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Theory for the rate of contact formation in a polymer chain
with local conformational transitions
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Department of Physics and Institute of Molecular Biophysics, Florida State University,
Tallahassee, Florida 32312

~Received 25 September 2002; accepted 29 October 2002!

I derive an expression for the rate of contact formation between two residues in a polymer chain
when both residues undergo native to non-native conformational transitions. A contact can only
form when the two residues are brought into contact by interresidue diffusion and are in the native
conformations at the same time. The entropy of the chain connecting the two residues are accounted
for by the potential of mean force for the interresidue distance. Both the equilibrium probabilities of
the native conformations and the time scales of the transitions between the native and non-native
conformations are important in determining the contact formation rate. For protein residues,
transitions between native and non-native conformations occur in the picoseconds time scale. In
comparison, the average time for traversing the distance of a few Å by interresidue diffusion is in
the nanoseconds time scale. This separation of time scales between residue conformational
transitions and interresidue diffusion ensures that the rate of contact formation is much higher than
what is expected from the equilibrium probability for both residues to be in the native
conformations. ©2003 American Institute of Physics.@DOI: 10.1063/1.1531588#
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I. INTRODUCTION

Contact formation is an elemental step in protein fo
ing. The formation of a nonlocal native contact requires b
large-scale motion of the polypeptide chain as well as lo
conformational rearrangements. In this paper, I presen
simple theory for the rate of contact formation which a
counts for the large-scale motion of the polypeptide chain
diffusion and local rearrangements as stochastic transit
between native and non-native conformations. The the
may be applied to study the kinetics ofb-hairpin1,2 and
coiled–coil3 formation and have implications for protei
folding in general.

The starting point of the present theory is the work
Szabo, Schulten, and Schulten~SSS!.4 SSS calculated the
rate of contact formation in a polymer chain as the inverse
the mean first passage time for diffusion toward the con
distancea in the potential of mean force of the end-to-e
distance,r. For a Gaussian chain witĥr 2&1/2@a, the rate
constant was found to be

k53~6/p!1/2Da/^r 2&3/2, ~1!

whereD is the diffusion constant. This result has been us
to model contact formation in cytochromec ~Refs. 5 and 6!
and in short peptides.7

The formation of a native contact between two residu
in a protein requires them to have specific backbone and
chain torsional angles, which are reached through local c
formational fluctuations. This key fact is recognized in t
present theory. For simplicity, the local conformational flu

a!Tel: ~850! 644-7052; Fax: ~850! 644-0098; Electronic mail:
hxzhou@csit.fsu.edu
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tuations are modeled as stochastic transitions between n
and non-native conformations,

Native�
v1

v2

Non-Native. ~2!

It is assumed that, when diffusion brings the two residu
together, they immediately form the native contact if both
them happen to be in their native conformations. For fut
reference, I define the relaxation time of the conformatio
transitions as

t5~v11v2!21[v21. ~3!

Langevin and molecular dynamics simulations show t
the relaxation time for backbone and side chain conform
tional fluctuations are in the order of 1–10 ps.8–10 This time
scale is much shorter than the average time to traverse
distance of a few Å by interresidue diffusion with a diffusio
constant;1026 cm2/s, which is a few nanoseconds. Th
separation in time scales between local conformational tr
sitions and interresidue diffusion has a crucial conseque
The slowing down of contact formation by the small pro
abilities for the residues to be in their native conformations
much less than what is expected from an equilibrium ar
ment. This outcome is reminiscent of the effect of a stoch
tic gate on ligand binding rates.10,11

In Sec. II, I will derive the general expression for th
rate of contact formation in a polymer chain. The results
the limits of slow and fast local conformational transitio
are then presented in Sec. III. This is followed by speciali
tion of the theory to a Gaussian chain in Sec. IV. Final
implications of the present theory for protein folding are d
cussed in Sec. V.
0 © 2003 American Institute of Physics
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II. GENERAL THEORY

I consider the contact formation between two residues
and B, in a polymer chain illustrated in Fig. 1. The interre
due distance,r, will be the reaction coordinate. When th
two residues reach the contact distancea, if both of them
happen to be in their native conformations, short-range in
actions~e.g., hydrophobic and van der Waals interactions a
hydrogen bonding! are supposed to provide a deep poten
well, such that the residues form a native contact insta
neously.

