the rate coefficient k̂Ep(s) when the disk is partially
absorbing:

1

sk̂Ep(s)
= 1

κ0σ
+ 1

sk̂E(s)
. (4.2)

This was first proposed by Zwanzig and Szabo.21 For the
case where the disk switches stochastically between a par-
tially absorbing conformation and a reflecting conformation,
using Eq. (4.1) in Eq. (3.11a), we find that the rate coefficient
k̂Ep;G(s) is related to k̂E;G(s), the rate coefficient when absorp-
tion is complete rather than partial, via

1

sk̂Ep;G(s)
= 1

paκ0σ
+ 1

sk̂E;G(s)
, (4.3)

where pa = ω+/ω is the probability that the disk is in the ab-
sorbing conformation. k̂E;G(s) in turn is given by

1

sk̂E;G(s)
= 1

sk̂E(s)
+ ω−

ω+

1

(s + ω)k̂E(s + ω)
, (4.4)

which conforms to Eq. (1.3). Below we demonstrate the ac-
curacy of Eqs. (4.3) and (4.4) analytically and by BD simula-
tions.
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A. Expansion of k̂Ep;G(s) at small s

In 1996, we derived a general result for the long-time
asymptote of any time-dependent rate coefficient, which in
Laplace space takes the form10

sk̂(s) = kss

[
1 + kss

2πD
(s/D)1/2 + · · ·

]
(4.5a)

for small s. (The factor 2π would be 4π if the ligand were al-
lowed to approach infinity from all directions.) It can be eas-
ily verified that the small s expansion of k̂E(s) in Eq. (2.21)
conforms to Eq. (4.5a), with kss

E = 4Da. We now show that
k̂E;G(s) given by Eq. (4.4) also conforms to Eq. (4.5a). To that
end, we first express Eq. (4.5a) in an equivalent form:

1

sk̂(s)
= 1

kss
− 1

2πD
(s/D)1/2 + · · · . (4.5b)

Note that the coefficient of the s1/2 term on the right-hand side
of Eq. (4.5b) only depends on the diffusion constant D. The
expansion of the first term on the right-hand side of Eq. (4.4)
already contributes such an s1/2 term. Therefore the expansion
of the second term on the right-hand side of Eq. (4.4) must not
have an s1/2 term. This is indeed the case, since in the second
term s appears in the form of s + ω, and the expansion of
(s + ω)1/2 does not have an s1/2 term.

In Eq. (4.3), a constant term is added on the right-hand
side. Since the constant term cannot contribute an s1/2 term,
we find that k̂Ep;G(s) given by Eq. (4.3) also conforms to
Eq. (4.5b) and hence the correct small-s (i.e., long-time) be-
havior of Eq. (4.5a).

B. Expansion of k̂E;G(s) at large s

Oldham27 derived the first two terms in the short-time
expansion of kE(t). In Laplace space, the corresponding large-
s expansion takes the form

sk̂E(s) = Dσ (s/D)1/2 + πDa + · · · . (4.6a)

The first term, known as the Cottrell term, corresponds to
a uniform flux into the surface area of the absorbing disk;
the second term corresponds to the flux through the rim of
the disk. Note that the expansion of (s + ω)k̂E(s + ω) has the
same two leading terms:

(s + ω)k̂E(s + ω) = Dσ (s/D)1/2 + πDa + · · · . (4.6b)

In Appendix A, we calculate the two leading terms of k̂E;G(s).
Each is the corresponding term in Eq. (4.6a) scaled by pa,
leading to

sk̂E;G(s) = paDσ (s/D)1/2 + πpaDa + · · · . (4.7)

Using Eqs. (4.6) in Eq. (4.4), one can easily verify that the
resulting expansion for k̂E;G(s) agrees with Eq. (4.7).

