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Theory for the rate of contact formation in a polymer chain
with local conformational transitions
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| derive an expression for the rate of contact formation between two residues in a polymer chain
when both residues undergo native to non-native conformational transitions. A contact can only
form when the two residues are brought into contact by interresidue diffusion and are in the native
conformations at the same time. The entropy of the chain connecting the two residues are accounted
for by the potential of mean force for the interresidue distance. Both the equilibrium probabilities of
the native conformations and the time scales of the transitions between the native and non-native
conformations are important in determining the contact formation rate. For protein residues,
transitions between native and non-native conformations occur in the picoseconds time scale. In
comparison, the average time for traversing the distance of a few A by interresidue diffusion is in
the nanoseconds time scale. This separation of time scales between residue conformational
transitions and interresidue diffusion ensures that the rate of contact formation is much higher than
what is expected from the equilibrium probability for both residues to be in the native
conformations. ©2003 American Institute of Physic§DOI: 10.1063/1.1531588

I. INTRODUCTION tuations are modeled as stochastic transitions between native
and non-native conformations,

Contact formation is an elemental step in protein fold-
ing. The formation of a nonlocal native contact requires both
large-scale motion of the polypeptide chain as well as local
conformational rearrangements. In this paper, | present a
simple theory for the rate of contact formation which ac-yt js assumed that, when diffusion brings the two residues
counts for the large-scale motion of the polypeptide chain byggether, they immediately form the native contact if both of

diffusion and local rearrangements as stochastic transitionfiem happen to be in their native conformations. For future
between native and non-native conformations. The theoryeference, | define the relaxation time of the conformational

may be applied to study the kinetics @gkhairpin*? and  transitions as
coiled—coif formation and have implications for protein

Native‘:: Non-Native. (2

@

folding in general. =(w,tw_ ) =0 L ©)
The starting point of the present theory is the work of
Szabo, Schulten, and Schulté8SS.* SSS calculated the Langevin and molecular dynamics simulations show that

rate of contact formation in a polymer chain as the inverse othe relaxation time for backbone and side chain conforma-
the mean first passage time for diffusion toward the contactional fluctuations are in the order of 1-10%<° This time
distancea in the potential of mean force of the end-to-end scale is much shorter than the average time to traverse the
distance,r. For a Gaussian chain witfr?)¥2>a, the rate  distance of a few A by interresidue diffusion with a diffusion

constant was found to be constant~10"° cnm?/s, which is a few nanoseconds. The
separation in time scales between local conformational tran-
k=3(6/m)YDa/(r2)%?, (1)  sitions and interresidue diffusion has a crucial consequence.

The slowing down of contact formation by the small prob-
whereD is the diffusion constant. This result has been usedbilities for the residues to be in their native conformations is
to model contact formation in cytochroneg(Refs. 5 and much less than what is expected from an equilibrium argu-
and in short peptides. ment. This outcome is reminiscent of the effect of a stochas-

The formation of a native contact between two residuesic gate on ligand binding raté$*
in a protein requires them to have specific backbone and side |n Sec. I, | will derive the general expression for the
chain torsional angles, which are reached through local conate of contact formation in a polymer chain. The results in
formational fluctuations. This key fact is recognized in thethe limits of slow and fast local conformational transitions
present theory. For simplicity, the local conformational fluc- are then presented in Sec. III. This is followed by specializa-
tion of the theory to a Gaussian chain in Sec. IV. Finally,
aTel: (8500 644-7052: Fax: (850) 644-0098; Electronic mail: IMPplications of the present theory for protein folding are dis-
hxzhou@csit.fsu.edu cussed in Sec. V.
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U@ Integrating Eq.6) with an absorbing boundary condition at
r=a [see Eq(5)] and a reflecting boundary condition at the
outer boundary condition at the outer boundaryR, it is

A B found

r R ,
Dr(r):f eﬁu“)f e AYrdr dr. (7)
a r

T

Averaging over an equilibrium distribution of initial dis-

tances and equating the inverse of the mean first passage
time as the rate constant leads to
R R R , 2
FIG. 1. (a) The contact formation modelb) The potential of mean force. ksss= Df e AYNdr J’ ehun f e AYdr’ | dr.
The deep well inside the contact distancea ensures that the contact is a a r

formed instantaneously if both residues are in the native conformations. t)

@ ®)

