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This article summarizes the development of a fast boundary element method for the linear Poisson-Boltzmann
equation governing biomolecular electrostatics. Unlike previous fast boundary element implementations, the
present treatment accommodates finite salt concentrations thus enabling the study of biomolecular electrostatics
under realistic physiological conditions. This is achieved by using multipole expansions specifically designed
for the exponentially decaying Green’s function of the linear Poisson-Boltzmann equation. The particular
formulation adopted in the boundary element treatment directly affects the numerical conditioning and thus
convergence behavior of the method. Therefore, the formulation and reasons for its choice are first presented.
Next, the multipole approximation and its use in the context of a fast boundary element method are described
together with the iteration method employed to extract the surface distributions. The method is then subjected
to a series of computational tests involving a sphere with interior charges. The purpose of these tests is to
assess accuracy and verify the anticipated computational performance trends. Finally, the salt dependence of
electrostatic properties of several biomolecular systems (alanine dipeptide, barnase, barstar, and coiled coil
tetramer) is examined with the method and the results are compared with finite difference Poisson-Boltzmann
codes.

I. Introduction

The properties and function of numerous charged biomol-
ecules and their complexes with other molecules are dependent
on the ionic strength of the environment. For example, the
conformational stability of highly charged peptides and proteins
is greatly affected by changes in salt concentration. Similarly,
the binding affinities and association rates of biomolecular com-
plexes are also strongly dependent on salt concentration. There-
fore, computational tools that reliably and accurately predict
ionic strength dependent electrostatic interactions are essential
for an improved understanding of many biological processes.
Moreover, to offer the user the ability to address large molecules
using readily accessible computers, the CPU and storage
demands imposed by such tools must be kept at a minimum.

The different theoretical approaches used to model salt effects
in biomolecular systems can be divided into two broad cate-
gories according to whether they employ an explicit or implicit
solvent model. Explicit solvent models adopt microscopic
representations of both solute (e.g., biomolecule) and solvent
molecules. Typically, explicit solvent-based approaches employ
potential energy functions and sample the conformational space
by either molecular dynamics or Monte Carlo techniques.
Explicit solvent approaches produce accurate results, but are
very computer intensive. Molecular dynamics of biomolecules

immersed in salt solutions entail considerable computational
effort since they involve a large number of ions and water mole-
cules and require accurate ion-water, ion-ion, and ion-solute
potential functions. Obtaining thermodynamic quantities, such
as solvation and binding free energies, from free energy simu-
lations of biomolecules immersed in aqueous salt solutions is
even more challenging. The introduction of efficient particle-
mesh Ewald (PME) algorithms1,2 which accurately account for
long-range Coulombic interactions has promoted the popularity
of biomolecular dynamics simulations and allowed larger
systems to be considered. However, despite the advent of such
tools and advances in computer power, molecular dynamics
simulations of ionic strength effects in biomolecular systems
are still not practical using an explicit solvent model.3

Implicit solvent models adopt a semi-microscopic treatment
of the solute, but characterize the solvent in terms of its
macroscopic physical properties (e.g., dielectric constant, ionic
strength). This allows ionic strength effects to be accurately
reproduced at much lower computational cost than with explicit
solvent approaches. For this reason, implicit solvent models such
as those based on the Poisson-Boltzmann equation (PBE) are
now widely used. In particular, the linear Poisson-Boltzmann
approach considered here has been successfully used to account
for the salt dependence of a variety of thermodynamic quantities
such as binding free energies,4 pK shifts,5-7 and biomolecular
association rate constants.8,9 The Poisson-Boltzmann equation
has also been coupled to quantum chemistry methods (e.g., ref
10) and used in conjunction with molecular dynamics to obtain
relative free energies (e.g., binding free energies), which include
both molecular mechanical free energies and solvation free
energies.11

Analytical solutions to the linear Poisson-Boltzmann equa-
tion are only available for a limited number of cases involving
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idealized geometries such as spheres and cylinders. For the
complex molecular surfaces and arbitrary charge distribution
of real molecules, the linear Poisson-Boltzmann equation must
be solved numerically using one of various numerical tech-
niques. The most popular means of solving the linear Poisson-
Boltzmann equation is the finite difference method (FDM).12-14

In this approach, a discrete approximation to the governing
partial differential equations is procured upon a volume-filling
grid. Ideally, a boundary conforming grid (i.e., one that does
not intersect the molecular surface) is preferred,15 but such a
grid is difficult to generate about a complex molecular shape.
Therefore, in most implementations, such as the widely used
UHBD and DelPhi codes,13,16-18 a regular lattice is laid over
the molecule and cells are allowed to straddle the molecular
surface. A regular lattice arrangement also lends itself well to
efficient multigrid solution techniques for solving the algebraic
equations resulting from the discretization of the partial dif-
ferential equations.19 The finite element method differs from
the finite difference approach in that variational principles rather
than finite difference approximations are used to derive the
discrete equations.15,20-22 A major reason for adopting a finite
element approach is that it accommodates unstructured grids
which offer improved geometric flexibility and variable mesh
spacing, albeit at considerably higher per-node storage and CPU
costs compared to a regular lattice arrangement.

Solutions to the linear PBE can also be expressed in terms
of singular surface integrals. This representation is the basis of
the class of numerical procedures known as the boundary
element method (BEM). In the basic approach, the molecular
surface is approximated by a collection of boundary elements
whose electrostatic potential and normal potential gradients are
to be determined. Once these surface values are known, the
electrostatic potential at all other locations can be computed
explicitly using the appropriate boundary integrals. Equations
for the surface values are derived by considering the limiting
forms of the electrostatic potentials as one approaches the
molecular surface from the interior and exterior regions.
Numerous boundary element codes exist for solving the Poisson
and Poisson-Boltzmann equations (e.g., refs 23-31). Because
of the basic differences in formulation, the BEM enjoys certain
intrinsic advantages over the FDM including the following:

(i) The solution is completely characterized in terms of surface
distributions. This “lowering of dimensionality” results in fewer
unknowns compared to the FDM where the solution is devel-
oped over the entire three-dimensional volume.

(ii) Far-field boundary conditions are enforced exactlysin
the FDM the grid is of finite extent so that the solution at the
outer boundaries must be approximated or calculated by alternate
means.

(iii) The surface geometry is represented to high precision
since the orientation and position of each boundary element are
close to those of the true surface. In the FDM only an
approximate “staircase” rendering of the surface is possible since
it is straddled by the grid cells. Hence, for comparable
characteristic grid spacings, the discrete surface approximation
adopted in the BEM will generally deviate much less from the
true surface than in the FDM.