FIG. 4. Comparison of analytical (solid lines) and BD simulation (symbols)
results for the rate coefficient of binding to a gating disk. Results at three
values of (a2/D)1/2ω– are shown in different colors according to the key in
the figure. Other parameters are: κ0 = D/a; and (a2/D)1/2ω+ = 100.

C. BD simulations

In Fig. 4, we compare kEp;G(t) given by
Eqs. (4.3) and (4.4) against BD simulation results for three
sets of ω± values. The analytical formulas only understate
slightly (<1.5%) the simulation results.

V. THE GATED ACCESS SITUATION

A. Indifferent switch

We now consider the case where a stochastic gate is
present at the entrance to the cylindrical pocket (Fig. 1(b)).
The open and closed conformations will be denoted with
subscripts o and c, respectively. The governing equation for
the pair distribution function Gg(r, t) here is analogous to
Eqs. (3.1). However, while exp[βU(r)]Go(r, t) is continuous
across the pocket entrance, Gc(r, t) here satisfies the reflect-
ing boundary condition on the entrance. The exterior problem
now involves a gating binding site on the pocket entrance.
This is just the problem dealt with in Sec. IV. Let the pair dis-
tribution for that problem be denoted as Hg(r, t). Analogous
to Eq. (2.10), we make the ansatz

Ĝo(r, s) = Â1(s)Ĥo(r, s) + Â2(s)e−βU (r). (5.1)

This leads to the following boundary condition for the re-
duced distribution function ĝo(x, s) at x = L:

J ĝo(L, s) =
(

1 − sĝo(L, s)

poσe−βV (L)

)
k̂E;G(s), (5.2a)

where k̂E;G(s) is the rate coefficient calculated from Hg(r, t).
The boundary condition at x = L is reflecting for ĝc(x, s);
hence,

J ĝc(L, s) = 0. (5.2b)
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The boundary conditions at x = 0 are

J ĝo(0, s) = κ0ĝo(0, s), (5.3a)

J ĝc(0, s) = κ0ĝc(0, s). (5.3b)

We again combine ĝo(x, s) and ĝc(x, s) in analogy to
Eqs. (3.7). The resulting ĝ(x, s) and f̂ (x, s) are governed by
Eqs. (3.8). The boundary conditions at x = 0 can be written
as

J ĝ(0, s) = κ0ĝ(0, s), (5.4a)

J f̂ (0, s) = κ0f̂ (0, s). (5.4b)

We introduce two specific solutions to the equation

sî(x, s) = Lî(x, s). (5.5)

The first, î1(x, s), is specified by the boundary conditions

J î1(L, s) = 0, (5.6a)

î1(0, s) = 1

s
σe−βV (0). (5.6b)

The second, î2(x, s), is specified by the boundary conditions

î2(L, s) = 1

s
σe−βV (L), (5.7a)

J î2(0, s) = κ0 î2(0, s). (5.7b)

Using î1(x, s) and î2(x, s), we can construct ĝ(x, s) and
f̂ (x, s) as

ĝ(x, s) = 1

s
σe−βV (x) + B̂1(s)î1(x, s) + B̂2(s)î2(x, s),

(5.8a)

f̂ (x, s) = Ĉ(s)î2(x, s1). (5.8b)

By design f̂ (x, s) satisfies the boundary condition of
Eq. (5.4b). Determining the three coefficients of Eqs. (5.8)
using the boundary conditions of Eqs. (5.2) and (5.4a), we
obtain the rate coefficient k̂G(s) in the present gated access
situation:

sk̂G(s) ≡ sJ ĝ(0, s) = −sJ î1(0, s)

1 − sJ î1(0, s)/k0
+ sî1(L, s)/σe−βV (L)

1 − sJ î1(0, s)/k0

× 1

1

sJ î2(0, s)
+ J î2(L, s)

J î2(0, s)

1

sk̂E;G(s)
+ ω−

ω+

J î2(L, s)

J î2(0, s)

1

s1J î2(L, s1)

. (5.9)