An alternative is the original approach of Kramérfor
Il. GENERAL THEORY the rate of diffusive barrier crossing. In this approach, the
. . _ rate constant is the constant flux from the steady-state prob-
I consider the contact formation between two residues, Aypility density with values set to zero ata and the equi-

and B, in a polymer chain illustrated in Fig. 1. The interresi-|iprium value at the bottom of the potential wel=r .13
due distancer, will be the reaction coordinate. When the The result i&*

two residues reach the contact distargdf both of them
. . : . ) N R ,
happen to be in their native conformations, short range inter ke=D J’ e*ﬁu“)er’ meBU g ©
actions(e.qg., hydrophobic and van der Waals interactions and a a
hydrogen bondingare supposed to provide a deep potential
well, such that the residues form a native contact instantas 56 residue undergoing conformational

neously. _ _ _ . o transitions
Outside the contact distance, interresidue motion is mod- _ _
eled as diffusion under the potential of mean fokdér). Now consider the case where residue B fluctuates be-

The potential of mean force is assumed to have a singléveen native and non-native conformations. The transitions
minimum at a distance,, betweerr =a and an outer bound- between the two are assumed to be stochastic prockseses
ary atr =R, which can be infinity. The probability density Ed- (2)]. Let the probability densities atwith residue B in
p(r,t) in r is governed by the Smoluchowski equation, ~ the native (1) and non-native ) conformations be,(r,t)
andp,(r,t), respectivelyp,(r,t) andp,(r,t) will be repre-
ap(r,t) DiefﬁU(r)ieBU(r)p(r,t)Eﬁp(r’t), (4)  sented by the vectqs(r,t). Then,

at or or

ap(r,t)/at=Lp(r,t)—Wp(r,1), 10
where=(kgT) . Note that a geometric factof normally p(r.t) p(r:t p(rt (109

appearing in Eq(4) is absorbed by the potential of mean where
force. Starting from an equilibrium distribution

e PV [Re=AUNdr,  the total probability P(t) W
=f§p(r,t)dr will decrease with time since contact pairs
may be absorbe@modeling formation of the native contact

If P(t) decays exponentially, the formation of the native
contact can be described as a rate process and the exponent (4 )=, (113
gives the rate constant.

w_ w4

(10b)

—w_ w+

The inner boundary conditions are

A. Both residues locked in native conformations =0. (11b

r=a

1%
e pry

Let us first consider the simpler case where the two resi-
dues are locked in their native conformations. Then at therhat is, the boundary is absorbing fpy, but reflecting for
contact distance, p,. The outer boundary is reflecting for both(r,t) and

p(a,1)=0. (5)  PulrD): . . .

o _ The mean first timer,, ,(r) starting from the native or
This is the problem dealt with by SSS. These authors calcungn-native conformation satisfies

lated the rate constant as the inverse of the mean first passage

time. Let me briefly summarize this approach. The first pas- LI —WTs(r)=—1, (12
sage timer(r) starting from distance satisfies the joint ~ ~ o
equation, whereW' is the transpose dfV. Let the equilibrium prob-
abilities of the native and non-native conformations fije
DeBU(’)ie‘ﬁu(”ir(r)zﬁr(r)= 1 ©6) andf,, which arew_/w andw, /», respectively. With two
dr dr ' new variables,

Downloaded 08 Jan 2003 to 144.174.142.35. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



2012 J. Chem. Phys., Vol. 118, No. 4, 22 January 2003
(1) =fan(r) + fomu(r), (13a
A(r)=7,(r)—7,(r), (13b
Eq. (12) is transformed to
Lrr(r)=—1, (149
LTA(r)— wA(r)=0. (14b)

A function that plays a critical role in the present paper is

defined by
LTg(r; @)~ wq(r;)=0 (15)

with g(a) =1 and a reflecting boundary conditionrat R. It
is obvious

A(r)=A(a)q(r;w). (163
Integrating Eq.(143), it is found
r R
DT(F)=C+f eBU“)f e PUdr dr. (16b)
a r

Using the boundary conditions in E(L1), the constan€ is
determined as
A

B R
C= 2 epV@ | e BUGr/[ —dq(riw)/dr],_,. (17)

(OFS

Averaging over an equilibrium distribution of initial dis-

Huan-Xiang Zhou

Where (OF N wA++ wp-= 1/TA and wg= wB++ wpg-= 1/TB .
The derivation is given in the Appendix.

