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Protein folding and binding in confined spaces
and in crowded solutionsy

Huan-Xiang Zhou*
Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA

Simple theoretical models are presented to illustrate the effects of spatial confinement and macromolecular
crowding on the equilibria and rates of protein folding and binding. Confinement is expected to significantly
stabilize the folded state, but for crowding only a marginal effect on protein stability is expected. In
confinement the unfolded chain is restricted to a cage but in crowding the unfolded chain may explore
different interstitial voids. Because confinement and crowding eliminate the more expanded conformations
of the unfolded state, folding from the compact unfolded state is expected to speed up. Crowding will shift
the binding equilibrium of proteins toward the bound state. The significant slowing down in protein
diffusion by crowding, perhaps beneficial for chaperonin action, could result in a decrease in protein binding
rates. Copyright # 2004 John Wiley & Sons, Ltd.
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INTRODUCTION

The crowded environment inside the cytoplasm is very
different from the dilute solutions typically used in in vitro
studies of proteins and may significantly affect the behaviors
of protein molecules (Minton, 2000a; Ellis, 2001). In early
in vitro studies of DNA replication (Fuller et al., 1981;
Zimmerman, 1993), the addition of macromolecular crowd-
ing agents was found to be a requirement for replication.
Recently, macromolecular crowding was implicated in pro-
moting self-association of FtsZ and accelerating the rate of
amyloid formation (Rivas et al., 2000; Hatters et al., 2002).
Here simple theories are presented to provide qualitative
estimates for the magnitudes of the effects of macromole-
cular crowding and spatial confinement on both the equili-
bria and the rates of protein folding and protein–protein
binding.

The theoretical models presented here are intentionally
simple. They are devised to capture the essence of the
process (folding or binding) under study and the essential
effects of crowding or confinement, but lack realistic detail.
The simplicity of the models hopefully will give rise to an
intuitive picture for the effect of crowding and confinement.
Whenever appropriate, connections will be made between
the theoretical models and experimental data; however, the
simplicity of the models should be kept in mind.

Spatial confinement is related to but distinct from macro-
molecular crowding (Fig. 1). Both will reduce volumes
accessible to the protein molecule under study. However,
in the former case the accessible volume is confined within a
single ‘cage’, whereas in the latter case the accessible
volumes are dispersed throughout space. This distinction
brings out interesting differences in the effects on the
equilibrium and rate of protein folding.

MODELS OF FOLDING AND BINDING

The simplest model for a folded protein is a sphere, and the
simplest model for an unfolded protein is a Gaussian chain.
The folded state will be assumed to be separated from the
unfolded state by a free-energy difference �G. The effects
of confinement and crowding on the folding equilibrium
will be measured by the change in �G, ��G.

Folding rate

The process of protein folding may be viewed as the
accumulation of native contacts. Here I will use the forma-
tion of a single native contact (Zhou, 2003) to illustrate
the folding process. The treatment can be extended to the
formation of additional native contacts, which lead to
the folded state (Makarov et al., 2002; Makarov and Metiu,
2002).

Consider the contact formation between two residues
from the unfolded chain (see Fig. 2). The unfolded protein
is modeled as a Gaussian chain, so the probability density
for finding the two residues at a distance r is

P rð Þ ¼ 3=2� <r2>
� �3=2

exp �3r2=2 <r2>
� �

ð1aÞ
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where <r2> is the mean square distance. <r2> has a linear
dependence on the number of peptide bonds separating the
residues,

<r2> ¼ nb2 ð1bÞ

where b is an effective bond length. An equivalent potential
giving rise to the same equilibrium distribution as P rð Þ is
given by

exp ��U rð Þ½ � ¼ P rð Þ ð2Þ

where � ¼ kBTð Þ�1
.