(iv) The exact surface boundary conditions are explicitly
enforced. In the FDM, continuity in the electrostatic potential
is imposed, but the constraint upon the normal electrostatic field
is only weakly enforced in an average sense. Unless a boundary
conforming mesh is employed, there is no assurance that the
normal field at the surface converges to the correct value as
the grid spacing is reduced.

(v) The electrostatic field of point charges and surface
elements is reproduced exactly at all points in space using the
explicit mathematical expressions. This feature, in conjunction
with the inherent error averaging properties of an integral
method, confers high accuracy to the BEM.

In light of these advantages, the BEM, especially when
accelerated with the fast methods described below, can provide
a computational approach superior to FDM. However, the BEM
is also valuable as an independent analysis tool for confirming
results. While the FDM and BEM use very different mathemati-
cal and numerical approaches, when applied to the same
governing equation (as done here) they should converge to
identical answers as mesh resolution is increased. Therefore,
applying FDM and BEM to the same problem provides a way
of establishing high confidence in the predictions (i.e., the FDM
and BEM results are in close agreement) or uncovering modeling
problems (i.e., they show significant differences) that indicate
the need for reexamination or higher resolution. The need for
independent analyses of this kind has grown as increasingly
complex biomolecular systems come under examination and
converged results are harder to establish.

In the conventional BEM, these advantages are offset by the
high computational cost incurred in evaluating the mutual
interactions between all elements. For a problem involvingN
elements, the calculation of the potential at all elements entails
O(N2) interactions. Moreover, each interaction involves singular
integrals whose analytical and/or numerical evaluation is
expensive. Inversion of the matrix to solve for the surface
potentials requiresO(N3) operations for direct inversion and
O(mN2) for msteps of an iterative inversion method. Therefore,
in practice, application of boundary element based Poisson or
linear PBE algorithms has been limited to small numbers of
boundary elements (up toO(103)) and consequently small to
medium-sized molecules.

To address these costs and accommodate large biomolecular
systems, fast multipole algorithms (FMA) have been em-
ployed.32 These methods carefully combine a hierarchical
grouping procedure that assembles the elements into nested
groups together with a low-cost multipole-based approximation
method for evaluating the potential induced by an element group,
to achieve substantial reductions in computational requirements.
For example, the use of fast multipole algorithms in BEM-based
Poisson equation solvers has led to orders of magnitude
reductions in both storage and CPU compared to conventional
implementations.33,34 However, since the Poisson equation
addresses only zero salt conditions, such fast BEM Poisson
programs are limited. To our knowledge, fast multipole methods
have not been previously incorporated into a BEM for solving
the Poisson-Boltzmann equation. Here, the fast BEM is
extended to accommodate both the Poisson and linear Poisson-
Boltzmann equations at finite salt concentrations. This is
accomplished by incorporating new multipole expansions that
are explicitly designed for the exponential Green’s function
associated with the PBE.35 In the limit of zero salt concentration,
these expansions revert to the classical expansions for Cou-
lombic potentials.

Following a review of the boundary element method applied
to the linear Poisson-Boltzmann equation, this article describes
how to formulate and implement a fast multipole algorithm to
reduce computational costs. This section also introduces a mesh
adaptation method that allows high accuracy to be achieved with
fewer elements and provides a useful analytical result for
validating any linear Poisson-Boltzmann solver. This section
is followed by an assessment of the computational performance
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and accuracy of the method when applied to the idealized case
of a spherical cavity containing interior charges for which
analytical solutions are known. Finally, the method is used to
calculate the electrostatic properties of realistic biomolecules
including different conformers of alanine dipeptide, barnase and
barstar, survivin, coiled coil tetramer, and FinO.

II. Methodology

A. Formulation. In this work, the solute molecule is treated
as a region,Ω1, of low dielectric constant (ε1) containing the
atom centered point charges and the surrounding solvent region,
Ω2, is modeled as a structureless dielectric continuum having
dielectric constantε2. The mobile ions are treated implicitly and
obey the Boltzmann distribution. Also, the Stern layer is omitted.
The solute is described in terms of its three-dimensional structure
obtained from NMR/X-ray crystallography or molecular model-
ing techniques. The molecular surface,S, separating the interior
and exterior regions,Ω1 andΩ2, can be taken as either the van
der Waals, solvent-accessible, or solvent-excluded surfaces.36

The choice of which molecular surface to use as the dielectric
interface is still open to debate.37 For Nq fixed interior point
charges,Qk, located at atomic centers,Fk, the electrostatic
potential, φ(R), at a point,R, in the interior region,Ω1, is
governed by the Poisson equation:

whereδ(•) is the Dirac delta function andqk ) Qk/ε1. In the
exterior region,Ω2, the electrostatic potential,µ, obeys the linear
Poisson-Boltzmann equation:

The Debye-Hückel screening parameter,κ, representing the
attenuation of electrostatic interactions by the presence of salt
in the solution, is related to the ionic strength of the aqueous
salt solution,I, according to

wheree is the elementary charge,kB is the Boltzmann constant,
andT is the solution temperature.

At the common interface between the two regions (i.e.,
dielectric boundary), the electrostatic potential and the normal
gradient of the electric displacement are continuous; thus

whereε ) ε2/ε1 andnb is the surface normal directed outward
from region Ω1 to Ω2. The regularity conditions that both
Rµ(RB) andR2∇µ(RB) remain finite asR ) |RB| f ∞ also apply.

The general solution for the electrostatic potential in each
region is given by23

where the fundamental solution for the linear Poisson-Boltz-
mann equation

Note thatG0(RB,Fb) is the fundamental solution for the Poisson
equation. Using well-known limiting relations, (5) and (6) reduce
to the following forms as the evaluation point,RB, approaches
the surface,S:

where a locally smooth surface is assumed andS- and S+

represent the surfaces located an infinitesimal amount below
(i.e., in Ω1) and above (inΩ2) S, respectively.

