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Abstract

We show that sampling with a biased Metropolis scheme is essentially equivalent to using the heatbath algorithm. However, the
biased Metropolis method can also be applied when an efficient heatbath algorithm does not exist. This is first illustrated with an
example from high energy physics (lattice gauge theory simulations). We then illustrate the Rugged Metropolis method, which is
based on a similar biased updating scheme, but aims at very different applications. The goal of such applications is to locate the
most likely configurations in a rugged free energy landscape, which is most relevant for simulations of biomolecules.
Published by Elsevier B.V. on behalf of IMACS.
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1. Introduction

Consider a random variable y which is sampled with a probability density function (PDF) P(y) on an interval
[y1, y2]. The cumulative distribution function (CDF) is defined as

z = F (y) =
∫ y

y1

P(y′)dy′ and P(y) = dF (y)

dy
, (1)

where we assume thatP(y) is properly normalized so thatF (1) = 1 holds. Let us consider two popular local algorithms
to achieve this sampling of y in a Markov chain Monte Carlo process.

1.1. Heatbath algorithm (HBA)

The HBA [12] generates y by converting a uniformly distributed random number 0 ≤ z < 1 into

y = F−1(z). (2)
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We define the acceptance rate by the number of accepted changes divided by the total number of proposed moves.
Thus the acceptance rate of the HBA is always 1 (a new value of y is generated on every step). In simulations the
inversion of the CDF (1) may be unacceptably slow or the CDF itself may not be a priori known. Then one has to rely
on other approaches.

1.2. Metropolis algorithm

In the conventional Metropolis scheme [21] (for historical accounts see Ref. [17] and for a textbook treatment [5])
ynew is generated uniformly in the range [y1, y2] (we refer to this as proposal) and then accepted with probability
(accept/reject step)

pMet = min

{
1,
P(ynew)

P(yold)

}
. (3)

This process may have a low acceptance rate in the region of interest. Possible remedies are to decrease the proposal
range, which makes the moves small, or propose a move multiple times (i.e., multi-hit) Metropolis, which needs a fixed
number of hits. Both remedies are worse than an efficient HBA, which for many systems is the optimal solution in the
considered class of local algorithms.

We also note that in certain cases faster decorrelation is achieved by using an overrelaxation algorithm [13,10,1]
in which the proposed value is chosen as far as possible from the previous one. For such cases as U(1) and SU(2)
gauge theories the overrelaxation is microcanonical, i.e., P(ynew) = P(yold), thus it has to supplement Metropolis,
HBA or BMA. In a simulation one normally tunes the ratio between overrelaxation and other algorithms for optimal
performance. For instance, in a recent study of U(1) gauge theory at finite temperature [6] on large volumes one BMA
sweep was supplemented by two overrelaxation sweeps. The performance of the overrelaxation algorithm mixed with
HBA and BMA was also studied for the case of the fundamental-adjoint SU(2) lattice gauge theory [3].

1.3. Biased Metropolis Algorithm (BMA)

Hastings [19] identified proposal probabilities, which are more general than those of the conventional Metropolis
scheme, but gave no guidance whether some probabilities may be preferable over others.

If one does not propose ynew uniformly, the name Biased Metropolis Algorithm (BMA) is often used. Some biased
Metropolis simulations can be found in the literature where the bias is introduced in an ad hoc way [11,22,14,16,26].
However, it appears that the answer to the question, when to use biased Metropolis updating and when not, is far from
clear.

The biased Metropolis scheme [4,9,2] we discuss in the following makes it possible to approximate heatbath
probabilities. Like the conventional Metropolis scheme it can be constructed for more general situations than the HBA,
but it achieves the performance which is typical for an efficient HBA.

Let us discretize y into n bins as

y1 = y0 < y1 < y2 < . . . < yn = y2 (4)

where lengths of the bins are

Δyj = yj − yj−1, with j = 1, . . . , n. (5)

A BMA can then be summarized by the following steps:

• Propose a new value ynew by first randomly picking a bin jnew and then proposing ynew uniformly in the given bin.
(r1, r2 are uniformly distributed):

jnew = 1 + Int[n r1] and ynew = yjnew−1 +Δyjnewr2, (6)

where Int[n r1] denotes rounding to the largest integer ≤ n r1.
• Locate the bin to which yold belongs: find jold which satisfies the condition

yjold−1 ≤ yold ≤ yjold . (7)
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• Accept ynew with probability:

pBMA = min

{
1,
P(ynew)

P(yold)

�yjnew

�yjold

}
. (8)

pBMA in (8) differs from pMet in (3) by the bias �yjnew/�yjold .
The scheme outlined in (6)–(8) satisfies the same balance or detailed balance conditions (defined, e.g., in Ref. [5])

as the original Metropolis algorithm. The bias influences only the acceptance rate. Choosing, for example, equidistant
partitioning for y (�yj = �yk for any j, k) would turn the bias into 1 and get us back to the original Metropolis
algorithm.