Let us first assume that every encounter between the
residues leads to productive contact formation. The problem
of contact formation is then identical to the problem of a
Brownian particle moving in an potential U(r) and being
absorbed at the contact distance r¼ a, provided the relative
motion of the residues can be described by diffusion.
According to Kramers (1940), the rate constant is

kf0 ¼ D

Z R

a

exp ��Uð Þ4�r2 dr

Z rm

a

exp �Uð Þ 4�r2
� ��1

dr

�

where D is the relative diffusion constant, R is the maximum
inter-residue distance, and rm is the distance at which
4�r2U rð Þ is minimal. Specialization to a Gaussian chain
leads to (Szabo et al., 1980)

kf0 ¼ 3 6=�ð Þ1=2
Da= <r2>3=2 ð3Þ

The formation of a native contact requires that the two
residues are in their correct local conformations. Assuming
that the transitions into and out of the correct local con-
formation of each residue are rate processes and the transi-
tions of the two residues are independent, then the rate
constant of native contact formation is smaller than k0

f by

kf0

kf

¼ !A�!B�

!Aþ!Bþ aD�1=2 !Aþ þ !A� þ !Bþ þ !B�ð Þ1=2þ1
h i

ð4Þ

where !þ and !� are the transition rates into and out of the
correct local conformation of a residue (A or B).

Binding equilibrium constant

Now consider the binding of two rigid proteins modeled as
spheres [Fig. 3(A)]. If the complex of the two proteins is
held together by a strong short-range inter-protein potential
U(r), then the binding constant is given by (Shoup and
Szabo, 1982)

Ks ¼
Z r�

a

exp ��U rð Þ½ �4�r2dr ð5aÞ

where a is the contact distance and r� is the upper boundary
defining the bound state. The subscript ‘s’ signifies that the
result holds for the spherical geometry.

A protein complex is stereospecific [Fig. 3(B)]. That is,
the complex is considered formed only if strict constraints
on the relative translation and rotation of the two proteins
are fulfilled. Let the relative displacement vector be r and
the rotational angles of the two proteins be collectively
denoted as XA and XB, then the binding constant is

K ¼
Z
�

exp ��U r;XA;XBð Þ½ � d3r d3XAd3XB= 8�2
� �2

ð5bÞ

where � represents the configurational space of the bound
state.

Binding rate

The classical result of Smoluchowski (1917), ks ¼ 4�Da,
gives the rate constant for the instantaneous coagulation of
two spherical particles at a contact distance a. The particles
freely diffuse with a relative diffusion constant D (without
the influence of a long-range potential). For future refer-
ence, it is noted that the above Smoluchowski result is for

Figure 1. The contrast between (A) confinement and (B) crowd-
ing. In confinement a protein chain is restricted to a single cage,
but in crowding the protein’s accessible volumes are dispersed
throughout space.

Figure 2. (A) The formation of a contact between two residues
(represented as two small spheres) along a protein chain. (B) The
equivalent potential U(r) giving rise to the equilibrium distribu-
tion P(r). The labeled distances are: a, the contact distance (at
which the contact starts to be stabilized by short-range interac-
tions); rm, distance at which 4�r2U(r) is minimal; and R, the
maximum distance between the two residues allowed by the
protein chain.

Figure 3. Models for the bound state of two binding proteins. (A)
Spherical model. (B) Stereospecific model.
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the steady state, when the supply of reactant pairs by
diffusion is exactly depleted by coagulation. Suppose initi-
ally there is an equilibrium distribution (which is uniform
in the present case). Then at time t the reactive flux,
which becomes the Smoluchowski rate constant at steady
state, is

ks tð Þ ¼ 4�Da 1 þ a= �Dtð Þ1=2
h i

ð6Þ

Under the influence of a potential U(r), Debye (1942)
derived the following result for the steady-state binding
rate constant:

ks ¼ D

Z 1

a

exp �U rð Þ½ � 4�r2
� ��1

dr

�

In general, predicting the effect of a potential on the rate
constant for stereospecific binding is difficult. However,
when the range of the potential is long relative to the size
of the configurational space of the bound state, a simple
approximate formula has been obtained for the diffusion-
limited binding rate constant (Zhou et al., 1997; Zhou,
1997):

k ¼ k0 <exp ��Uð Þ>� ð7Þ

where k0 is the rate constant in the absence of the potential
and < � � � >� signifies averaging over the outer boundary of
the bound state.