Equations 8 and 9 in conjunction with the specified boundary
conditions, (4), comprise a complete set of equations that can
be solved for the surface distributions ofφ and ∂φ/∂n. A so-
called “nonderivative” boundary element (BE) formulation
derived directly from these equations is adopted by several
groups.29,31,38 Unfortunately, the resulting system of linear
algebraic equations becomes increasingly ill-conditioned as the
number of boundary elements grows. For this reason, the
alternate “derivative” BE formulation introduced by Juffer and
co-workers23 is used which maintains a well-conditioned sys-
tem of algebraic equations for arbitrary boundary element
counts.24 Under this approach, (8) and (9) are linearly combined
to obtain

Note that (4) has been used to eliminateµ and ∂µ/∂n. A
second equation is obtained by differentiating (8) and (9) with
respect to the normal,nb0 ) nb(RB), and combining the results to
produce

The linear combination (11) is unique in that nonintegrable
singularities are completely eliminated. In any other combina-

∇2
φ(RB) ) - ∑

k)1

Nq

qkδ(RB - Fbk) (1)

(∇2 - κ
2)µ(RB) ) 0 (2)

κ
2 ) 8πe2I

ε2kBT
(3)

φ(RB) ) µ(RB),
∂φ

∂n
(RB) ) ε

∂µ
∂n

(RB);RB ∈ S (4a,b)

φ(RB) ) IS[G0(RB,Fb)
∂φ

∂n
(Fb) -

∂G0

∂n
(RB,Fb) φ(Fb)] dS+

∑
k)1

Nq

qkG0(RB,Fbk), RB ∈ Ω1 (5)

µ(RB) ) IS[-Gκ(RB,Fb)
∂µ
∂n

(Fb) +
∂Gκ

∂n
(RB,Fb ) µ(Fb)] dS, RB ∈ Ω2

(6)

Gκ(RB,Fb) )
exp[-κ|RB - Fb|]

4π|RB - Fb| (7)

lim
RBfS-

φ(RB) )
1

2
φ(RB) + IS[G0(RB,Fb)

∂φ

∂n
(Fb) -

∂G0

∂n
(RB,Fb) φ(F)] dS+ ∑

k)1

Nq

qkG0(RB,Fbk) (8)

lim
RBfS+

µ(RB) ) 1
2

µ(RB) + IS[-Gκ(RB,Fb)
∂µ
∂n

(Fb) +

∂Gκ

∂n
(RB,Fb) µ(Fb)] dS (9)

1

2
(1 + ε)φ(RB) ) IS[(G0 - Gκ)

∂φ

∂n
(Fb) -

(∂G0

∂n
- ε

∂Gκ

∂n )φ(Fb)] dS+ ∑
k)1

Nq

qkG0(RB,Fbk) (10)

1

2(1 + (1
ε
)) ∂φ

∂n0

(RB) ) IS[(∂G0

∂n0

-
1

ε

∂Gκ

∂n0
) ∂φ

∂n
(Fb) -

( ∂
2G0

∂n0 ∂n
-

∂
2Gκ

∂n0 ∂n)φ(Fb)] dS+ ∑
k)1

Nq

qk

∂G0

∂n0

(RB,Fbk) (11)
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tion, the second-order gradients give rise toO(1/r3) hypersin-
gular integrals.23

B. Discretization and Quadrature. In the present work, a
discrete approximation to the integral equations, (10) and (11),
is obtained by dividing the molecular surface into a collection
of boundary elements (triangles and quadrilaterals) and ap-
proximating the surface solutions,φ and ∂φ/∂n, by piecewise
constant distributions. This combination constitutes a “low-
order” model since the higher order effects of surface curvature
and solution variations over each element are neglected.
Curvilinear treatments that capture these higher order effects
generally deliver better accuracy, thus allowing fewer elements
to be used, but require more CPU per element and more
elaborate quadrature schemes. Conversely, low-order descrip-
tions26,29,34facilitate the construction of robust surface quadrature
rules for the singular integrands, are less sensitive to surface
mesh imperfections such as gaps or overlaps, and are ideally
suited to mesh adaptation. Note, however, that the fast multipole
algorithm can be equally well applied to both low- and high-
order methods.

Let the molecular surface be represented by a collection of
N boundary elements,j, each having area, normal, and centroid
denoted byAj, nj, andRBj, respectively. Under this representation
equations, (10) and (11), governing the electrostatic potential
φi ) φ(RBi) and its normal potential gradienthi ) ∂φ(Ri)/∂ni, at
the center of element,i, reduce to

where

Note that for planar surface elements the diagonal entries of
these coefficients reduce toA1,ii ) A4,ii ) 0, where the
Cauchy principal values of the quadratures arenot included
since they are already accounted for on the left-hand side of
(12). The surface solutions,φi and hi, are obtained by in-
verting the 2N equations, (12). Once these surface values are
known, the electrostatic potential can be computed in the in-
terior and exterior regions using the discrete forms of (5)
and (6).

The accurate and efficient evaluation of the boundary element
integrals is essential to obtaining reliable predictions of the
electrostatic potentials. However, the procedure is only briefly
described here since the emphasis is upon the fast summation

and inversion techniques. The immediate difficulty concerns the
1/rp singularities present in the integrands. Gauss quadrature
methods developed for smooth functions are ineffective near
such singularities and can require hundreds of quadrature points
to achieve even moderate accuracy. An improved approach is
to transform to polar coordinates which essentially reduces the
order of the singularity by 1 and thus is useful for integrands
of O(1/r). However, additional and rather elaborate procedures
must be employed to tackle the more complicated singularities
associated with the normal derivatives,∂Gκ/∂n. In the current
work, advantage is taken of the fact that for zero ion screening
(pure Coulombic potentials) and planar elements the quadratures
can be evaluated exactly.39-41 For finite salt concentration (κ

* 0) such analytical expressions do not seem available.
Nevertheless, it is possible to separate each integral into (i) a
singular component corresponding toκ ) 0 which is evaluated
exactly and (ii) a smooth, nonsingular correction term that
accounts for the finite salt effects and can be accurately
evaluated by Gauss quadrature. The regular correction term
vanishes asκ f 0 so that in the absence of ion screening all
integrals are performed analytically.

To illustrate, consider the expression forA1,ij. Starting with

and replacing the exponential factor, exp{-κr}, by its Taylor
series, then one can readily identify all singular terms. This leads
to

where the nonsingular function

It is easy to show that 4πd1(κ,r) f -(κ2/2) asr f 0; also,
d1(κ,r) f 0 asκ f 0 so that this term vanishes with decreasing
salt concentration. For smallr, d1(κ,r) is accurately and robustly
evaluated in terms of its Taylor series expansion; for larger
values ofr, (16) is used directly. Substituting (15) into (14)
and then into (13a) leads to

The first integral on the right-hand side involves only the
Coulombic potential and is evaluated in closed form.39-41 The
second integral involves the smooth function,d1(κ,r), and the
nonsingular term,nbj(RB - Fb)/|RB - Fb|, whose magnitude is
bounded by unity. This integral is accurately evaluated by Gauss
quadrature. The remaining coefficients in (13) are treated in a
similar fashion.