At the steady state (i.e., s → 0), sJ î1(0, s) = 0 and
sJ î2(0, s) = sJ î2(L, s) = kss

I [given by Eq. (2.23b)]. Cor-
respondingly, the steady-state rate constant is

1

kss
G

= 1

kss
E;G

+ 1

kss
I

+ ω−
ω+

1

ωJ î2(L,ω)
. (5.10)

The sum of the last two terms corresponds to the rate constant
kss

I;G:

1

kss
I;G

= 1

kss
I

+ ω−
ω+

1

ωJ î2(L,ω)
, (5.11)

for an interior problem, in which the pair distribution function
hss

g (x) satisfies the following boundary conditions at x = L:

hss
o (L) = poσe−βV (L), (5.12a)

J hss
c (L) = 0. (5.12b)

That is, the pair distribution function takes the equilibrium
value if the gate is open and is reflected if the gate is closed.
With the identification of J î2(L,ω) and ĵI(ω), Eq. (5.11) is
just Eq. (1.4b). To prove Eq. (5.11), one just has to recognize

that Eq. (5.2a) leads to Eq. (5.12a) when kss
E;G → ∞. Now, in

that limit Eq. (5.10) becomes Eq. (5.11).
Note that Eq. (5.10) bears some resemblance to the kss

G re-
sult for the gating binding-site situation given by Eq. (3.11c),
with î2(x, s) here playing a similar role as q̂(x, s) there. For
a constant potential inside the binding pocket, solving î2(x, s)
in analogy to q̂(x, s) in Subsection II C, we find the rate con-
stant to be

1

kss
G

= 1

kss
E;G

+ 1

κ0σe−βV0
+ L

Dσe−βV0

+ pc

po

ν coth(νL) + k0/Dσe−βV0

k0ν coth(νL) + ωσe−βV0
, (5.13)

where k0 = κ0σe−βV0 and ν = (ω/D)1/2. When ω → ∞, the
last term disappears and kss

G → kss, the rate constant when
the gate stays in the open conformation.14, 31 Note also the
similarity between Eq. (5.13) and the counterpart, Eq. (3.11d),
in Subsection III A. The kss

G result for a linear potential in the
binding pocket and κ0 = ∞ was given previously.17
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B. Induced switch

We now consider the case where the transitions rates
when the ligand is outside the gate are different from those
inside the gate. The latter are denoted as ωI±. The induced-
switch model considered here is similar to that described in
Subsection III B. In particular,

ωI+
ωI−

= ω+
ω−

e−β(Vo−Vc). (5.14a)

Or, in terms of the equilibrium probabilities of the open and
closed conformations,

pIo

pIc
= po

pc
e−β(Vo−Vc). (5.14b)

The boundary condition of Eq. (5.2a) now becomes

J ĝo(L, s) =
(

1 − sĝo(L, s)

pIoσe−βVeff(L)

)
k̂E;G(s). (5.15)

The interior problem is essentially the same as in the
indifferent-switch case of Subsection V A, but with ω± re-
placed by ωI± and V0 replaced by Veff. Making these replace-
ments in Eq. (5.13), we find the rate constant for the interior
problem now to be given by

1

kss
G

= 1

kss
E;G

+ 1

κ0σe−βVeff
+ L

Dσe−βVeff

+ pIc

pIo

νI coth(νIL) + κ0/D

κ0σe−βVeffνI coth(νIL) + ωIσe−βVeff
. (5.16)

One might have expected that, in the induced-switch
case, the ligand inside the gate would favor the closed con-
formation of the gate (i.e., pIc/pIo 	 1), such that the lig-
and would be trapped, assuring its ultimate binding. Indeed, if
one naively applies the BD simulation algorithm of Northrup
et al.,23 the calculated capture probability and hence the
ligand-binding rate constant would increase with increasing
pIc/pIo. However, Eq. (5.16) shows that kss

G decreases with in-
creasing pIc/pIo. This inverse relationship would be correctly
predicted by our BD simulation algorithm,26 since the sur-
vival probability of a ligand started from the binding site, and
hence kG(t), would decrease with increasing pIc/pIo.