Outside the contact distance, interresidue motion is m
eled as diffusion under the potential of mean forceU(r ).
The potential of mean force is assumed to have a sin
minimum at a distancer m betweenr 5a and an outer bound
ary at r 5R, which can be infinity. The probability densit
p(r ,t) in r is governed by the Smoluchowski equation,

]p~r ,t !

]t
5D

]

]r
e2bU~r !

]

]r
ebU~r !p~r ,t ![Lp~r ,t !, ~4!

whereb5(kBT)21. Note that a geometric factorr 2 normally
appearing in Eq.~4! is absorbed by the potential of mea
force. Starting from an equilibrium distributio
e2bU(r )/*a

Re2bU(r )dr, the total probability P(t)
5*a

Rp(r ,t)dr will decrease with time since contact pai
may be absorbed~modeling formation of the native contact!.
If P(t) decays exponentially, the formation of the nati
contact can be described as a rate process and the exp
gives the rate constant.

A. Both residues locked in native conformations

Let us first consider the simpler case where the two r
dues are locked in their native conformations. Then at
contact distance,

p~a,t !50. ~5!

This is the problem dealt with by SSS. These authors ca
lated the rate constant as the inverse of the mean first pas
time. Let me briefly summarize this approach. The first p
sage timet(r ) starting from distancer satisfies the joint
equation,

DebU~r !
d

dr
e2bU~r !

d

dr
t~r ![L†t~r !521. ~6!

FIG. 1. ~a! The contact formation model.~b! The potential of mean force
The deep well inside the contact distancer 5a ensures that the contact i
formed instantaneously if both residues are in the native conformations
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Integrating Eq.~6! with an absorbing boundary condition a
r 5a @see Eq.~5!# and a reflecting boundary condition at th
outer boundary condition at the outer boundaryr 5R, it is
found

Dt~r !5E
a

r

ebU~r !E
r

R

e2bU~r 8!dr8dr. ~7!

Averaging over an equilibrium distribution of initial dis
tances and equating the inverse of the mean first pas
time as the rate constant leads to

kSSS5DE
a

R

e2bU~r !drY E
a

R

ebU~r !F E
r

R

e2bU~r 8!dr8G2

dr.

~8!

An alternative is the original approach of Kramers12 for
the rate of diffusive barrier crossing. In this approach,
rate constant is the constant flux from the steady-state p
ability density with values set to zero atr 5a and the equi-
librium value at the bottom of the potential wellr 5r m .13

The result is14

kK5DY E
a

R

e2bU~r !drE
a

r m
ebU~r !dr. ~9!

B. One residue undergoing conformational
transitions

Now consider the case where residue B fluctuates
tween native and non-native conformations. The transiti
between the two are assumed to be stochastic processes@see
Eq. ~2!#. Let the probability densities atr with residue B in
the native (n) and non-native (u) conformations bepn(r ,t)
andpu(r ,t), respectively.pn(r ,t) andpu(r ,t) will be repre-
sented by the vectorp(r ,t). Then,

]p~r ,t !/]t5Lp~r ,t !2W̃p~r ,t !, ~10a!

where

W̃5F v2 2v1

2v2 v1
G . ~10b!

The inner boundary conditions are

pn~a,t !50, ~11a!

F ]

]r
ebU~r !pu~r ,t !G

r 5a

50. ~11b!

That is, the boundary is absorbing forpn but reflecting for
pu . The outer boundary is reflecting for bothpn(r ,t) and
pu(r ,t).

The mean first timetn,u(r ) starting from the native or
non-native conformation satisfies

L†t~r !2W̃Tt~r !521, ~12!

whereW̃T is the transpose ofW̃. Let the equilibrium prob-
abilities of the native and non-native conformations bef n

and f u , which arev2 /v andv1 /v, respectively. With two
new variables,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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t~r !5 f ntn~r !1 f ntu~r !, ~13a!