C. Fast Multipole Method. Evaluation of the 4N2 influence
coefficients, Ak,ij, is time-consuming. Moreover, during the
solution process these coefficients must be accessed several

(12)(1 + ε)φi ) ∑
j)1
j*1

N

A1,ijφj + ∑
j)1

N

A2,ijhj +

∑
k)1

Nq

qkG0(RBi,Fbk) ≡ r1i (12a)

1

2(1 +
1

ε
)hi ) ∑

j)1

N

A3,ijφj + ∑
j)1
j*1

N

A4,ijhj + ∑
k)1

Nq

qk

∂G0

∂n0

(RBi,Fbk) ≡ r2i

(12b)

A1,ij ) ∫Aj

∂

∂n
(εGκ - G0) dA (13a)

A2,ij ) ∫Aj
G0 - Gκ dA (13b)

A3,ij ) ∫Aj( ∂
2Gκ

∂ni ∂n
-

∂
2G0

∂ni ∂n) dA (13c)

A4,ij ) ∫Aj

∂

∂ni
(G0 - 1

ε
Gκ) dA (13d)

∂Gκ

∂n
) nb‚∇Gκ ) nb‚[e-κr(1 + κr)

r3
(RB - Fb)], r ) |RB - Fb|

(14a,b)

∇Gκ ) -
e-κr(1 + κr)

r3
(RB - Fb) ) - 1

r3
(RB - Fb) -

d1(κ,r)
(RB - Fb)

r
(15)

d1(κ,r) )
e-κr(1 + κr) - 1

4πr2
(16)

A1,ij ) ∫Aj

∂

∂n
(εGκ - G0) dA ) (ε - 1)∫Aj

∂G0

∂nj
dA +

∫Aj
εd1(κ,r)

nbj‚(RB - Fb)

r
dA (17)
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times, so in the interest of reduced computation time, it is
advantageous to store them after the first evaluation. The storage
then scales as 4N2 so that even at the modest resolution ofN )
10 000 the total storage is 1.6 GB (for single precision), which
exceeds the in-core memory capacity of most present-day
workstations. To reduce these computational bottlenecks and
address large systems, recourse is made to fast multipole
methods. These methods combine two basic components. The
first is a hierarchical grouping procedure that assembles the BEs
into nested groups of specified size. Because of its ability to
readily accommodate complex BE assemblies, the adaptive data
structure known as an octree42 is used for this purpose. The
octree also facilitates efficient search operations and tests to
distinguish between near- and far-field interactions. The second
component is a multipole approximation to the electrostatic
potential and forces induced by a collection of BEs at suf-
ficiently well-separated, far-field points. The remaining near-
field interactions are computed in the conventional way using
direct evaluation.

The successful incorporation of fast multipole methods into
BEM-based electrostatic models has been demonstrated by
several researchers.33,34,43However, all past such implementa-
tions have been restricted to zero salt concentration (κ ) 0).
The reason for this is that whereas multipole expansions
have been thoroughly developed for Coulombic potentials,G0

) 1/(4πr), the generalization to screened electrostatic inter-
actions of the formGκ ) e-κr/(4πr) has only recently re-
ceived attention. In ref 35, a fast multipole algorithm that
formally accommodates solutions to the linear Poisson-
Boltzmann equation was described. This algorithm is appli-
cable to both zero (κ ) 0) and finite salt (κ > 0) conditions
and forms the basis of the present fast BEM Poisson-Boltzmann
analysis. The following discussion briefly reviews the multipole
expansion for the Green’s function, e-κr/r, and then describes
how it is used in the context of the BEM solution of the linear
PBE.

Consider (see Figure 1) one of a collection of source points
located at position,F, and an observation point,R. The relative
position vector between the source and observation point isrb
) RB - Fb and the distance isr ) |rb|. Upon expressing the
position vectors in spherical coordinates, i.e.,Fb(F,θ,φ) and
RB(R,R,â), a well-known multipole expansion for the Debye-
Hückel (screened Coulombic) potential44 valid for R > F may
be written as follows:

whereYmk is the spherical harmonic function of orderm and
degreek. The asterisk denotes the complex conjugate, and
the spherical modified Bessel functions (SMBFs) of the first

and third kind are defined as

whereIm+1/2(z) andKm+1/2(z) are the corresponding conventional
(i.e., not spherical) modified Bessel functions of the first and
third kinds, respectively.

It is convenient to define

which when substituted into (18) produce

This rearrangement is useful in several respects. First, when
κ f 0, the small argument behavior of the SMBFs reveals that
gm(κr) f 1 andGm(κR) f 1. Thus

so that the multipole expansion for the Coulombic potential is
recovered. This analytical result is also easily reproduced
numerically using the rapidly convergent and stable (with re-
spect to round-off) small argument representations ofgm and
Gm. The rescalings for the spherical harmonic functions, (21),
are motivated by the simplified integral expressions forΨmk

and ψmk* which facilitate development of recursion relation-
ships and evaluation of these functions in Cartesian coordi-
nates. These functions are also directly related to the so-called
“inner” and “outer” functions,Im

k (Fb) andOm
k (RB), employed by

White and Gordon45 and are useful in that there is no need to
transform to spherical coordinates to evaluate them. Complete
details regarding these functions are given in Appendix A of
ref 35.

Another very useful property of the products

is that their spatial gradients can be expressed as linear
combinations ofQmk of different order and degree:

Figure 1. Schematic showing the location of source and field points
relative to the origin of the coordinate system.

4πGκ(RB,Fb) )
e-κr

r
) 8κ ∑

m)0

∞

Îm+1/2(κF) K̂m+1/2(κR) ∑
k)-m

m

Ymk(θ,φ) Ymk*(R,â),R > F (18)

Îm+1/2(z) ≡ xπ
2z

Im+1/2(z) (19a)

K̂m+1/2(z) ≡ xπ
2z

Km+1/2(z) (19b)

gm(z) ≡ 1‚3‚5‚...‚(2m + 1)

zm
Îm+1/2(z) (20a)

Gm(z) ≡ 2
π

zm+1

1‚3‚5‚...‚(2m - 1)
K̂m+1/2(z) (20b)

Ψmk(Fb) )
FmYmk(θ,φ)

Cmk
(21a)

ψmk(RB) ) 4π
2m + 1

CmkYmk(R,â)

Rm+1
(21b)

Cmk ) x(2m + 1)(m - k)!(m + k)!
4π

(21c)

4πGκ(RB,Fb) ) ∑
m)0

∞

gm(κF) Gm(κR) ∑
k)-m

m

Ψmk(Fb) ψmk*(RB)

(22)

lim
κf0

4πGκ(RB,Fb) )
1

r
) ∑

m)0

∞

∑
k)-m

m

Ψmk(Fb) ψmk*(RB) (23)

Qmk(κ,RB) ) Gm(κR) ψmk(RB) (24)
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Recursive application of this relation allows derivatives of
arbitrary order,R, to be developed (simply insert appropriateR
- 1 order derivatives on the right-hand side of (25a)). Note
that if κ f 0 then the second term on the right-hand side of
(25a) disappears and Qmk f ψmk so that the identity for∇ψmk

is obtained. The derivations of these relations and additional
properties of the SMBFs appear elsewhere (see Appendix B in
ref 35).