The inverse relationship between kss
G and pIc/pIo can be

rationalized in the following way. The ratio of kss
G and the un-

binding rate constant is the binding constant, which is deter-
mined by protein-ligand interactions at the binding site32 and
hence in the present case is independent of pIc/pIo. Therefore
kss

G and the unbinding rate constant should have the same de-
pendence on pIc/pIo. Now, clearly the unbinding rate constant
decreases with increasing pIc/pIo. We can thus conclude that
kss

G should also decrease with increasing pIc/pIo. That the BD
simulation algorithm of Northrup et al. may predict the op-
posite trend suggests that one should be cautious in applying
this method to systems involving induced switch.

C. Gate located midway along the binding pocket

When the gate is located midway along the binding
pocket (Fig. 1(c)), the results presented in Subsections V A
and V B are still valid, except that k̂E;G(s) now represents

the rate coefficient for binding to a site represented by the
fluctuating gate. That problem is just what is modeled by the
gating binding-site situation of Sec. III – the open gate cor-
responds to the binding site in the absorbing conformation
and the closed gate corresponds to the reflecting conforma-
tion. k̂G(s) there, with κ0 set to infinity, is just k̂E;G(s) for the
present case.

VI. THE GATING BINDING-POCKET SITUATION

Finally, we consider the situation where the ligand once
entering the binding pocket induces both the closure of the lid
and the switch of the binding site from the inert conforma-
tion to the reactive conformation. In principle, the lid and the
binding site will have different dynamics, though these can
be coupled. Here, we consider the extreme case, depicted in
Fig. 1(d), where the open lid is always coincident with the in-
ert binding site and the closed lid is always with the reactive
binding site. The switches between the two states are stochas-
tic. In the opposite extreme, not considered here, the lid and
the binding site would be modeled as independent stochastic
gates.

The solution of the rate coefficient for the gating binding-
pocket situation as defined above is very similar to that pre-
sented in Sec. V for the gated access situation. The boundary
conditions on the lid are the same as the corresponding re-
sults there. However, the boundary conditions on the binding
site are different. Instead of Eqs. (5.3), we now have

J ĝo(0, s) = 0, (6.1a)

J ĝc(0, s) = κ0ĝc(0, s), (6.1b)

which express the coincidence between the open lid and inert
binding site and between the closed lid and reactive binding
site. The boundary conditions of the gating binding-pocket
situation at the lid are the same as those of the gated access
situation but at the binding site are the same as those of the
gating binding-site situation. In this sense, the gating binding-
pocket situation is a hybrid of the gated access situation and
the gating binding-site situation.

A. Indifferent switch

Suppose that the transition rates between the open
lid/inert binding-site state and the closed lid/reactive binding-
site state have fixed values ω± regardless where the ligand is
located. Note that as far as the binding site is concerned the
notations for the transition rates are the same as those used
for the gating binding-site situation (Fig. 1(a)), but as far as
the lid is concerned the present notations correspond to an in-
terchange of ω+ and ω– used for the gated access situation
(Fig. 1(b)). The only impact of this interchange is on k̂E;G(s)
(the rate coefficient for binding to the fluctuating lid). It is un-
derstood that the k̂E;G(s) result of Sec. IV is used below with
the interchange of ω+ and ω–.