Ill. SLOW AND FAST LOCAL CONFORMATIONAL
TRANSITIONS

The two limits where the relaxation timeg and g of
the local conformational transitions are extremely long or
short are of particular interest. Whem, and rg— (i.e.,
w=w,, wg, Or wpa+wg—0), q(r;w) can be expanded in
powers ofw,

q(r;@)=do(r)+ gy (r)+---. (20)

Inserting EqQ.(20) into Eg. (15 and solving the resulting
equations order by order, it is fourggy(r)=1 and

R
—De‘BU(’)dql(r)/drzf e PUgr, (21)
r
Thus to the lowest order ik, wg, andwp+ wg,
1 [OFN wp- Wp-WB—
—= + + . (22
kg Wp+Wp wp+wpg (,()A+(l)B+((1)A+ (DB)

This result has a simple explanation. Whenand 7g— o,
the fraction of chains initially having one of the residues in

tances and equating the inverse of the mean first passagige non-native conformation will be stuck in that conforma-

time as the rate constaky lead to

1 1 w_ 1
—=—t— , (183
Kg Ksss i kkx(w)
where
m
K(w)=e‘ﬁu<a)f eAVdr[ —dag(r;w)/dr],—,. (18b)
a

tion and will never have a chance to form a native contact. In
that limit the mean lifetime is infinite. As, andrg becomes
finite, these chains slowly switch to have both residues in the
native conformations, thereupon forming a native contact in-
stantaneouslyon the time scale of, and7g). In particular,

for the case where residue B is locked in the native confor-
mation (i.e., wg-/wg+=0), the equilibrium fraction of
chains with residue A in the non-native conformation is
wp-lwp, and these chains have a mean lifetime ab AL/

This function is related to the mean first passage time of @eafore residue A switches to the native conformation.

particle diffusing in the potential of mean force with an ab-
sorbing boundary at=a and a decay rate for r>a. If
ksse=ky are viewed as the “ungated” rate constant, the form

of Eq. (183 is analogous to expressions for rate constants o

bimolecular binding affected by conformational transitions
or a stochastic gaté:!

C. Both residues undergoing conformational
transitions

Generalization to the case where both residues A and

undergo conformational transitions is straightforward. Let

the transition rates between native and non-native conform
tion of residues A and B b&,-, wa+, wg-, andwg+ [See
Eqg. (2)]. The expression for the rate constant under confor
mational transitions of both residues A and B is

1 1
k ksss wa+kkkr(wa)

wp- wpg-

g wg+,Kgx(wg)

wA*wB—

, (19
wp-wg+kk(wp+ wg)

Downloaded 08 Jan 2003 to 144.174.142.35. Redistribution subject to Al

When the local conformational transitions are fas.,
w—»), theq(r;w) function will decay rapidly from 1 to 0
nearr=a. Hence[ —dq(r;w)/dr],—z— and x(w)—ce.
fn this limit, kg—Ksss: This result, again analogous to what
happens for bimolecular binding affected by conformational
transitions® or a stochastic gat®;'! can be rationalized by
the separation in time scales between interresidue diffusion
and local conformational transitions. When diffusion brings
the two residues together, the slow diffusional steps will
eave the two residues in near contact distances for a rela-
ively long time. During this period, fast transitions will have
brought the two residues into and out of their native confor-

Fnations many times. It takes only one event in which both

residues are in their native conformations simultaneously in

order for the native contact to form.

The separation of times scales between interresidue dif-
fusion and local conformational transitions can be made
more concrete. It is easier to work with a new variable
y(r;w)=eflV@-V12q(r: ). Equation(15) becomes

d?y(r;w)/dr’—{w/D+[BU'(r)/2]?

—BUNr)/2}by(r;w)=0. (23
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Sincew— andq(r;w) rapidly decays from 1 to O near
=a, the appropriate solution of E¢R3) has the form,

y(riw)=e Ay (1) + (/D) Ay (r)+ ).
(24

Inserting Eq.(24) into Eq. (23) and solving the resulting
equations order by order, it is easy to fipg(r)=1. Then,

—[dq(r;w)/dr],—,=(w/D)¥?—BU’(a)/2+---. (25
The parameter,
(W/D)llz
[PTTRY (29

measures the separation of time scales.

IV. APPLICATION TO THE GAUSSIAN CHAIN

For a Gaussian chain, the potential of mean force for the

interresidue distance is given by
e~ AU = 2g=3r72r?) (27)
The minimum of the potential is located at
Fm=(2(r?)/3)12 (28)
and the outer boundary is at infinity. Whérf)2~r >a,

fe_BU(r)dr:J r2e- 322 gy

a a
~ erze—3r2/2(r2)d r=( 77/6)1/2(r2>3/2/3,
0

and

'm m 2,2
f eﬁu(”drzf r—2e " "mdr
a

a

1l/a
= f e rnd (1)
1

I m
r
= (e¥"a—elr )+ (2Ir2) J "l ndr ~ 1/a.
a

(29
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The slope of the potential at=a is given by
—BU’(a)=(2/a)(1—a?/r?). (319