D~r !5tn~r !2tu~r !, ~13b!

Eq. ~12! is transformed to

L†t~r !521, ~14a!

L†D~r !2vD~r !50. ~14b!

A function that plays a critical role in the present paper
defined by

L†q~r ;v!2vq~r ;v!50 ~15!

with q(a)51 and a reflecting boundary condition atr 5R. It
is obvious

D~r !5D~a!q~r ;v!. ~16a!

Integrating Eq.~14a!, it is found

Dt~r !5C1E
a

r

ebU~r !E
r

R

e2bU~r 8!dr8dr. ~16b!

Using the boundary conditions in Eq.~11!, the constantC is
determined as

C5
v2

v1

ebU~a!E
a

R

e2bU~r !dr/@2dq~r ;v!/dr# r 5a . ~17!

Averaging over an equilibrium distribution of initial dis
tances and equating the inverse of the mean first pas
time as the rate constantkg lead to

1

kg

5
1

kSSS

1
v2

v1

1

kKk~v!
, ~18a!

where

k~v!5e2bU~a!E
a

r m
ebU~r !dr@2dq~r ;v!/dr# r 5a . ~18b!

This function is related to the mean first passage time o
particle diffusing in the potential of mean force with an a
sorbing boundary atr 5a and a decay ratev for r .a. If
kSSS'kK are viewed as the ‘‘ungated’’ rate constant, the fo
of Eq. ~18a! is analogous to expressions for rate constant
bimolecular binding affected by conformational transition15

or a stochastic gate.10,11

C. Both residues undergoing conformational
transitions

Generalization to the case where both residues A an
undergo conformational transitions is straightforward. L
the transition rates between native and non-native confor
tion of residues A and B bevA2, vA1, vB2, andvB1 @see
Eq. ~2!#. The expression for the rate constant under con
mational transitions of both residues A and B is

1

kg

5
1

kSSS

1
vA2

vA1kKk~vA!
1

vB2

vB1 ,kKk~vB!

1
vA2vB2

vA2vB1kKk~vA1vB!
, ~19!
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where vA5vA11vA251/tA and vB5vB11vB251/tB .
The derivation is given in the Appendix.

III. SLOW AND FAST LOCAL CONFORMATIONAL
TRANSITIONS

The two limits where the relaxation timestA andtB of
the local conformational transitions are extremely long
short are of particular interest. WhentA and tB→` ~i.e.,
v5vA , vB , or vA1vB→0), q(r ;v) can be expanded in
powers ofv,

q~r ;v!5q0~r !1vq1~r !1¯. ~20!

Inserting Eq.~20! into Eq. ~15! and solving the resulting
equations order by order, it is foundq0(r )51 and

2De2bU~r !dq1~r !/dr5E
r

R

e2bU~r !dr. ~21!

Thus to the lowest order invA , vB , andvA1vB ,

1

kg

5
vA2

vA1vA

1
vB2

vB1vB

1
vA2vB2

vA1vB1~vA1vB!
. ~22!

This result has a simple explanation. WhentA and tB→`,
the fraction of chains initially having one of the residues
the non-native conformation will be stuck in that conform
tion and will never have a chance to form a native contact
that limit the mean lifetime is infinite. AstA andtB becomes
finite, these chains slowly switch to have both residues in
native conformations, thereupon forming a native contact
stantaneously~on the time scale oftA andtB). In particular,
for the case where residue B is locked in the native con
mation ~i.e., vB2 /vB150), the equilibrium fraction of
chains with residue A in the non-native conformation
vA2/vA , and these chains have a mean lifetime of 1/vA1

before residue A switches to the native conformation.
When the local conformational transitions are fast~i.e.,

v→`), theq(r ;v) function will decay rapidly from 1 to 0
near r 5a. Hence@2dq(r ;v)/dr# r 5a→` and k(v)→`.
In this limit, kg→kSSS. This result, again analogous to wh
happens for bimolecular binding affected by conformatio
transitions15 or a stochastic gate,10,11 can be rationalized by
the separation in time scales between interresidue diffus
and local conformational transitions. When diffusion brin
the two residues together, the slow diffusional steps w
leave the two residues in near contact distances for a r
tively long time. During this period, fast transitions will hav
brought the two residues into and out of their native conf
mations many times. It takes only one event in which bo
residues are in their native conformations simultaneously
order for the native contact to form.