So far the partitioning yj has not been introduced explicitly. A particular choice that achieves equidistant partitioning
on the CDF axis is:

j

n
= F (yj) or yj = F−1

(
j

n

)
. (9)

Let us pick a bin initially labeled j and take the limit n → ∞ so that this bin collapses into a point labeled z. This
corresponds to the limit:

n → ∞, j → ∞ so that
j

n
→ z. (10)

Also, as the CDF axis is partitioned into n bins of the size �z = 1/n, we have �z → 0 for n → ∞. In this limit

Δyj

�z
= 1

�z

(
F−1

(
j

n

)
− F−1

(
j − 1

n

))
→ dF−1(z)

dz
= 1

P(y)
(11)

holds. Then the probability of the accept/reject step (8) is

P(ynew)

P(yold)

Δyjnew

�yjold
= P(ynew)

P(yold)

Δyjnew/�z

�yjold/�z
→ P(ynew)

P(yold)

1/P(ynew)

1/P(yold)
= 1. (12)

So, in the limit of an infinitely small discretization step this BMA approaches the HBA and the acceptance rate
converges to 1. Therefore we call a BMA with a partitioning similar to (9) Biased Metropolis–heatbath algorithm
(BMHA).

2. Application to lattice gauge theories

The fundamental interactions of Nature known nowadays are the gravitational, electromagnetic, weak and strong
interactions. The last three are gauge field theories. For example, the Lagrangian of electrodynamics is invariant under
local gauge transformations that belong to the U(1) gauge group.

Description on the quantum level requires switching from the classical to the quantum point of view: all fields in
the Lagrangian of the theory are promoted from functions to operators satisfying certain (anti)commutation relations.
Then a physical observable of interest is evaluated as an action of some operator on the vacuum state of the theory.
Along these lines observables can be represented as path integrals, i.e., integrals over all possible values of the fields
that live on a four-dimensional space-time. These integrals can be evaluated using perturbation theory when they can
be expanded in series of parameters that are “small” enough to ensure convergence. Quantum Electrodynamics (QED)
provides a good example of a theory where many physical observables are calculated order by order in perturbation
theory and match experiments with high accuracy. For instance the magnetic moment of the electron is known to seven
significant digits [25].

The theory of strong interaction is Quantum Chromodynamics (QCD). The strong force is responsible for binding
fundamental constituents of matter, quarks, into protons, neutrons and other particles observed experimentally, and,
in turn, protons and neutrons into atomic nuclei. The gauge group of QCD is SU(3). As this group is non-Abelian
the theory possesses a richer structure and introduces more difficulties than QED. One of them is a non-perturbative
regime where, as the name implies the theory cannot be expanded into a series. To overcome this difficulty lattice
gauge theory was introduced by Wilson [28]. In principle QCD allows for calculations of low energy properties, as
for instance the mass of the proton, by Markov chain Monte Carlo simulations, which are suitable for calculating path
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Fig. 1. Cumulative distribution function Fα(φ) with the level map in the α– φ plane.

integrals in Euclidean space (connected by a Wick rotation to the physical Minkowski space). However, in practice
such calculation require tremendous computational resources, so that (besides Moore’s law at work) major progress
on the algorithmic front has still to be made before ultimate answers may be computed.

In the following we illustrate lattice gauge theory calculations on a simple example: The U(1) gauge group. In
Ref. [2] we have applied the same method to the SU(2) gauge group and it can also be extended to SU(3). We should
emphasize that this deals only with the pure gauge part of the theory, whereas the notorious difficulties of including
fermions in these calculations remain at the moment untouched by biased Metropolis calculations.