SHIFT OF FOLDING EQUILIBRIUM BY
CONFINEMENT AND CROWDING

Confinement and crowding restrict the motional freedom of
a protein molecule. If the unfolded state and folded states
are affected to different extents, then the folding equilibrium
will be shifted. For an unfolded chain, the probability
density G x; x0; nð Þ that the chain starting at position x0

will end at position x after n peptide bonds satisfies a
diffusion equation (Casassa, 1967; Doi and Edwards, 1986)

@G x; x0; nð Þ
@n

¼ b2

6
r2G x; x0; nð Þ ð8Þ

The discrete variable n, treated as continuous (a good
approximation for chains with residue number N � 1),
plays the same role as time t in the diffusion of a Brownian
particle with a diffusion constant D ¼ b2=6. The equiva-
lence of an unfolded chain and a Brownian particle stems
from the fact the probability densities for both problems are
Gaussian [eq. (1a)], with the mean square distance propor-
tional to the chain separation in the former [eq. (1b)] and
the lapsed time in the latter. Since the chain cannot
cross any obstacle (e.g. a crowding macromolecule) or the
walls of a confining cage, an absorbing boundary condition
G x; x0; nð Þ ¼ 0 applies. The confining cage or crowding
macromolecules serve to eliminate conformations
otherwise available to the unfolded chain. The fraction fu
of chain conformations that do not cross any boundaries is
given by

fu ¼
Z

d3x

Z
d3x0G x; x0;Nð Þ=V ð9Þ

where the integration is over the whole volume V of the
confining cage or the solution (in the case of crowding).

Confinement

The diffusion equation [eq. (8)] subject to an absorbing
boundary condition can be solved for a number of sym-
metric confining cages (Casassa, 1967; Zhou and Dill,
2001). Results for the fraction of accessible conformations
are

fu ¼ 8

�2

X
k¼1;3;5;...

1

k2
exp ��2R2

gk
2=s2

� �

between two parallel walls at separation s

¼ 6

�2

X
k¼1;2;3;...

1

k2
exp �4�2R2

gk
2=d2

� �

in a sphere with diameter d

¼ 32

�2

X
k¼1;3;5;...

1

k2
exp ��2R2

gk
2=h2

� �

�
X

k¼1;2;3;...

1

x2
k

exp �4R2
gx

2
k=d

2
� �

in a cylinder with diameter d and height h

where Rg ¼ ðNb2=6Þ1=2
is the radius of gyration of the

unfolded chain and xk are the roots of the Bessel function
of the first kind of order zero. In the case of confinement, the
fraction fu of accessible conformations is the partition
coefficient of the unfolded chain.

The folded state, here modeled as a rigid sphere, is also
restricted by confinement. Specifically, Vacc, the volume
accessible to the center of the folded protein is reduced
from the volume V of the confining space. Let ff ¼ Vacc=V .
In particular,

ff ¼ 1 � df=s; between two parallel walls at

separation s

¼ 1 � df=dð Þ3; in a sphere with diameter d

¼ 1 � df=hð Þ 1 � dN=dð Þ2; in a cylinder with

diameter d and height h

where df is the diameter of the folded protein. The net effect
of confinement on the folding free energy is

��G ¼ �kBT ln ff=fuð Þ ð10Þ

The results for ��G by confinement in cubic and sph-
erical cages are shown in Fig. 4(A). Stabilization in excess
of 15 kBT (�9 kcal/mol) is predicted.

Experimental evidence for such dramatic stabilization
has indeed been presented. Eggers and Valentine (2001)
encapsulated �-lactalbubin in the pores of silica glass and
observed an increase of over 30 �C in the melting tempera-
ture.
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Crowding

The equivalence between an unfolded chain and a Brownian
particle has already been noted. The problem of an unfolded
chain crowded by macromolecules also has a well-known
counterpart, i.e., the problem of a Brownian particle being
trapped by static absorbing traps. In the trapping problem,R

d3xG x; x0;Nð Þ maps to the survival probability of the
Brownian particle. The additional integration over x0 to
obtain fu [eq. (9)] is equivalent to averaging over different
realizations of trap distributions. Thus fu is the same as the
survival probability in the trapping problem at an equivalent
time t ¼ N.

Let the concentration of the crowding macromolecules,
or, equivalently, traps, be c. When the traps are modeled as
spheres, then the Smoluchowski results apply. For short to
moderate times, the survival probability S tð Þ of a Brownian
particle is given by [eq. (6); Szabo et al., 1988]

� ln S tð Þ ¼ c

Z t

0

dt0ks t0ð Þ ¼ 4�Dacct 1 þ 2ac �Dtð Þ½ ��1=2

ð11aÞ

where ac is the radius of traps or crowding macromolecules.
Theory (Nieuwenhuizen, 1989) and simulations (Barkema
et al., 2001) suggest that eq. (11a) is accurate up to
extremely small values of S tð Þ. Departure from the
Smoluchowski theory occurs at around S tð Þ ¼
exp �6:68=�1=2

� �
, where � ¼ 4�a3

cc=3 is the volume frac-
tion of traps. For example, at � ¼ 0:25, eq. (11a) is expected
to hold up to � ln S tð Þ ¼ 13:4.