The separation of times scales between interresidue
fusion and local conformational transitions can be ma
more concrete. It is easier to work with a new variab
y(r ;v)5eb@U(a)2U(r )#/2q(r ;v). Equation~15! becomes

d2y~r ;v!/dr22$v/D1@bU8~r !/2#2

2bUn~r !/2%y~r ;v!50. ~23!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Sincev→` andq(r ;v) rapidly decays from 1 to 0 nearr
5a, the appropriate solution of Eq.~23! has the form,

y~r ;v!5e2~v/D !1/2~r 2a!@y0~r !1~v/D !21/2y1~r !1¯#.
~24!

Inserting Eq.~24! into Eq. ~23! and solving the resulting
equations order by order, it is easy to findy0(r )51. Then,

2@dq~r ;v!/dr# r 5a5~v/D !1/22bU8~a!/21¯. ~25!

The parameter,

g5
~w/D !1/2

2bU8~a!/2
~26!

measures the separation of time scales.

IV. APPLICATION TO THE GAUSSIAN CHAIN

For a Gaussian chain, the potential of mean force for
interresidue distance is given by

e2bU~r !5r 2e23r 2/2^r 2&. ~27!

The minimum of the potential is located at

r m5~2^r 2&/3!1/2 ~28!

and the outer boundary is at infinity. When^r 2&1/2;r m@a,

E
a

`

e2bU~r !dr5E
a

`

r 2e23r 2/2^r 2&dr

'E
0

`

r 2e23r 2/2^r 2&dr5~p/6!1/2^r 2&3/2/3,

and

E
a

r m
ebU~r !dr5E

a

r m
r 22er 2/r m

2
dr

5E
1/r m

1/a

er 2/r m
2
d~1/r !

5~ea2/r m
2
/a2e/r m!1~2/r m

2 !E
a

r m
er 2/r m

2
dr'1/a.

~29!

Equation~9! for the ‘‘ungated’’ rate constant then reduces
Eq. ~1!, the SSS result.

The mean square of the end-to-end distance fo
Gaussian-chain is proportional to the sequence separation,

^r 2&5nbeff
2 . ~30!

The effective bond lengthbeff for a denatured protein chai
depends on the total numberN of residues and increase
from 6 to 8.5 Å asN increases from 20 to 100.16 ^r 2&1/2

5n1/2beff526 Å for beff56 Å andn519 and 67 Å forbeff

58.5 Å andn562. With D5531027 cm2/s anda54 Å,
Eq. ~1! predictsk54.73106 and 2.83105 s21 for the above
two values of̂ r 2&1/2. These estimated values ofk are com-
parable to the measured rates of 7.23106 s21 for the end-to-
end contact formation of a peptide withn5197b and;105

s21 for the contact formation between the heme attached
His18 and Met80 in cytochromec.6
Downloaded 08 Jan 2003 to 144.174.142.35. Redistribution subject to A
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The slope of the potential atr 5a is given by

2bU8~a!5~2/a!~12a2/r m
2 !. ~31a!

When r m@a, 2bU8(a)'2/a and the time-scale separatio
parameter defined by Eq.~26! is

g~a2/Dt!1/25~tD /t!1/2, ~31b!

wheretD5a2/D is the average time to traverse a distance
a by interresidue diffusion. As noted in the Introduction,tD

is in the range of nanoseconds, whereast is in the range of
picoseconds.

Using Eqs.~25!, ~27!, ~29!, and ~31! in Eq. ~18b!, we
find

k~v!5g115~tD /t!1/211. ~32!

The rate constant for contact formation is

k

kg

511
vA2

vA1@~tD /tA!1/211#
1

vB2

vB1@~tD /tB!1/211#

1
vA2vB2

vA1vB1@~tD /tA1tD /tB!1/211#
. ~33!