2.1. U(1) pure gauge theory

For the U(1) gauge group the “matrices” are complex numbers on the unit circle, which can be parameterized by
an angle φ∈ [0, 2π). After defining the theory on the links of a four-dimensional lattice the PDF

Pα(φ) = Nαe
α cos(φ) (13)

has to be sampled, where α is a parameter associated to the interaction of the link being updated with its environment.
The corresponding CDF is

Fα(φ) = Nα

∫ φ

0
dφ′ eα cos(φ′) with Fα(2π) = 1. (14)

For U(1) HBAs of type (2) were introduced in Refs. [27,20]. As F−1
α (z) is approximated one needs a repeat until

accepted (RUA) step to generate the correct distribution, although the acceptance rate is always 1.1Fα(φ) depends on
the parameter α, which incorporates the effect of interaction with the neighbors, and is a function of φ, the variable
being updated. In the following we consider U(1) gauge theory at a coupling close to the critical point for which one
finds 0 ≤ α ≤ 6. For this case Fα(φ) is plotted on Fig. 1. Contour lines on the surface represent levels where Fα(φ)
increases from 0 to 1 by a chosen constant value (in this case 1/8). Lines in the α– φ plane are projections of these
contours and constitute a level map similar to those used to encode height on maps in geography. To construct a BMHA
we need a discretized version of this level map.

Let us discretize the parameterα intom = 2n1 = 16 (n1 = 4) bins. For simplicity we choose equidistant partitioning.
Other discretizations are possible too. Then in each αi bin we discretize φ using the condition (9) with n = 2n2 = 16
(n2 = 4). In this way we achieve a discretized version of the level map at the bottom of Fig. 1, which is shown in Fig. 2.

Two two-dimensional arrays are needed: one for storing φi,j (levels themselves) and another for �φi,j = φi,j −
φi,j−1 (distances between levels). Let us assume that for a link being updated α falls into the 11th bin, so i = 11.
Finding i is achieved with an operation of the form: Int[mα/αmax] with αmax = 6. For a given αi it is straightforward
to apply BMA step (6).

1 In some of the literature the quantity 1/(average number of RUA heat bath iterations per update) is also called acceptance rate. It should not be
confused with the acceptance rate defined here.
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Fig. 2. m× n partitioning of �φi,j for U(1) at the coupling constant value discussed in the text.

The cross-section of the Fα(φ) surface by the α = α11 plane is shown in Fig. 3. To determine the bin label jold
which belongs to the (known) value φold (BMA step (7)) one may use the n2-step recursion j → j + 2i2 sign(φ − φi,j),
i2 → i2 − 1. Once jold is known it gives the length of the bin: �φi,jold and the final accept/reject step (8) can be
applied:

pBMA = min

{
1,

exp(α cos φnew)

exp(α cos φold)

�φi,jnew
0

�φi,jold
0

}
. (15)

2.1.1. Performance
In our simulations we used a finer discretization than in the figures, m = 32 and n = 128. Table 1 illustrates the

performance of the U(1) BMHA for a long run on a 4 × 163 lattice. At the used coupling the system exhibits critical
slowing down, because of its proximity to the U(1) phase transition. We used 16,384 sweeps for reaching equilibrium
and, subsequently, 32 × 20,480 sweeps for measurements. Simulations were performed on 2 GHz Athlon PCs with
the -O2 option of the (freely available) g77 Fortran compiler.

Our comparison is with the Hattori–Nakajima HBA [20] and with the conventional Metropolis algorithm [21].
A direct measure for the performance of an algorithm is the integrated autocorrelation time τint. Values of τint
are given in the Table 1 for the Wilson plaquette, 〈 cosφ�〉 (a reference physical observable whose expectation
value we use to check consistency of the algorithms). Error bars are given in parenthesis and apply to the last

Fig. 3. Discretization of the cumulative distribution function Fα11 (φ) for U(1) corresponding to the 11th bin of Fig. 2.
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Table 1
Efficiency of three algorithms for U(1) lattice gauge theory on a 4 × 163 lattice at a coupling constant value close to the phase transition value.

U(1) HBA [20] Metropolis [21] BMHA

CPU time [s] 131,111 84,951 107,985
Acceptance rate 1 (1.093 proposals) 0.286 0.972
〈 cosφ�〉 0.59113 (8) 0.59103 (16) 0.59106 (12)
τint 127 (7) 341 (26) 142 (10)

digits. They are calculated with respect to 32 bins (jackknife bins in case of τint) using the data analysis software
of [5].