We only present results for the steady-state limit. In anal-
ogy to the steady-state versions of Eqs. (5.8), we may write
the solution of the one-dimensional pair distribution functions
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as

gss(x) = σe−βV (x) + B1i
ss
1 (x) + B2i

ss
2 (x), (6.2a)

f ss(x) = C1(ω)î1(x, ω) + C2(ω)î2(x, ω). (6.2b)

Determining the coefficients using the boundary conditions at
x = L and x = 0, we find the steady-state rate constant to be

1

kss
G

= 1

kss
E;G

+ 1

kss
I

+ pc

po

1

ωJ î2(L,ω)

+ pc

po

ωî1(L,ω)

σe−βV (L)

J î2(0, ω)

J î2(L,ω)

1

−ωJ î1(0, ω)

+ po

pc

[
1

k0
+ 1

−ωJ î1(0, ω)

]

+ ωî1(L,ω)

σe−βV (L)

2

−ωJ î1(0, ω)
. (6.3)

Compared to Eq. (5.10), it can be seen that the first three terms
give the rate constant of the gated access situation. The pres-
ence of the additional terms means that the rate constant here
for the gating binding-pocket situation is lower. The decrease
in rate constant is understandable since now, in addition to the
fluctuating lid, the fluctuating binding site serves to further
reduce kss

G . Moreover, instead of a monotonic dependence on
pc/po, kss

G decreases when pc/po becomes either too small or
too big and is maximal when pc/po = 1. The decrease of kss

G
at both extremes of pc/po comes about due to the coincidence
of open lid and inert binding site and of closed lid and reac-
tive binding site in the present model. An open lid allows the
ligand to enter the binding pocket but the accompanying in-
ert binding site would not allow ligand binding. Conversely,
a closed lid would prevent the ligand to enter the binding
pocket, regardless of the fact that the closed lid is accompa-
nied by a reactive binding site.

Like Eq. (5.11) in the gated access situation, the terms
beyond the first one in Eq. (6.3) express the rate constant kss

I;G
for the interior problem in which the pair distribution function
satisfies the boundary conditions of Eqs. (5.11). For a constant
potential in the binding pocket, explicit solution of î1(x, s)
and î2(x, s) leads to the following expression for kss

I;G:

1

kss
I;G

= 1

pcκ0σe−βV0
+ L

Dσe−βV0
+

(
pc

po
+ po

pc

)
ν coth(νL)

ωσe−βV0

+ 2ν

ωσe−βV0 sinh(νL)
. (6.4)

B. Induced switch

Similar to the gated access situation, the rate constant in
the induced-switch case can be obtained from Eq. (6.4), the
result for the indifferent-switch case, by replacing ω± with
ωI± and V0 with Veff, leading to

1

kss
I;G

= 1

pIcκ0σe−βVeff
+ L

Dσe−βVeff
+

(
pIc

pIo
+ pIo

pIc

)

× νI coth(νIL)

ωIσe−βVeff
+ 2νI

ωIσe−βVeff sinh(νIL)
. (6.5)

FIG. 5. The rate constant kss
I;G (scaled by kss

I = Dσe−βVeff /L) for the inte-
rior problem in the gating binding-pocket situation. The indifferent-switch
scenario is represented by e−β (Vc – Vo) = 1. Results at four values of
νIL = (L2/D)1/2ωI, representing the ratio of the diffusional timescale and
the conformational transition timescale, are shown in different colors accord-
ing to the key in the figure. Other parameters are: κ0 = ∞; pc/po = 0.01;
e−βVeff = 10.

According to Eq. (5.14b), the ratio pIc/pIo can be tuned
by varying the difference in potential, Vc – Vo, between
the closed lid/reactive binding-site state and open lid/inert
binding-site state. The variation in Vc – Vo allows for an op-
timal rate enhancement over the indifferent-switch case, as
shown in Fig. 5. The enhancement is particularly significant
at low transition rates between the two alternative states.

pIc/pIo approaches 1 as Vc – Vo becomes more and more
negative, eventually leading to a decrease in the binding rate
constant (Fig. 5). This is consistent with the slow binding and
unbinding expected of a lid that has a high probability of clo-
sure when the ligand is inside the binding pocket. The slow
unbinding achieved via such a lid may be a desired kinetic
property in some circumstances.