D. Fast Computation of the Electrostatic Potential.To see
how the multipole approximation is used in the context of a
fast BEM linear Poisson-Boltzmann equation, consider the
electrostatic potential induced by a collection of BEs,j ∈ {G},
at a well-separated point,RB. From (5) and (6)

wherehj ) (∂φ/∂n)j and the surface boundary conditions, (4),
have been imposed. Substituting forGκ in (26b) using the
multipole expansion, (22), and reordering:

In the last identity, (27b), the definition (24) has been used
and gradient operator transferred as indicated since the terms
inside the brackets{‚} are independent ofRB. The far-field
approximation to (26a) is similarly derived using the limiting
form of the expansion, (23), asκ f 0. Thus, one obtains

where the expansion has been truncated toM terms to reflect
practical implementation. The multipole coefficients for the
group of BEs,j ∈ {G}, are

Note that these coefficients are independent of the evaluation
point,RB, and can be calculated using only the properties (φj, hj,
and the element geometry) of the BEs in the group,{G}. The
integrals in (29) involve well-behaved nonsingular functions and
are evaluated using Gauss quadrature.

Having established the multipole expansions for a group of
elements, the fast evaluation of the electrostatic potential at any
point in space becomes a matter of organizing the calculation
to appropriately sum contributions from far- and near-field
groups. The far-field contribution from a well-separated group
of BEs is given by (28). In general, there will be several such
groups,{GR}, for which a multipole expansion may be invoked
and these groups are identified during a pruned downward search
through the octree. Contributions from all remaining BEs not
contained in one of these groups must be evaluated directly using
the conventional singular integrals. In this way all BE contribu-
tions are accounted for, so that from (5) and (6):

The first sum contains contributions from BEs considered
near-field toRBsthose that are not contained in one of the well-
separated groups{GR}. The second sum contains the contribu-
tions from the far-field groups and are evaluated using the
multipole approximation, (28).

The simplest implementation that does not use any Taylor
series extrapolations proceeds as follows:

1. Develop an octree about the configuration of BEs and
define the hierarchical groupsseach group,{GR}, is comprised
of the BEs whose centroids lie within a particular box or cell,
R, of the octree.

2. Compute the multipole coefficients,B0
mk andBκ

mk, for each
group according to (29).

3. Loop over the evaluation points (usually an element
centroid or a charge site),i. For each evaluation point conduct
a top-to-bottom search through the octree. Starting with the root
cell encompassing the entire domain, descendant cells are
recursively searched and processed according to the following
conditions:

(a) The cell is far-fieldsevaluate the multipole evaluation
and prune the downward search at this cell (i.e., do not search
through any descendant cells).

(b) The cell is near-field and has no descendant cellssloop
over the BEs,j, in this cell and evaluate contributions directly.

∇Qmk ) - 1
2[1 0 -1

i 0 i
0 2 0 ]({Qm+1,k-1

Qm+1,k

Qm+1,k+1
} -

κ
2

(2m - 1)(2m + 1)
[Nmk]{Qm-1,k-1

-Qm-1,k

Qm-1,k+1
}) (25a)

[Nmk] ) diag{(m + k)(m + k - 1), (m + k)(m - k),

(m - k)(m - k - 1)} (25b)

φ{G}(RB) ) ∑
j∈{G}

∫Aj
G0(RB,Fb)hj + ∇ RG0(RB,Fb)‚nbjφj dA (26a)

µ{G}(RB) ) - ∑
j∈{G}

∫Aj
Gκ(RB,Fb)

1

ε
hj + ∇RGκ(RB,Fb)‚nbjφj dA

(26b)

4π ∑
j∈{G}

∫Aj
Gκ(RB,Fb)

hj

ε
dA ) ∑

m,k
{ ∑

j∈{G}
∫Aj

hj

ε
gm(κF)Ψmk(Fb) dA}Gm(κR)ψmk*(RB) (27a)

∇R‚ ∑
j∈{G}

∫Aj
4πGκ(RB,Fb)nbjφj dA ) ∇ R‚∑

m,k

{ ∑
j∈{G}

∫Aj
gm(κF)Ψmk(Fb)φjnbj dA}Gm(κR)ψmk*(RB) )

∑
m,k

{ ∑
j∈{G}

∫Aj
gm(κF)Ψmk(Fb)φjnbj dA}‚∇RQmk*(κ,RB) (27b)

φ{G}(RB) = + ∑
m)0

M

∑
k)-m

m

{∇ Rψmk*(RB) l ψmk*(RB)}{Bmk
0 } (28a)

µ{G}(RB) = - ∑
m)0

M

∑
k)-m

m

{∇RQmk*(RB) l Qmk*(RB)}{Bmk
κ } (28b)

{Bmk
0 } ) ∑

j∈{G}
∫Aj

1

4π{nxφ

nyφ

nzφ

h
}

j

Ψmk(Fb) dA (29a)

{Bκ
mk} ) ∑

j∈{G}
∫Aj

1

4π{nxφ

nyφ

nzφ

h/ε
}

j

gm(κF)Ψmk(Fb) dA (29b)

φ(RB) ) ∑
j∉{GR}

∫Aj [hjG0(RB,Fb) - φj

∂

∂nj

G0(RB,Fb)] dA +

∑
R

φ{GR}(RB) + ∑
k)1

Nq

qkG0(RB,Fbk) (30a)

µ(RB) ) - ∑
j∉{GR}

∫Aj [1εhjGκ(RB,Fb) - φj

∂

∂nj

Gκ(RB,Fb)] dA +

∑
R

µ{GR}(RB) (30b)

2746 J. Phys. Chem. B, Vol. 106, No. 10, 2002 Boschitsch et al.



(c) The cell is near-field but contains descendant cellss
continue search through the descendants.

A cell, R, is classified as far-field with respect to evaluation
point,RB, if |RB - RBR| > (1 + esc)ΩR, whereRBR is the cell center
andΩR is the group size.