In this example the CDF is known. We have shown that sampling with the BMHA is essentially equivalent to using
the HBA, but can be numerically faster, as shown here for U(1). SU(2) lattice gauge theory with the fundamental-
adjoint action is a case for which more substantial gains are achieved by using a BMHA [3]. In the next part of the
article we show how a similar biasing procedure can be used when the CDF is not known (making a HBA impossible)
and how it can be extended to a multi-variable case.

3. Application to biophysics

Simulations of biomolecules remain one of the major challenges in computational science today. Rugged free energy
landscapes are typical for such systems and conventional Metropolis updating suffers from low acceptance rates at the
temperatures of interest.

We consider biomolecule models for which the energy E is a function of a number of dynamical variables
vi, i = 1, . . . , n. The fluctuations in the Gibbs canonical ensemble are described by a probability density function
ρ(v1, . . . , vn; T ) = const exp(−βE(v1, . . . , vn)), where T is the temperature, β = 1/(kT ), and E is the energy of the
system. To be consistent with the notation of [4,9] we now use ρ(v1, . . . , vn; T ) instead of P(y) introduced in previous
one-variable example. Proposing a new variable (with the other variables fixed) from the PDF constitutes a HBA.
However, an implementation of a HBA is only possible when the CDF of the PDF can be controlled. In particular this
requires the normalization constant in front of the exp(−βE(v1, . . . , vn)) Boltzmann factor. In practice this is often
not the case. Then the following strategy provides a useful approximation.

For a range of temperatures

T1 > T2 > . . . > Tr > . . . > Tf−1 > Tf (16)

the simulation at the highest temperature, T1, is performed with the usual Metropolis algorithm and the results are used
to construct an estimator

ρ̄(v1, . . . , vn; T1)

which is used to bias the simulation at T2. Recursively, the estimated PDF

ρ̄(v1, . . . , vn; Tr−1)

is expected to be a useful approximation of ρ(v1, . . . , vn; Tr). Formally this means that BMA acceptance step (8) at
temperature Tr is of the form

PRM = min

{
1,

exp
(−βE′)

exp (−βE)

ρ̄(v1, . . . , vn; Tr−1)

ρ̄(v′1, . . . , v′n; Tr−1)

}
(17)

where β = 1/(kT ). For this type of BMA where the bias is constructed by using information from a higher temperature
the name Rugged Metropolis (RM) was given in Ref. [4].

For the following illustration we use the all-atom energy function Empirical Conformational Energy Program for
Peptides/2 (ECEPPs) [24] (and references given therein) as implemented in the Simple Molecular Mechanics for
Proteins (SMMPs) [15] program package. Our dynamical variables vi are the dihedral angles, each chosen to be in the
range −π ≤ vi < π, so that the volume of the configuration space is K = (2π)n. Details of the energy functions are
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expected to be irrelevant for the algorithmic questions addressed here. Our test case is the small brain peptide Met-
Enkephalin (Tyr-Gly-Gly-Phe-Met), which features 24 dihedral angels as dynamical variables (we use the conventions
of Ref. [15]). Besides the φ,ψ angles, we keep also the ω angles unconstrained, which are usually restricted to
[π − π/9, π + π/9]. This allows us to illustrate the RM idea for a particularly simple case.

3.1. The RM1 approximation

To get things started, we need to construct an estimator ρ̄(v1, . . . , vn; Tr) from the numerical data of the RM simu-
lation at temperature Tr. Although this is neither simple nor straightforward, a variety of approaches offer themselves
to define and refine the desired estimators.

In Ref. [4] the approximation

ρ̄(v1, . . . , vn; Tr) =
n∏
i=1

ρ̄1
i (vi; Tr) (18)

was investigated, where ρ̄1
i (vi; Tr) are estimators of reduced one-variable PDFs defined by

ρ1
i (vi; T ) =

∫ +π

−π

∏
j /= i

d vjρ(v1, . . . , vn; T ). (19)

The resulting algorithm, called RM1, constitutes the simplest RM scheme possible.
The cumulative distribution functions are defined by

Fi(v) =
∫ v

−π
dv′ρ1

i (v′). (20)

The estimate of F10, the cumulative distribution function for the dihedral angle Gly-3 φ (v10), from the vacuum
simulations at our highest temperature, T1 = 400 K, is shown in Fig. 4. For our plots in this part of the paper we use
degrees, while we use radians in our theoretical discussions and in the computer programs. Fig. 4 is obtained by sorting
all ndat values of v10 in our time series in ascending order and increasing the values of F10 by 1/ndat whenever a
measured value of v10 is encountered. Using a heapsort approach, the sorting is done in ndat log2(ndat) steps (see, e.g.,
Ref. [5]).