When vA2 /vA1 and vB2 /vB1@1, the second and third
terms on the right-hand side of Eq.~33! are much smaller
than the last term. IfvA2 /vA15vB2 /vB1515, argument
based on the equilibrium populations of the native conform
tions would predictkg to be smaller thank by 256-fold. In
contrast, Eq.~33! predicts a value ofkg that is smaller thank
by just sevenfold iftD /tA5tD /tB51000.

V. IMPLICATIONS FOR PROTEIN FOLDING

The formation of a native contact between two residu
in protein folding requires the residues to be in their nat
conformations. The theory developed here makes it clear
both the equilibrium probabilities of the native conform
tions and the time scales of the transitions between the na
and non-native conformations are important in determin
the contact formation rate. In particular, the slowing down
contact formation by the small probabilities for the residu
to be in their native conformations is much less than wha
expected from an equilibrium argument, thanks to the se
ration of time scales between local conformational tran
tions and interresidue diffusion.

Both in the present model and in the scenario leading
Levinthal’s paradox, the searches for the ‘‘native structu
by the protein chain are totally random. However, there
crucial differences in chain topology and dynamics. In t
Levinthal-paradox scenario, the protein is a set of indep
dent residues, thus the formation of any substructure is in
pendent of chain separation of the residues involved. In c
trast, in the model here, the mean time to form a nat
contact increases with sequence separation. In addition,
ferent time scales are explicitly built in the present mod
but there is only one time scale in the Levinthal-parad
scenario. What rescues protein folding from Levintha
paradox is cooperative interactions between the residue
the present model such cooperative interactions are m
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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fested by the deep potential well at contact distance~see Fig.
1! when both residues happen to be in their native confor
tions.

The present theory extends the SSS work by explic
accounting for local conformational transitions. As such,
SSS theory is perhaps more appropriate for the formatio
‘‘nonspecific’’ contacts, such as those between the heme
tached to His18 and other ligand residues in cytochromc
~Refs. 5 and 6! or between the ends of a short peptide.7 The
present theory, on the other hand, may be applied to s
the formation of specific, native contacts, such as those
b-hairpin1,2 or a coiled-coil.3 The rate for forming the end
to-end contact of a 11-residue peptide has been measur
be;1.53107 s21,7 which is just what is predicted by Eq.~1!
for D5531027 cm2/s, a54 Å, and^r 2& given by Eq.~30!
with beff55.5 Å ~see Ref. 16! andn510. On the other hand
the rate of forming ab-hairpin, as monitored by the quench
ing of the fluorescence of a Trp residue upon contacting
opposite strand (n;10), is only 3.33105 s21.2 The 45-fold
slow down is easily rationalized if both sides of the hairp
must prearrange into locally native structures before
fluorescence-quenching contacts between the Trp residue
the opposite strand can be formed. According to Eq.~33!, a
value of k/kg545 is obtained ifvA2 /vA15vB2 /vB1544
andtD /tA5tD /tB51000. There has been a flurry of rece
efforts to modelb-hairpin formation.17

Within the present model, the equilibrium constant is

Kg5
kg

kg2

5
f nn*a2da

a e2bU~r !dr

*a
Re2bU~r !dr

, ~34!

wherekg2 is the rate constant for breaking the native co
tact, f nn5vA2vB2 /vAvB is the equilibrium probability for
both residues to be in the native conformations, andda is the
range of relative distance between the residues in
‘‘folded’’ state. When the potential of mean force is given b
the Gaussian-chain model, the contact breaking rate is

kg25
kg

k

Da

f nn*a2da
a e2bU~r !dr

. ~35!

Equation~35! shows thatkg2 is independent of the potentia
of mean force forr .a. In particular,kg is affected by the
sequence separation of the two residues~i.e., loop length! but
kg2 is not.

Grantcharovaet al.18 investigated the association o
structural elements along the folding pathway of the src S
domain. Mutagenesis has suggested that the contact bet
the distal hairpin and the diverging turn~which are con-
nected by the n-src loop! is formed in the folding transition
state. Upon inserting 10 glycines in the n-src loop, the fo
ing rate is decreased by fourfold but the unfolding rate d
not change at all. These results are consistent with
present model for contact formation.