The preceding algorithm formally exhibitsO((M + N) log
N) computational cost whereM is the number of evaluation
points andN is the number of BEs. The computational cost
can be reduced further toO(M + N) (not including the cost of
constructing the octree) through the use of Taylor extrapolation
(also known as inner-to-inner translations). Here the loop over
individual evaluation points in step 3 above is replaced by
another top-to-bottom octree search. Finally, the charge-induced
Coulombic potential appearing in (5), (10), and (11) can also
be evaluated using the fast algorithm. In the interest of brevity,
the reader is referred to ref 35 for more detailed descriptions of
these operations.

E. Inversion for Surface Distributions. The preceding
section developed fast evaluation procedures to calculate the
electrostatic properties at a pointgiVen the surface solutionsφi

andhi. In the BEM, however, one must first solve an inverse
problem and deduce the surface singularities satisfying (12).
To this end, an iterative procedure must be used since in the
fast BEM the full influence coefficient matrix is no longer
available (far-field contributions are represented by multipole
approximations). The simplest method is Gauss-Seidel iteration
where the boundary elements,i, are visited in succession and
the solutionsφi and hi are updated before proceeding to the
next boundary element. For each element,i, the right-hand side
of (12), r1i andr2i, are first computed using the current values
of φj andhj. The local solution is then updated according to

before proceeding to the next boundary element.
To improve convergence further, a generalized minimal

residual (GMRES)-based outer iteration strategy is also in-
voked.46 One Gauss-Seidel sweep essentially modifies the
solution vector{γ} ≡ {φ,h}, from {γ}n to {γ}n+1. An error
vector,{e(γn)} ) {γ}n+1 - {γ}n can therefore be defined and
the GMRES scheme invoked to solve{e(γ)} ) {0} by adjusting
{γ}. A description of how GMRES is applied to this equation
is given elsewhere46,47 and will be not be repeated here. The
combination of Gauss-Seidel and GMRES iteration produces
very efficient convergence ratesstypically no more than 10-
20 evaluations of the right-hand side are required. More
importantly, convergence is virtually unaffected by the number
of BEssa result that is attributed to adopting the numerically
well-behaved derivative BEM formulation.24

F. Mesh Adaptation. A primary advantage to using a low-
order boundary element method is the flexibility it offers for
adaptive mesh refinement. This advantage arises because in the
piecewise constant representation the surface solution is stored
at the element centers rather than at the element nodes (as is
typical of higher order treatments). This allows surface elements
to be subdivided independently from their neighbors without
having to maintain a logically contiguous element-to-element
connectivity structure. Mesh adaptation is especially beneficial
when some of the interior charges are in close proximity to the
surface. One can show23 that for a single charge located atFbk

near the surface the local surface solution behaves asφ(Fb) ∼
A/|Fb - Fbk| and (∂φ/∂n)(Fb) ∼ Bnb‚(Fb - Fbk)/|Fb - Fbk|3. Hence asFb
f Fbk the surface solution becomes singular. The use of higher
order interpolation methods is unlikely to offer computational
benefits in this case since they only provide good approximations
to solutions that are very smooth. Juffer and co-workers23

addressed the problem of modeling near surface charges by
introducing the technique of charge peak separation. Here the
surface solution is separated into a rapidly varying part that is
approximated analytically and a smoothly varying part that is
obtained by the boundary element method. Though improving
accuracy, this approach appears to substantially increase the
computational costs and coding complexity (e.g., obtaining
accurate surface quadratures of the rapidly varying terms is
nontrivial). Spatial adaptation, on the other hand, is very easy
to implement in a low-order fast boundary element method,
requires no alteration to the basic code except during the initial
grid setup, and offers good a priori error control.

In the present implementation, an element,i, is uniformly
subdivided if

whereFbk is a fixed charge position,RBi is the element control
point, ∆si is the characteristic element size, andfr is a user-
specified parameter controlling the degree of mesh adaptation.
If fr ) 0, no mesh refinement takes place; asfr is increased,
mesh refinement is carried out to smaller scales and takes place
at more distant locations from the charges. Generally, at least
fr ) 1 is recommended to ensure that the piecewise constant
solution representation does not invite gross error;fr>3 appears
to deliver consistently good accuracy. The criterion (32) is
applied recursively to the initial triangulation by sweeping
through the elements and subdividing those whose size exceeds
the permissible level. The subdivided elements are revisited to
see whether they need to be further subdivided. This process
continues until no further subdivision takes place.

G. Pre- and Postprocessing and Overall Code Operation.
The fast BEM-based treatment of the linear Poisson-Boltzmann
equation has been embodied in Continuum Dynamics, Inc.’s
FPB (Fast Poisson-Boltzmann analysis) code. To successfully
conduct an electrostatic calculation, FPB must be accompanied
by (i) a surface mesh triangulation routine and (ii) a file
containing the atomic coordinates, charges, and radii for the
biomolecule being studied. A typical electrostatics computation
exercising these components proceeds as follows. A formatted
file containing atomic coordinates, charges, and radii is read in
by the FPB code. The atomic positions and radii are then passed
to the surface triangulation routine. In our work, the efficient
and robust MSMS triangulation routine developed by Sanner
and Olson48 (MSMS is available from http://www.scripps.edu/
pub/olson-web/people/sanner/html/msms_home.html) has been
adopted for this task. This software generates the molecular
surface and creates a pair of files defining the associated
triangulation. The FPB code also has the capability to read the
appropriate files from other surface triangulation programs such
as SMART.49 The MSMS or SMART files, together with the
molecule input file and a run file specifying desired input
parameters and outputs, are read in by the FPB software. Upon
completion of the calculations, postprocessing operations are
carried out. Currently, various energies (Coulombic, reaction
field, total electrostatic, etc.) are evaluated together with
potentials and fields at the charge sites. Optionally, electrostatic
properties can be evaluated at user-specified points and surface
electrostatic potential maps can be created in the VRML format.