Fig. 5 shows the cumulative distribution function for v9 (Gly-2 ω) at 400 K, which is the angle of lowest acceptance
rate in the conventional Metropolis updating. This distribution function corresponds to a histogram narrowly peaked
around ±π, which is explained by the specific electronic hybridization of the CO–N peptide bond. From the grid shown
in Fig. 5 it is seen that the RM1 updating concentrates the proposal for this angle in the range slightly above −π and

Fig. 4. Estimate of the cumulative distribution function for the Met-Enkephalin dihedral angle v10 (Gly-3 φ) at 400 K.
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Fig. 5. Estimate of the cumulative distribution function for the Met-Enkephalin dihedral angle v9 (Gly-2 ω) at 400 K.

slightly below +π. Thus the procedure has a similar effect as the often used restriction to the range [π − π/9, π + π/9],
which is also the default implementation in SMMP.

After the empirical CDFs are constructed for each angle vi, they are discretized using the condition (9). Here we
denote differences (5) needed for the bias as

Δvi,j = vi,j − vi,j−1 with vi,0 = −π. (21)

The RM1 updating of each dihedral angle vi follows the BMA procedure (6)–(8). The accept/reject step in the vi,j
notation is

pRM1 = min

{
1,

exp(−βE′)
exp(−βE)

Δvi,jnew

�vi,jold

}
. (22)

3.2. The RM2 approximation

In Ref. [9] the RM1 scheme of Eq. (22) was generalized to the simultaneous updating of two dihedral angles. For
i1 /= i2 the reduced two-variable PDFs are defined by

ρ2
i1,i2

(vi1 , vi2 ; T ) =
∫ +π

−π

∏
j /= i1,i2

d vjρ(vj, . . . , vn; T ). (23)

The one-variable cumulative distribution functions Fi1 and the discretization vi1,j, j = 0, . . . , n are already given by
Eqs. (20) and (21). We define conditional CDFs by

Fi1,i2;j(v) =
∫ v

−π
dvi2

∫ vi1,j

vi1,j−1

dvi1 ρ
2
i1,i2

(vi1 , vi2 ) (24)

for which the normalization Fi1,i2;j(π) = 1/n holds. To extend the RM1 updating to two variables we define for each
integer k = 1, . . . , n the value Fi1,i2;j,k = k/n2. Next we define vi1,i2;j,k through Fi1,i2;j,k = Fi1,i2;j(vi1,i2;j,k) and also
the differences

Δvi1,i2;j,k = vi1,i2;j,k − vi1,i2;j,k−1 with vi1,i2;j,0 = −π. (25)

The RM2 procedure for the simultaneous update of (vi1 , vi2 ) is then specified as follows:

• Propose a new value vi1,new using two uniform random numbers r1, r2 (BMA step (6) for the angle i1):

jnew = 1 + Int[n r1] and vi1,new = vi1,jnew−1 +Δvi1,jnew r2. (26)
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• Propose a new value vi2,new using two uniform random numbers r3, r4 (BMA step (6) for the angle i2):

knew = 1 + Int[n r3] and vi2,new = vi1,i2;jnew,knew−1 +�vi1,i2;jnew,knew r4. (27)

• Find the bin index jold for the present angle vi1,old through vi1,jold−1 ≤ vi1,old ≤ vi1,jold , just like for RM1 updating
(BMA step (7) for vi1 ).

• Find the bin index kold for the present angle vi2,old through vi1,i2;jold,kold−1 ≤ vi2,old ≤ vi1,i2;jold,kold (again step (7)
but for vi2 ).

• Accept (vi1,new, vi2,new) with the probability

pRM2 = min

{
1,

exp(−βE′)
exp(−βE)

Δvi1,jnew

�vi1,jold

�vi1,i2;jnew,knew

�vi1,i2;jold,kold

}
. (28)

As for RM1, estimates of the conditional CDFs and the intervals �vi1,i2;j,k are obtained from the conventional
Metropolis simulation at 400 K. In the following we focus on the pairs (v7, v8), (v10, v11) and (v15, v16). These angles
correspond to the largest integrated autocorrelation times of the RM1 procedure and are expected to be strongly
correlated with one another because they are pairs of dihedral angles around a Cα atom.