VII. CONCLUDING REMARKS

We have extended to flexible protein-ligand systems
the formalism for breaking the problem of calculating the
diffusion-influenced binding rate coefficient into an exterior
problem and an interior problem. Conformational switches
of a lid over the binding pocket, a bottleneck along the
binding pocket, and the binding site are considered. It is
found that under induced switch, whereby the conformation
of the protein adapts to the incoming ligand, considerable
rate enhancement can be achieved over the indifferent-switch
scenario.

To realistically model protein-ligand systems, we have
to replace idealized geometries by an atomic representation,
which necessitates the use of Brownian dynamics simulations.
Treating molecular flexibility in BD simulations is extremely
expensive25 and hence most BD simulations have treated pro-
tein and ligand molecules as rigid. For systems in which con-
formational fluctuations are essential for ligand binding, the
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rigid treatment has resulted in unrealistically loose reaction
criteria.24, 33 The present work of breaking the calculation of
rate constants into exterior and interior problems opens the
door to a new class of algorithms, which allows molecules to
be treated as flexible in BD simulations. The exterior problem
requires long BD simulations, but during these simulations
the molecules can be treated as rigid. The rate coefficient pro-
duced by these simulations is then used for the outer boundary
condition of the interior problem. Because now the ligand is
confined to the binding pocket, only short BD simulations are
required, and one can afford to treat the molecules as flexible.
Algorithmic development along this line will be reported in
the future.
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APPENDIX A: DERIVATION OF EQ. (4.7)

Here, we derive the first two terms in the large-s expan-
sion of k̂E;G(s), which is the rate coefficient for a disk that
switches between an absorbing conformation and a reflect-
ing conformation. Following Oldham,27 the first term corre-
sponds a uniform flux into the surface area of the disk. In the
present case, the pair distribution function, Gg(x, t), where g
= a (for absorbing) or r (for reflecting) satisfies the equations

∂Ga

∂t
= D

∂2Ga

∂2x
− ω−Ga + ω+Gr, (A1a)

∂Gr

∂t
= D

∂2Gr

∂2x
+ ω−Ga − ω+Gr. (A1b)

Here, we set x = 0 at the surface of the disk. The boundary
conditions are

Ga(0, t) = 0, (A2a)

D
∂Gr(x, t)

∂x

∣∣∣∣
x=0

= 0, (A2b)

Gg(∞, t) = pg. (A2c)

The initial values of Gg(x, t) are also those given by Eq. (A2c).
To solve Eqs. (A1), we form the following linear combi-

nations:

G(x, t) = Ga(x, t) + Gr(x, t), (A3a)

F (x, t) = prGa(x, t) − paGr(x, t). (A3b)

These transform Eqs. (A1) into

∂G(x, t)

∂t
= D

∂2G(x, t)

∂2x
, (A4a)

∂F

∂t
= D

∂2F

∂2x
− ωF. (A4b)

The solution in Laplace space has the form

Ĝ(x, s) = 1

s
− B1e

−λx, (A5a)

F̂ (x, s) = B2e
−λ1x, (A5b)

where λ = (s/D)1/2 and λ1 = [(s + ω)/D]1/2. Applying the
boundary conditions of Eqs. (A2a) and (A2b), we find

B1 = 1

s

pa

pa + prλ/λ1
, (A6a)

B2 = −1

s

paprλ/λ1

pa + prλ/λ1
. (A6b)

The total flux into the surface area of the disk is

ĵ (s) = Dσ
∂Ga(x, t)

∂x

∣∣∣∣
x=0

= Dσ

s

paλ

pa + prλ/λ1
. (A7a)