[12(1 + ε) -A2,ii

-A3,ii
1
2(1 + 1

ε) ]{∆φi

∆hi
} ) {r1i - 1

2
(1 + ε)φi

r2i - 1
2(1 + 1

ε)hi } (31a)

φi r φi + ∆φi, hi r hi + ∆hi (31b)

|RBi - Fbk| < fr∆si (32)
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III. Results

Numerous computational experiments have been carried out
to validate the FPB code, assess its computational performance
and accuracy, and demonstrate its ability to treat large molecules
of biological interest. In the following section, results are first
presented for a sphere containing interior charges. Analytical
results are available for this case, thus allowing rigorous
assessment of accuracy. Calculations for biomoleculessalanine
dipeptide, barnase, barstar, survivin, FinO, and a coiled coil
tetramersare then performed and compared against predictions
using the finite difference Poisson-Boltzmann codes, UHBD,
DelPhi, and GRASP. Of particular interest in these studies is
the salt-dependent behavior of the energetics of biomolecules.
Quantitative measures of this behavior are provided by the
following energies:

which are, respectively, the reaction field energy, electrostatic
solvation free energy, and ion contribution to the electrostatic
solvation free energy. The last expression shows that∆∆Welec

solv

is equivalently the ion contribution to the reaction field energy,
∆Wrf. The reaction field potential,φrf, is evaluated at the charge
sites,Fbk, and is defined as the surface integral appearing in (5)
(i.e., omitting the last sum in (5) which represents the Coulombic
potential). One can show that in the limit of zero salt concentra-
tion:

whereQ is the net charge. The conversion factor of 332 assumes
that Q has units ofe (i.e., protonic charge)κ is expressed in
1/Å and energy is given in units of kcal/mol. The result (34)
does not depend on the detailed molecular shape, charge
distribution, or solute dielectric constant,ε1. It therefore is useful
in providing an independent check upon the accuracy of any
linear Poisson-Boltzmann equation solver for general systems.

Unless stated otherwise, in all fast FPB calculations presented
here second-order (M ) 2) multipole expansions and Taylor
series approximations were employed, the maximum number
of BEs per terminal octree box was set tomb ) 12 (i.e., any
box containing more than 12 BEs is subdivided into 8 child
boxes), and the parameter controlling the extent of the near-
field region was set toesc ) 2.0. Calculations performed with-
out Taylor series approximations produced virtually no changes
in computed results, but increased CPU time by a factor of
about 2.

A. Sphere with Interior Charge. The first configuration
considered is that of a unit radius spherical cavity, containing
an interior unit positive charge, surrounded by aqueous solution.
Since analytical expressions for the solution of the linear
Poisson-Boltzmann equation are available for allκ > 0,50,51

this case constitutes a useful benchmark for establishing the
overall accuracy and performance of the FPB code. Two sets

of results, one examining the CPU and storage trends and the
other assessing errors, are presented.

For the first set of calculations, a unit charge is located at
the center of the sphere and the dielectric constants are set to
ε1 ) 2 andε2 ) 80. Results forκ ) 0 (Poisson equation) and
κ ) 3 (linear PBE) were obtained using different resolution
surface grids obtained by recursively subdividing an icosahe-
dron. For comparison, direct computations using low BE counts
were also carried out. Note that Gauss-Seidel + GMRES
iteration rather than full inversion was used in the direct
computation since it is much faster and gives practically identical
results. The CPU times (corresponding to a Silicon Graphics
single processor R10000 operating at 180 MHz) required to
complete the calculation are recorded in Figure 2. Due to
memory constraints, it was not possible to perform direct
computations using more than 5120 BEs. Nevertheless, the CPU
time closely follows a quadratic scaling withN so that reliable
projections of CPU time can be made. These projections reveal
that forN ) 105 an approximately 2 orders of magnitude speed
up is achieved using the fast multipole technology. Also, the
CPU time for the fast BE-based PBE solver closely adheres to
the theoretically anticipatedO(N log N) behavior. The number
of GMRES iterations required to converge the solution is
virtually independent of problem size. At all resolutions,
convergence to machine round-off was accomplished in three
GMRES iterations each involving four fast potential evaluations.
This substantiates the earlier comments regarding the excellent
numerical conditioning afforded by the derivative BEM for-
mulation.24

The greatest performance gains achieved by adopting a fast
BEM Poisson-Boltzmann algorithm are in the storage require-
ments. In conventional BEM PBE analyses, memory costs
normally hinder large-scale calculations well before CPU times
become prohibitive. Figure 3 depicts the number of stored near-
field influence coefficients required for an electrostatic calcula-
tion involving N boundary elements. Since this number domi-
nates the total storage, it constitutes a good measure of overall
memory requirements. For direct summation, the number of
influence coefficients is given exactly by (pN)2, wherep ) 1 if
κ ) 0 andp ) 2 whenκ > 0. The plot confirms that multiple
order of magnitude reduction in memory requirements are made

Wrf(κ,ε2) )
1

2
∑

q

φrf(Fbk)Qk (33a)

∆Welec
solv ) Wrf(κ,ε2) - Wrf(0,1) (33b)

∆∆Welec
solv ) ∆Welec

solv(κ,ε2) - ∆Welec
solv(0,ε2) (33c)

∆Wrf ) Wrf(κ,ε2) - Wrf(0,ε2) ≡ ∆∆Welec
solv (33d)

[∂Wrf

∂κ ]
κ)0

) [ ∂

∂κ
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) [ ∂

∂κ
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) -332
Q2

2ε2
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Figure 2. Computation times required to compute the electrostatic
potential of the unit spherical cavity containing a centrally located unit
charge, immersed in an aqueous solution. The dielectric constantsε1

) 2 andε2 ) 80. Timings were obtained upon a Silicon Graphics single
R10000 processor operating at 180 MHz.
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possible by the FPB analysis. If the maximum number of near-
field influence coefficients allowed is 108, then FPB extends
the maximum number of elements from 4000 to 90 000. It then
becomes possible to address correspondingly larger molecules
and their complexes or to conduct higher surface resolution
calculations than previously possible with the conventional
BEM.

To illustrate the ability to perform truly large-scale calcula-
tions using the fast BEM PBE solver, the results for a 1.3 million
BE calculation are also shown. Unlike the previous results, this
calculation did not employ the Taylor series approximation; also
the octree subdivision criterion for this casemb ) 7. As is
evident from Figure 3, these alterations reduced the total number
of near-field influence coefficients, which rendered the com-
putation feasible on our machine. These modifications also
increased CPU time slightly as seen in Figure 2. The ability to
accommodateO(106) elements in a Poisson-Boltzmann cal-
culation is of great value when contemplating the study of very
large biologically important molecules.