The bias of the acceptance probability given in Eq. (28) is governed by the areas

�Ai1,i2;j,k = �vi1,j �vi1,i2;j,k.

For i1 = 7 and i2 = 8 our 400 K estimates of these areas are depicted in Fig. 6. For the RM2 procedure these areas
take the role which the intervals on the abscissa of Fig. 4 play for RM1 updating. The small and the large areas are
proposed with equal probabilities, so the a priori probability for our two angles is high in a small area and low in a
large area. In Fig. 6 the largest area is 503.4 times the smallest area. Areas of high probability correspond to allowed
regions in the Ramachandran map of a Gly residue [23].

Note that the order of the angles matters. The difference between Figs. 6 and 7 is that we plot in Fig. 6 the areas
A7,8;j,k and in Fig. 7 the areas A8,7;j,k while the labeling of the axes is identical. This means that for Fig. 6 sorting is
first done on the angle v7 (regardless of the value of v8) and then done on v8 for which the corresponding value of v7
is within a particular bin �v7, but for Fig. 7 it is first done one v8 and then on v7. In Fig. 7 the largest area is 396.4
times the smallest area.

Figs. 8 and 9 give plots for the (v10, v11) and (v15, v16) pairs in which the angle with the smaller subscript is sorted
first. The ratio of the largest area over the smallest area is 650.9 for (v10, v11) and 2565.8 for (v15, v16). The large
number in the latter case is related to the fact that (v15, v16) is the pair of φ, ψ angles around the Cα atom of Phe-4,
for which positive φ values are disallowed [23].

Fig. 6. Areas of equal probabilities (sorting v7 then v8).
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Fig. 7. Areas of equal probabilities (sorting v8 then v7).

Fig. 8. Areas of equal probabilities (sorting v10 then v11).

3.3. Performance

The RM2 scheme which we have tested adds updates for the three pairs (v7, v8), (v10, v11) and (v15, v16) after
one-angle updates for all the 24 angles with the RM1 scheme. For each pair both orders of sorting are used, so that we
add altogether six new updates.

Fig. 9. Areas of equal probabilities (sorting v15 then v16).
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Table 2
Integrated autocorrelation times for dihedral angle movements in units of 32 sweeps for Metropolis and RM1 and in units of 26 sweeps for RM2.

var 400 K (Metro) 300 K (Metro) 300 K (RM1) 300 K (RM2)

v7 5.83 (29) 103 (14) 52.9 (4.3) 24.3 (1.3)
v8 7.36 (22) 125 (12) 74.2 (6.9) 35.0 (2.7)
v9 4.39 (13) 32.0 (2.2) 14.2 (1.0) 8.84 (48)
v10 9.08 (88) 124 (12) 80.6 (6.9) 34.3 (2.8)
v11 5.39 (45) 105 (08) 72.4 (5.5) 31.3 (1.9)
v15 6.72 (28) 105 (12) 45.6 (2.7) 27.5 (4.5)
v16 9.28 (28) 133 (09) 75.2 (5.2) 33.9 (2.1)
E 4.89 (21) 50.7 (5.0) 26.0 (1.4) 14.2 (0.7)

For the angles used in the figures the performance of the RM1 and RM2 schemes is illustrated in Table 2. Integrated
autocorrelation times (computed along the lines of [5]) are compiled. The units are chosen, so that the computer
time needed with the different algorithms to achieve the same accuracy is directly proportional to the integrated
autocorrelation times of the table. At 300 K we read off that the improvement over the conventional Metropolis
algorithm is typically a factor of two for the RM1 and a factor of four for the RM2 approach. It stays about the same
at lower temperatures [9].

4. Conclusions

High energy physics and biophysics are certainly far apart in their scientific objectives. Nevertheless quite similar
computational techniques allow for efficient Metropolis simulations in either field. Cross-fertilization may go in both
directions. For instance, generalized ensemble techniques propagated from lattice gauge theory [8] over statistical
physics [7] into biophysics [18]. It appears that biased Metropolis techniques propagate in the opposite direction. It
remains to be seen whether they will indeed gain widespread acceptance.
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