The approach here based on a simple model com
ments molecular dynamics simulations of conta
formation19 and other protein folding processes.17 In particu-
lar, the simulations can generate parameters~e.g., the diffu-
sion constant and the transition rates between native
Downloaded 08 Jan 2003 to 144.174.142.35. Redistribution subject to A
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non-native local conformations!. The model, on the othe
hand, may provide a framework for analyzing the simulati
results.

The present theory may be viewed as a generalizatio
the diffusion-collision model introduced by Karplus an
Weaver.20–22A very important difference is that a potential o
mean force is introduced in the present theory. In particu
the entropy of the chain connecting the two contact-form
residues gives rise to such a potential of mean force. In c
trast, in the Karplus–Weaver approach, the chain is simpl
supply the outer boundary and the residues otherwise
dergo free diffusion. Karplus and Weaver22 essentially con-
sidered the situation where only one residue~or micro-
domain in their language! undergoes conformationa
transitions, using an expression derived by Bashford.23 It is
more appropriate to treat both residues as independently
dergoing conformational transitions, as done in the pres
theory.

The present theory can be extended in several way
more realistically model the formation ofb-hairpins or
coiled-coils and protein folding. For example, a stable nat
contact may require more than one residue on each s
Formation of one native contact may serve as the nucleus
or otherwise facilitate contact formation of nearby residu
A protein chain may attempt to form more than one nat
contact,24 resulting in competition of different pathways. Th
chain entropy may not be well described by the Gauss
model.16,25 These effects will be studied in the future.
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APPENDIX: DERIVATION OF EQ. „19…

Here I derive Eq.~19!, the expression for the rate con
stant of contact formation between two residues when b
of them undergo conformational transitions. The conform
tions of the two residues will be represented by subscr
such as ‘‘nu, ’ ’ which means residues A and B are in th
native and non-native conformations, respectively. The tr
sition matrix for the four combinations of residue conform
tions ~i.e., ‘ ‘ nn, ’ ’ ‘ ‘ un, ’ ’ ‘ ‘ nu, ’ ’ and ‘‘ uu’ ’) now reads

W̃5F vA21vB2 2vA1 2vB1 0

2vA2 vA11vB2 0 2vB1

2vB2 0 vA21vB1 2vA1

0 2vB2 2vA2 vA11vB1

G .

~A1!

After introducing four new variables,

t~r !5 f nntnn~r !1 f untdn~r !1 f nutnu~r !1 f uutuu~r !,
~A2a!

D~r !5tnn~r !2tun~r !2tnu~r !1tuu~r !, ~A2b!
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tA~r !5 f Bn@tnn~r !2tun~r !#1 f Bu@tnu~r !2tuu~r !#,
~A2c!

tB~r !5 f An@tnn~r !2tnu~r !#1 f Au@tun~r !2tuu~r !#,
~A2d!

it can be shown

L†t~r !521, ~A3a!

L†D~r !2~vA1vB!D~r !50, ~A3b!

L†tA~r !2vAtA~r !50, ~A3c!

L†tB~r !2vBtB~r !50. ~A3d!

The solutions for Eq.~A3! are

Dt~r !5C1E
a

r

ebU~r !E
r

R

e2bU~r 8!dr8dr, ~A4a!

D~r !5D~a!q~r ;vA1vB!, ~A4b!

tA~r !5tA~a!q~r ;vA!, ~A4c!

tB~r !5tB~a!q~r ;vB!. ~A4d!

The four constantsC, D(a), tA(a), andtB(a) can be deter-
mined by the absorbing condition fortnn(r ) and reflecting
conditions fortun(r ), tnu(r ), andtuu(r ) at r 5a. In particu-
lar,

C5ebU~a!E
a

R

e2bU~a!drF vA2

2vA1q8~a;vA!

1
vB2

2vB1q8~a;vB!
1

vA2vB2

2vA1vB1q8~a;vA1vB!
G .

~A5!

Averaging Eq.~A4a! over an equilibrium distribution of ini-
tial distances leads to Eq.~19!.
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