The leading term in the large-s expansion is

ĵ (s) = paDσ (s/D)1/2

s
+ · · · (A7b)

which is the first term on the right-hand side of Eq. (4.7).
The second term in the large-s expansion of k̂E;G(s) cor-

responds to the flux through the rim of the disk. The flux
per unit rim length is the same as that into the edge of a
half-plane that switched between absorbing and reflecting;
the other half-plane is always reflecting. We carry out the
calculation of the edge problem by following Phillips and
Jansons,29 who used Laplace and Kontorovich-Lebedev trans-
forms to calculate the flux into the edge of an ungated half-
plane. The Kontorovich-Lebedev transform is convenient for
dealing with wedge-shaped boundaries. For a function f(ρ),
the Kontorovich-Lebedev transform is

f̄ (ζ ) =
∫ ∞

0
dρ

f (ρ)

ρ
Kiζ (λρ), (A8a)

where Kν(x) denoted a modified Bessel function of the second
kind. The inverse is

f (ρ) = 2

π2

∫ ∞

0
dζ f̄ (ζ )Kiζ (λρ)ζ sinh(πζ ). (A8b)

We use polar coordinates (ρ, φ) on the plane perpendic-
ular to the edge of the gated half-plane. The pair distribution
function, Gg(ρ, φ, t), satisfies the equations

∂Ga

∂t
= D

[
1

ρ

∂

∂ρ
ρ

∂Ga

∂ρ
+ 1

ρ2

∂2Ga

∂2φ

]
− ω−Ga + ω+Gr,

(A9a)

∂Gr

∂t
= D

[
1

ρ

∂

∂ρ
ρ

∂Gr

∂ρ
+ 1

ρ2

∂2Gr

∂2φ

]
+ ω−Ga − ω+Gr.

(A9b)
We set φ = 0 on the gated half-plane. For sake of generality
we assume that the reflecting half plane is at φ = φ0; the case
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of actual interest is φ0 = π . The boundary conditions are

Ga(ρ, 0, t) = 0, (A10a)

D
∂Gr(ρ, φ, t)

∂φ

∣∣∣∣
φ=0

= 0, (A10b)

D
∂Gg(ρ, φ, t)

∂φ

∣∣∣∣
φ=φ0

= 0. (A10c)

We again form the linear combinations of Eqs. (A3), leading
to

∂G

∂t
= D

[
1

ρ

∂

∂ρ
ρ

∂G

∂ρ
+ 1

ρ2

∂2G

∂2φ

]
, (A11a)

∂F

∂t
= D

[
1

ρ

∂

∂ρ
ρ

∂F

∂ρ
+ 1

ρ2

∂2F

∂2φ

]
− ωF. (A11b)

By first taking the Laplace transform with respect to t and then
taking the Kontorovich-Lebedev transform with respect to ρ,
we find

Ĝ(ρ, φ, s)

= 1

s
− 2

π2

∫ ∞

0
dζ (B1e

ζφ + B2e
−ζφ)Kiζ (λρ)ζ sinh(πζ ),

(A12a)

F̂ (ρ, φ, s)

= 2

π2

∫ ∞

0
dζ (B3e

ζφ+B4e
−ζφ)Kiζ (λ1ρ)ζ sinh(πζ ).

(A12b)

Applying the boundary conditions of Eqs. (A10), we have

2

π2
pa

∫ ∞

0
dζ (B1 + B2)Kiζ (λρ)ζ sinh(πζ )

− 2

π2

∫ ∞

0
dζ (B3 + B4)Kiζ (λ1ρ)ζ sinh(πζ ) = pa

s
,

(A13a)

2

π2
pr

∫ ∞

0
dζ (B1 − B2)Kiζ (λρ)ζ sinh(πζ )

+ 2

π2

∫ ∞

0
dζ (B3 − B4)Kiζ (λ1ρ)ζ sinh(πζ ) = 0,

(A13b)

2

π2
pa

∫ ∞

0
dζ (B1e

ζφ0 − B2e
−ζφ0 )Kiζ (λρ)ζ sinh(πζ )

− 2

π2

∫ ∞

0
dζ (B3e

ζφ0 − B4e
−ζφ0 )Kiζ (λ1ρ)ζ sinh(πζ ) = 0,

(A13c)

2

π2
pr

∫ ∞

0
dζ (B1e

ζφ0 − B2e
−ζφ0 )Kiζ (λρ)ζ sinh(πζ )

+ 2

π2

∫ ∞

0
dζ (B3e

ζφ0 − B4e
−ζφ0 )Kiζ (λ1ρ)ζ sinh(πζ ) = 0.