Mapping eq. (11a) to the problem of a Gaussian chain
crowded by spherical macromolecules (D ¼ b2=6 and
t ¼ N), one finds

� ln fu ¼ 3�y2 1 þ 2=�1=2y
� �

ð11bÞ

where y ¼ Rg=ac. At y¼ 1, � ln fu never exceeds the upper
limit of 13.4 for the validity of eq. (11b). At y¼ 2, 3, and 4,
the range of validity of eq. (11b) extends to � = 0.50, 0.32,
and 0.23, respectively. These results suggest that eq. (11b)
will be reliable under conditions of biological interest.

The effect of macromolecular crowding on the unfolded
chain was studied by Minton (2000b) in a heuristic
treatment, based on modeling the unfolded protein as an
expanded hard sphere [Kinjo and Takada (2002a, b, 2003)
have also used an expanded-sphere model for the unfolded
state]. Minton’s treatment for the effect of crowding on the
folded protein, based on the scaled-particle theory, ap-
pears far more realistic. This treatment for the folded state
is adopted here. Crowding affects the folded protein
because many of the placements of the protein will not
be allowed due to overlap with the crowding molecules. In
physical chemistry, the inverse of the fraction, ff , of
allowed placements is called the activity coefficient of
the folded protein. When both the folded protein and the
crowding macromolecules are modeled as spheres, the
scaled-particle theory predicts (Lebowitz and Rowlinson,
1964)

� ln ff ¼ � ln 1 � �ð Þ þ 3zþ 3z2 þ z3
� �

�= 1 � �ð Þ
þ 9z2=2 þ 3z3
� �

�= 1 � �ð Þ½ �2 þ 3z3 �= 1 � �ð Þ½ �3

where z ¼ df=2ac. If the concentration and radius of the
macromolecules are in g/l and Å, respectively, then
� ¼ 2:52 � 10�3 � a3

cc=Mc where Mc is the molecular
weight of the macromolecules.

As illustration, Fig. 4(B) displays the effect of crowding by
ribonuclease A on the folding free energy of �-lactalbumin.
The relevant parameters for this case are: Rg ¼ 30 Å,
df=2 ¼ 17:2 Å, ac ¼ 15:4 Å, and Mc ¼ 17 000. When the
crowder concentration is increased, the difference between
� ln fu and � ln ff increases to a maximum (to �0.7,
corresponding to ��G	�0.4 kcal/mol at room tempera-
ture) at c 	 200 g/l.

The effect of crowding on protein stability predicted by
the current model is rather modest. This finding appears to
rationalize experimental observations on macromolecular
crowding. van den Berg et al. (1999) studied the refolding of
oxidized hen lysozyme from 8 M urea or 6 M guanidine in the
presence of crowding agents. The yields of correctly folded
protein were hardly affected by the crowding agents. Only at
crowder concentrations greater than 250 g/l did the ref-
olding yield decreased by �10%. Qu and Bolen (2002)

Figure 4. Effects of (A) confinement and (B) crowding on the folding free energy. The dimensions of the
folded and unfolded protein are: df/2¼17.2 Å and Rg¼30 Å. (B) Effect of crowding on the folding stability. In
(A) black and red curves represent results in a cubic and a spherical cage, respectively. The value of��G for
a cubic cage is three times that for two parallel walls. In (B) the crowding macromolecules have a radius
ac¼ 15.4 Å and a molecular weight Mc¼17000.
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measured an increase of 0.9 kcal/mol in the unfolding free
energy of a ribonuclease T1 variant by 300 g/l of dextran.
Sasahara et al. (2003) recently studied the thermal unfolding
of hen lysozyme in the presence of dextran. Even at 300 g/l
of dextran, the melting temperature increased by just 2.5 �C.
Recent in vivo experiments by Ghaemmaghami and Oas
(2001) and by Ignatova and Gierasch (2004) showed that
stabilities of monomeric lambda repressor and cellular
retinoic acid-binding protein I within the cell are the same
as those measured in simple buffers in vitro.