Whenr >a, —BU’(a)~2/a and the time-scale separation
parameter defined by ER6) is

y(@%D 1) V?= (751712 (31b)

whererp=a?/D is the average time to traverse a distance of
a by interresidue diffusion. As noted in the Introductiat,
is in the range of nanoseconds, whereas in the range of
picoseconds.
Using EQgs.(25), (27), (29), and (31) in Eq. (18b), we
find
k(w)=y+1=(rp/7)¥?+1. (32)
The rate constant for contact formation is

k (OF N
Lo 12
kg wA+[(TD/TA) +1]

wpg-

+
wg+[(1p/75) Y2+ 1]

Wp-Wp-
+ . (33
wA+wB+[( ™D /TA+ ™D /TB)1/2+ 1]

When wp-/wa+ and wg-/wg+>1, the second and third
terms on the right-hand side of E(83) are much smaller
than the last term. liwp-/wp+= wg-/wg+=15, argument
based on the equilibrium populations of the native conforma-
tions would predicky to be smaller thark by 256-fold. In
contrast, Eq(33) predicts a value ok, that is smaller thak

by just sevenfold ifry /7= 75/ 75=1000.

V. IMPLICATIONS FOR PROTEIN FOLDING

The formation of a native contact between two residues
in protein folding requires the residues to be in their native
conformations. The theory developed here makes it clear that
both the equilibrium probabilities of the native conforma-
tions and the time scales of the transitions between the native
and non-native conformations are important in determining
the contact formation rate. In particular, the slowing down of
contact formation by the small probabilities for the residues
to be in their native conformations is much less than what is

Equation(9) for the “ungated” rate constant then reduces to expected from an equilibrium argument, thanks to the sepa-

Eq. (1), the SSS result.

ration of time scales between local conformational transi-

The mean square of the end-to-end distance for dons and interresidue diffusion.

Gaussian-chain is proportional to the sequence sepanation

(r2y=nb% . (30)

The effective bond lengtb. for a denatured protein chain
depends on the total numbé&t of residues and increases

from 6 to 8.5 A asN increases from 20 to 106.(r2)%?
=n%h4=26 A for bz=6 A andn=19 and 67 A forbyg
=8.5 A andn=62. With D=5x10’ cnf/s anda=4 A,
Eq. (1) predictsk=4.7x 10° and 2.8<10° s ! for the above
two values of(r?)Y2. These estimated values kfare com-
parable to the measured rates of>7 &° s for the end-to-
end contact formation of a peptide with=19"" and ~10°

Both in the present model and in the scenario leading to
Levinthal's paradox, the searches for the “native structure”
by the protein chain are totally random. However, there are
crucial differences in chain topology and dynamics. In the
Levinthal-paradox scenario, the protein is a set of indepen-
dent residues, thus the formation of any substructure is inde-
pendent of chain separation of the residues involved. In con-
trast, in the model here, the mean time to form a native
contact increases with sequence separation. In addition, dif-
ferent time scales are explicitly built in the present model,
but there is only one time scale in the Levinthal-paradox
scenario. What rescues protein folding from Levinthal's

s ! for the contact formation between the heme attached tparadox is cooperative interactions between the residues. In

His18 and Met80 in cytochrome®

the present model such cooperative interactions are mani-
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fested by the deep potential well at contact distaisee Fig. non-native local conformationsThe model, on the other
1) when both residues happen to be in their native conformahand, may provide a framework for analyzing the simulation
tions. results.

The present theory extends the SSS work by explicitly ~ The present theory may be viewed as a generalization of
accounting for local conformational transitions. As such, thethe diffusion-collision model introduced by Karplus and
SSS theory is perhaps more appropriate for the formation diVeaver’°~22A very important difference is that a potential of
“nonspecific” contacts, such as those between the heme atnean force is introduced in the present theory. In particular,
tached to His18 and other ligand residues in cytochr@me the entropy of the chain connecting the two contact-forming
(Refs. 5 and Bor between the ends of a short peptidEhe  residues gives rise to such a potential of mean force. In con-
present theory, on the other hand, may be applied to studyast, in the Karplus—Weaver approach, the chain is simply to
the formation of specific, native contacts, such as those in aupply the outer boundary and the residues otherwise un-
B-hairpint? or a coiled-coif® The rate for forming the end- dergo free diffusion. Karplus and Weateessentially con-
to-end contact of a 11-residue peptide has been measuredgmered the situation where only one residigg micro-
be~1.5x 10" s 1, which is just what is predicted by E¢fl) domain in their language undergoes conformational
for D=5x10"7 cnfls,a=4 A, and(r?) given by Eq.(30) transitions, using an expression derived by Bashfid.is
with bos=5.5 A (see Ref. 16andn=10. On the other hand, more appropriate to treat both residues as independently un-
the rate of forming &3-hairpin, as monitored by the quench- dergoing conformational transitions, as done in the present
ing of the fluorescence of a Trp residue upon contacting théheory.
opposite strandr(~10), is only 3.3 10° s 1.2 The 45-fold The present theory can be extended in several ways to
slow down is easily rationalized if both sides of the hairpinmore realistically model the formation oB-hairpins or
must prearrange into locally native structures before theoiled-coils and protein folding. For example, a stable native
fluorescence-quenching contacts between the Trp residue andntact may require more than one residue on each side.
the opposite strand can be formed. According to B88), a  Formation of one native contact may serve as the nucleus for
value ofk/ky=45 is obtained ifws-/wp+=wg-/wg+=44  or otherwise facilitate contact formation of nearby residues.
and /7= 7p/ 75=1000. There has been a flurry of recent A protein chain may attempt to form more than one native
efforts to modelB-hairpin formation'’ contact?® resulting in competition of different pathways. The