(A13d)

We are only interested in the large-s limit. In this limit,
λ1 → λ. Consequently, Eqs. (A13) lead to

pa(B1 + B2) − (B3 + B4)

= pa

s

∫ ∞

0
dρ

1

ρ
Kiζ (λρ) = pa

s

π/2

ζ sinh(πζ/2)
,

(A14a)

pr(B1 − B2) + (B3 − B4) = 0, (A14b)

pa(B1e
ζφ0 − B2e

−ζφ0 ) − (B3e
ζφ0 − B4e

−ζφ0 ) = 0,

(A14c)

pr(B1e
ζφ0 − B2e

−ζφ0 ) + (B3e
ζφ0 − B4e

−ζφ0 ) = 0.

(A14d)
In evaluating the integral in Eq. (A14a) we have used formu-
las 6.561.16 and 8.322.1 of Gradshteyn and Ryzhik.34 The
coefficients are then

B1 = pa

s

π/2

ζ sinh(πζ/2)

1

e2ζφ0 + 1
, (A15a)

B2 = pa

s

π/2

ζ sinh(πζ/2)

e2ζφ0

e2ζφ0 + 1
, (A15b)

B3 = −papr

s

π/2

ζ sinh(πζ/2)

1

e2ζφ0 + 1
, (A15c)

B4 = −papr

s

π/2

ζ sinh(πζ/2)

e2ζφ0

e2ζφ0 + 1
. (A15d)

Now, we find

Ĝ(ρ, φ, s) = 1

s
− pa

s

2

π

∫ ∞

0
dζ

cosh[(φ0 − φ)ζ ]

cosh(φ0ζ )

×Kiζ (λρ) cosh(πζ/2). (A16)

The case where the whole plane is gated is equivalent to the
case of a reflecting half-plane at φ0 = π /2. The “excess” pair
distribution function is

	Ĝ(ρ, φ, s) = Ĝ(ρ, φ, s) − Ĝ(ρ, φ, s)|φ0=π/2

= pa

s

2

π

∫ ∞

0
dζ

cosh[(π/2 − φ)ζ ] cosh(φ0ζ ) − cosh[(φ0 − φ)ζ ] cosh(πζ/2)

cosh(φ0ζ )
Kiζ (λρ)

= pa

s

2

π

∫ ∞

0
dζ

sinh[(φ0 − π/2)ζ ] sinh(φζ )

cosh(φ0ζ )
Kiζ (λρ). (A17)
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The total flux per unit edge length is

ĵ (s) = D

∫ ∞

0
dρ

1

ρ

∂	Ĝ(ρ, φ, s)

∂φ

∣∣∣∣∣
φ=0

= paD

s

2

π

∫ ∞

0
dζ

ζ sinh[(φ0−π/2)ζ ]

cosh(φ0ζ )

∫ ∞

0
dρ

1

ρ
Kiζ (λρ)

= paD

s

2

π

∫ ∞

0
dζ

ζ sinh[(φ0 − π/2)ζ ]

cosh(φ0ζ )

π/2

ζ sinh(πζ/2)

= paD

s

∫ ∞

0
dζ

sinh[(φ0 − π/2)ζ ]

cosh(φ0ζ ) sinh(πζ/2)
. (A18a)

For the case of interest to us, φ0 = π . In this case, Eq. (A18a)
becomes

ĵ (s) = paD

s

∫ ∞

0
dζ

1

cosh(πζ )
=paD

2s
(A18b)

Multiplying by the circumference 2πa of the disk, we arrive
at the second term on the right-hand side of Eq. (4.7).
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