In macromolecular crowding, the folded protein and the
unfolded protein apparently are restricted to similar extents.
On the other hand, confinement has a modest effect on the
folded protein but a significant restrictive effect on the
unfolded protein. The disparate consequences of confine-
ment and crowding on protein stability can be understood in
the following way. In the former situation, walls of the
confining space fully enclose the unfolded chain, hence all
conformations that cross any part of the walls are elimi-
nated. However, in the latter situation, there are always
interstitial spaces that allow the unfolded chain to escape. At
high concentrations of crowding macromolecules, the inter-
stitial voids may become too small in serving as routes of
translocation for the compact folded protein but will con-
tinue to allow the unfolded chain to leak. In this sense
crowding is like confinement in a cage with holes, which
compensate for the excess restriction of the cage on the
unfolded chain.

As the concentration of crowding macromolecules in-
crease even further, most of the unoccupied spaces become
too small to accommodate the folded protein as modeled by
a hard sphere. On the other hand, the unfolded protein
modeled as a Gaussian chain can always changes its con-
formation to have it accommodated. Then � ln ff may
become even greater than � ln fu. This situation is akin to
what happens in spatial confinement when the confining
space is shrunk to the extent of not being able to accom-
modate the folded hard sphere; nonetheless there will be a
small fraction of extremely compact chain conformations of
the unfolded protein that can be accommodated within the
confining space. In that situation the unfolded state also
becomes favored [Fig. 4(A)].

EFFECT ON FOLDING RATE BY
CONFINEMENT AND CROWDING

Both confinement and crowding will likely affect the rate of
contact formation in the folding process in two opposing
ways. They will eliminate the more expanded conforma-
tions of the unfolded chain, thus residues will have higher
probabilities of being near contact. On the other hand,
intrachain diffusion in a confined space and a crowded
solution will be slowed down.

Confinement

To illustrate the effect of confinement on the rate of contact
formation, consider a Gaussian chain confined to a spherical
cage (with diameter d ). For concreteness, it is assumed one
residue forming the contact is rigidly held at the center of

the confining sphere while the other residue freely moves
within the confines of the sphere. The probability density of
the second residue, separated by n peptide bonds, at a radial
distance r is (Park and Sung, 1998)

G rð Þ ¼ 2

d2r

X
k¼1;2;3;...

k sin 2�kr=dð Þexp �4�2r2
gk

2=d2
� �

where rg ¼ nb2=6ð Þ1=2
. The mean square distance is

< r2> ¼ d=2ð Þ2
X

k¼1;2;3;...

�1ð Þk�1
1 � 6=�2k2
� �

exp �4�2r2
gk

2=d2
� �

� X
k¼1;2;3;...

�1ð Þk�1
exp �4�2r2

gk
2=d2

� � ð12Þ

At d¼ 2rg, the mean square distance is predicted by eq. (12)
to be 15.3-fold smaller than the value without confinement.
The reduction in <r2> will contribute to a higher rate of
contact formation [see eq. (3)].

An indirect consequence of the elimination of the more
expanded conformations by the confinement might be that
the propensities for native conformations, which tend to be
compact, will be enhanced. As a result, the equilibrium
constant !þ=!_ for forming correct local conformations
might be increased. This increase also contributes to a
higher rate of contact formation [see eq. (4)].

On the other hand, confinement also slows down intra-
chain diffusion. For a small sphere with diameter a at a
distance b from the wall of a container with dimension d, the
diffusion constant of the small sphere becomes Dconf ¼
D½1 � ða=dÞf ðb=dÞ�, where f(x) is a function determined
by the shape of the container (Happel and Brenner, 1983).
When the small sphere is not located in the immediate
vicinity of the container wall, f(x) has a value close to 2. For
a¼ 5 Å, d¼ 30 Å, and f(x)¼ 2, one finds Dconf 	 0:67D.
This calculation suggests that confinement normally will
reduce the diffusion constant by no more than a factor of 2.

Given the small effect of confinement on the diffusion
constant and that this small effect is likely offset by
enhanced propensities of local correct conformations, it is
then expected that the main consequence of confinement is
the reduction in <r2>, which serves to increase the contact
formation rate. The resulting increase in the rate constant,
calculated according to eq. (3), is shown in Fig. 5. It is seen
that confinement may speed up contact formation by as
much as two orders of magnitudes.