Within the present model, the equilibrium constant is chain entropy may not be well described by the Gaussian

modell®?° These effects will be studied in the future.
K fnnfgfﬁaei'gu“)dr

K.=—39 — (34
¥ kg JRe AU(Ndr
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“folded” state. When the potential of mean force is given by

the Gaussian-chain model, the contact breaking rate is

APPENDIX: DERIVATION OF EQ. (19)

Kg Da

T K a3 e PY0dr

a—oda

(39 Here | derive Eq(19), the expression for the rate con-

stant of contact formation between two residues when both

Equation(35) shows thakg- is independent of the potential of them undergo conformational transitions. The conforma-

of mean force for >a. In particular,ky is affected by the tions of the two residues will be represented by subscripts
sequence separation of the two resid@es, loop lengthbut ~ such as ‘hu,”” which means residues A and B are in the

Kg- is not. native and non-native conformations, respectively. The tran-
Grantcharovaet al!® investigated the association of sition matrix for the four combinations of residue conforma-

structural elements along the folding pathway of the src SH3ions (i.e., “‘nn,” ** un,” ** nu,” and * uu) now reads
domain. Mutagenesis has suggested that the contact between s _ . 0
the distal hairpin and the diverging tuifwhich are con- Pa~T 98 @At “B*
nected by the n-src logps formed in the folding transition ~ —wa- wp+T wg- 0 — wpt
state. Upon inserting 10 glycines in the n-src loop, the fold-"" — —wg- 0 wp-+ wg+ —wat
ing rate is decreased by fourfold but the unfolding rate does

0 —wg- —wa- wp+t+ o+

not change at all. These results are consistent with the

present model for contact formation. (A1)
The approach here based on a simple model compleAfter introducing four new variables,

ments molecular dynamics simulations of contact

formatiort® and other p?/otein folding process€dn particu- 7(1) = fanon(r) + fun7an(r) + faumau(r) + fUUTUU(r()AZa)

lar, the simulations can generate parameterg., the diffu-

sion constant and the transition rates between native and A(r)=7,,(r)— 7yn(r) — 7nu(r) + 7uu(r), (A2Db)
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TA(r) = feal 7an(r) = 7un(r) 1+ feul 7au(r) = 7uu(r) 1,

(A2¢)
78(1) = fanl Tan(1) = Tnu(M) 1+ faul 7un(r) — Tuu(r)%AZd)
it can be shown
Llr(r)=—-1, (A33)
LTA() = (wp+ wg)A(r)=0, (A3Db)
LT7p(r) = wa7a(1)=0, (A3c)
LT 75(r) — wgrg(r)=0. (A3d)
The solutions for Eq(A3) are
Dr(r):c+J;ef‘““)ere—ﬁU“’)dr'dr, (A4a)
A(r)=A(a)q(r;wa+ wg), (Adb)
Ta(r)=7a(2)q(r;wa), (Adc)
78(r) = 78(a)q(r; wg). (A4d)

The four constant€, A(a), 7a(a), andrg(a) can be deter-
mined by the absorbing condition fdy,(r) and reflecting
conditions forz,(r), 7,u(r), andr,,(r) atr=a. In particu-
lar,

R _
C:eBU(a)f e BU@g _ “A

a —wa+q'(a;04)

wp- Wp-Wp-

+ .
—wp+wg+q’ (8, wp+ wp)

(A5)

—wg+q'(a; wg)

Averaging Eq.(A4a) over an equilibrium distribution of ini-
tial distances leads to E@L9).
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