Klimov et al. (2002) have carried out detailed simulations
of the �-hairpin formation of a 16-residue peptide inside a
confining sphere. Their results were in qualitative and
perhaps even semi-quantitative agreement with those pre-
dicted by the simple model presented above. In particular,
for their peptide, Rg	16 Å and df 	30 Å, Klimov et al.
found a stabilization of 1.2 kcal/mol by confinement in a
spherical cage with a 35 Å diameter, whereas eq. (10)
predicts a stabilization of 1.5 kcal/mol. Klimov et al.
observed a doubling of folding rate by confinement in a
spherical cage with a 40 Å diameter, a result predicted by
eqs (12) and (3) if forming a contact separated by seven
peptide bonds (e.g. the hydrophobic contact between Tyr5
and Phe12) is the rate-limiting step. However, other details,
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such as kinetic traps, are outside the scope of the simple
model. Qualitatively similar results were obtained in other
simulation studies on the effects of confinement (Friedel
et al., 2003; Baumketner et al., 2003; Takagi et al., 2003;
Thirumalai et al., 2003). Takagi et al. (2003) found that
folding rate enhancement by confinement is greater for
proteins with long-range tertiary contacts. This finding is
entirely consistent with eqs (12) and (3), which predict
larger acceleration for the formation of contacts with a
longer chain separation.

The central cavity (also called the Anfinsen cage) of
chaperonins provides an important example of confinement.
Recently Brinker et al. (2001) have indeed obtained experi-
mental evidence that folding inside the Anfinsen cage is
faster than in bulk solution.

Crowding

The size of a polymer chain in the presence of obstacles will
contract. Indeed, Sasahara et al. (2003) and Tokuriki et al.
(2004) have obtained direct experimental evidence of the
compaction of an unfolded protein by crowding. However,
there are conflicting theories for the size contraction. A
number of Monte Carlo simulations have been carried out,
in part motivated by the theoretical conflicts (Baumgartner
and Muthukumar, 1987; Honeycutt and Thirumalai, 1989;
Dayantis et al., 1998). These simulations show that, up to an
obstacle volume fraction of 0.5 and up to a chain length of a
hundred freely jointed units, the mean square distance is at
most 5-fold smaller than the value in the absence of the
obstacles. Crowding thus has a much smaller potential for
speeding up protein folding than confinement.

CHANGE OF BINDING EQUILBRIUM
AND RATE BY CROWDING

In contrast to the unimolecular process of protein folding,
the bimolecular process of protein binding has an equili-

brium that is concentration dependent. Since in a confined
cage concentration cannot be defined in the sense of the
thermodynamic limit (whereby both the number of mole-
cules and the volume go to infinity but their ratio remains
constant), here I will focus attention on the effect of
crowding. The binding of two folded proteins will be
modeled as the approach of two spherical particles to closest
contact, but stereospecificity will be partly accounted for.

Binding equilibrium

Consider two identical tracer hard spheres (with diameter
df ) in the presence of other hard spheres (with radius ac)
occupying a fraction � of space. In the absence of the
crowding hard spheres, the tracer particles will have a
uniform relative distribution. The crowding particles in-
crease the probability that the two tracer particles are near
each other. The crowding-induced radial distribution func-
tion, gcðrÞ, is equivalent to an effective attractive potential
UcðrÞ [cf. eq. (2)]. At contact, the scaled-particle theory
predicts (Lebowitz and Rowlinson, 1964)

gcðdfÞ ¼ exp½��UcðdfÞ� ¼ ð1 � �þ 3z�=2Þ=ð1 � �Þ2

ð13Þ

The effective potential UcðrÞ adds to the interaction poten-
tial between the two binding proteins, resulting in an
increase in the equilibrium constant [eq. (5a) or (5b)]:

Kcrowd=K ¼ exp½��UcðdfÞ� ð14Þ

This account of the effect of crowding is framed in
languages different from those used by Minton (1998). In
his account, both reactant and product species are treated as
rigid particles, with crowding contributing to their activity
coefficients. In the above account, it is recognized that, even
when the reactant species are treated as rigid particles, the
product species will have inter-molecular freedom (as
represented by the inter-particle distance r). However, after
the specialization is made that the product species has a
unique inter-particle distance (i.e. the contact distance), then
the result for Kcrowd=K should be the same as that obtained
from calculating the activity coefficients of the reactant (a
hard sphere) and product (two contacting hard spheres)
species. Previously the activity coefficient for a species
represented by two contacting spheres has not been ob-
tained. [Hall and Minton (2003) recently considered the
situation where the interaction between a protein and a
crowding macromolecule is ‘soft.’]

Figure 6 displays the effects of crowding on the binding
constant predicted by eqs (13) and (14). For comparison,
results obtained by modeling the reactant species as a sphere
with twice the volume of the reactant species are also
displayed. Significantly smaller effects are seen for the
contacting-spheres model, a result anticipated by Minton
(1998) and rationalized by the compactness of the enlarged-
sphere model.

Binding rate

While crowding increases the equilibrium probability for
the reactant species to be near each other, it also slows down

Figure 5. Speed up of protein folding by confinement. Effect of
confinement in a spherical cage on the rate of contact formation
is displayed. kf

conf is calculated from eq. (3) with <r2 > given by
eq. (12).
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the diffusional approach of the reactants. Here I will use
eq. (7) to estimate the overall effect of crowding on the
binding rate when the binding is diffusion-limited. It should
be recalled that eq. (7) is a good approximation if the
interaction potential is long-ranged. While the crowding-
induced effective potential UcðrÞ is not a contact potential, it
is expected to have strong distance dependence. Though this
dependence will affect the applicability of eq. (7), this
equation should suffice for the present purpose of obtaining
qualitative estimates.

It is instructive to mention a simulation of a diffusion-
limited reaction in a very crowded solution carried out some
years ago (Zhou and Szabo, 1991). In a box of hard spheres
occupying a volume fraction � ¼ 0:412, the reaction of
labeled hard spheres was found to be described well by the
Smoluchowski theory after the crowding-induced effective
potential and the effect of crowding on the diffusion con-
stant were incorporated.

The decrease in the diffusion constant of a hard sphere by
crowding hard spheres was studied by Tokuyama and
Lebowitz (1994). Their result is

Dcrowd=D ¼ 1 � 9�=32

1 þ Hð�Þ þ ð�=0:5718Þð1 � �=0:5718Þ2

ð15Þ

where

Hð�Þ ¼ 2b2
1

1 � b1

� b2

1 þ 2b2

� 2b1b2ð2 þ b2Þ
ð1 þ b2Þð1 � b1 þ b2Þ

with b1 ¼ ð9�=8Þ1=2
and b2 ¼ 11�=16. Equation (15)

appears to be in reasonable agreement with the experimental
data of Muramatsu and Minton (1988) for the diffusion
constant of labeled bovine serum albumin (BSA) in con-
centrated BSA solutions (Fig. 6).

If the binding is reaction-limited, then the slowed-down
diffusion does not have any effect on the binding rate.
However, in the diffusion-limited situation, the binding
rate will be reduced in proportion to the slowing down of
the diffusion [eq. (7)]. When the contribution of the crowd-
ing-induced effective potential and the effect of the slowed-
down diffusion are combined, it can be seen from Fig. 6 that
cancellation of the two opposing effects leaves a moderate
overall effect of crowding on the binding rate.

The slowing down of protein diffusion by crowding may
play an important role in the action of chaperonins. There is
evidence from experiments and simulations (Martin and
Hartl, 1997; Elcock, 2003) that this slow down has a
beneficial effect on the yield of proteins undergoing chaper-
onin-assisted folding, because it increases the chance that a
partially folded chain will be recaptured by the chaperonin
for new rounds of folding.

CONCLUSIONS

Based on the simple models, the qualitative effects of
confinement and crowding on the equilibria and rates of
protein folding and binding can be summarized as follows:

(1) confinement stabilizes proteins and may accelerate their
folding significantly;

(2) crowding is expected to have only a marginal effect on
protein stability, but may accelerate folding;

(3) crowding may significantly shift the binding equili-
brium of proteins toward the bound state; as such it
may contribute to protein aggregation and amyloid
formation;

(4) crowding significantly slows down protein diffusion; for
diffusion-limited protein binding, this slowing down
will moderate the positive effect of crowding in enhan-
cing the equilibrium probability near contact, and may
even result in an overall decrease in the binding rate.
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