The idealized spherical geometry was used next to assess
accuracy. We varied the distanceFchargeof the charge from the
center of the sphere and monitored the relative error,Erf ≡
(Wrf)comp/(Wrf)exact - 1, whereWrf is the reaction field energy.
In general, there are several potential sources of error such as
surface quadrature, idealization of the surface geometry, trunca-
tion of the multipole series, and approximation of the surface
solution. Space limitations do not allow an in-depth examination
of all these errors. Instead, we seek to (i) show that the fast
multipole approximation does not adversely affect overall
accuracy, (ii) demonstrate how mesh adaptation provides a very
cost-effective approach for accurately modeling molecular
electrostatics, and (iii) identify the dominant error contributors.
Figure 4 shows howErf varies with charge location. The relative
error is quite low and behaves in a predictable manner. The
relative errors incurred when using fast and conventional
summation of the element interactions are similar, which implies
that the errors due to truncation of the multipole expansions
are small compared to other error sources. The discretization
error associated with finite size elements controls overall
accuracy, especially for the coarser surface meshes. This can
be seen upon inspecting how the errors vary with surface
resolution when the charge is placed at the center. From our

experience in calculating the electrostatic properties of actual
biomolecules, it seems that discretization errors dominate in
general. Only when the resolution becomes very fine do
multipole series truncation errors become significant (relative
to truncation error). Thus, initially, accuracy is best improved
by using increasingly finer meshes to reduce discretization error.
A point is eventually reached, however, where the truncation
errors in the multipole approximation become important. Further
reductions in mesh spacing must then be accompanied by an
increase in the number of terms retained in the multipole series
and/or an increase in the extent of the near-field region.

In nonadaptive mesh calculations, accuracy deteriorates as
the charge approaches the surface since the mesh cannot
adequately resolve the increasingly rapid variations in surface
potential induced by the charge. For theN ) 5120 boundary
element discretization,Erf remains below 1% untilFcharge/a )
0.9 (a ) sphere radius); for theN ) 20 480 element model the
same accuracy was sustained up toFcharge/a ) 0.95. In both
cases the height above the surface where the error began to grow
rapidly is abouth ) 2∆s, where the characteristic panel size
∆s ) (4π/N)1/2. To demonstrate the effectiveness of adaptive
meshing, a calculation was performed using an initial discreti-

Figure 3. Number of near-field influence coefficients required in the
calculation of the electrostatic potential of the unit sphere containing a
centrally located unit charge. The dielectric constants are given in the
legend of Figure 1.

Figure 4. Variation of reaction field energy error,Erf, with the position
of a single charge placed atFcharge/a (wherea is the radius of the sphere)
in the interior of a unit radius sphere embedded in aqueous solution.
The dielectric constantsε1 ) 1 and ε2 ) 80. The Debye-Hückel
parameter (a)κ ) 0 and (b)κ ) 3.
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zation of 1280 BEs which were then adaptively refined
according to (32) withfr ) 4. The error is now seen to remain
small even when the charge is very close to the surface. For
Fcharge/a ) 0.985 (the closest charge-surface interaction con-
sidered) the number of elements in the final adapted mesh was
only N ) 1892 and the relative errorErf < 0.5%. By comparison,
a nonadaptive mesh calculation of comparable accuracy would
require approximately 900 000 elements. Clearly, mesh adapta-
tion offers a powerful approach for achieving high accuracy at
low computational cost.

We make a final observation on a charge that is placed well
away from the surface. The error on the calculated electrostatic
potential is closely related to how well the numerical method
represents the distance between the charge and the surface. If
one triangulates the surface of a unit sphere usingN flat elements
whose vertices lie on the sphere, then one can show that the
centroid of each element lies at a radius of approximately 1-
(4.8/N). Thus, for a central charge, the potential induced by the
charge at the element control points differs from the exact value
by about 4.8/N. For the 1280 BE discretization, this difference
is 0.4%, so it is not surprising that the relative error,Erf, is on
this order. Moreover, in this case the error reduces only inversely
with N so that a 10-fold error reduction warrants a 10-fold
increase in the number of elements. This problem could be
simply rectified by using flat elements whose vertices lie on a
slightly larger sphere (or, alternatively, by the use of curvilinear
elements). As the charge approaches the surface, the energy sum
is dominated by contributions from the nearest surface elements
and curvature effects are relatively unimportant. The surface
potential now varies rapidly, and mesh adaptation is the most
effective means of improving overall accuracy.

B. Electrostatic Solvation Free Energies of Alanine Dipep-
tide. As a validation exercise for the FPB code, the classical
alanine dipeptide molecule was considered. Many studies have
examined the conformational dependence of the solvation free
energy of alanine dipeptide, which is a neutral molecule with
22 atoms (e.g.,ref 52). It has been shown that, due to their larger
net dipole moments, the helical-like conformations (RR andRL)
of alanine dipeptide have more favorable solvation free energies
compared to the C7ax, C7eq, and C5 conformers.52 Also, a
theoretical study by Tazaki and Doi53 shows that the confor-
mational stability of different conformations of alanine dipeptide
is affected by the addition of salt. Here, the electrostatic
component of the solvation free energy is computed for different
conformers of alanine dipeptide at zero added salt and 0.1 M
NaCl, using the FPB, DelPhi, and UHBD programs.

The geometries of the different alanine dipeptide conformers
(C7eq, C5, C7ax,RR) were taken from the study of Scarsdale
et al.54 The CHARMM22 molecular mechanical force field55

was used to assign atomic charges and radii. The solvent-
excluded surface (SES) (using a 1.4 Å probe radius) was
employed to define the dielectric interface between the solute
and solvent regions. The dielectric constants were taken asε1

) 1 (solute) andε2 ) 80. The solution temperature was 298 K.
For the DelPhi calculations a 2013 grid with 12.5 grid points/Å
was employed and no focusing was invoked. For the UHBD
calculations a two-step focusing protocol was employed with
grid sizes and spacings of 1403 and 0.5 Å (first step) and 1403

and 0.1 Å (second step). In both DelPhi and UHBD codes, the
potential at each boundary point was set using the Debye-
Hückel approximation and no dielectric boundary smoothing
was employed.

Table 1 summarizes the computation times and electrostatic
solvation free energy predictions obtained with the FPB program

using different BE densities (withfr ) 0). These results indicate
that the energies are essentially converged usingN ) 4328
elements (i.e., higher element counts produce less than 1%
variations in computed energy) or about 200 BEs/atom. The
results reported in Table 2 are obtained with this resolution.
The number of GMRES iterations required to obtain a converged
solution ranged between 4 and 5 for all surface resolutions
considered in Table 1. The computation time essentially varies
linearly with the number of BEs, thus confirming that the
theoretical CPU trends expected for the fast BEM are indeed
obtained in practice.

Table 2 compares the electrostatic solvation free energy of
all four conformers of alanine dipeptide obtained using the FPB
program and finite difference based PBE algorithms. All PBE
codes predict very similar relative∆Welec

solv for the conformers
of alanine dipeptide, based on the CHARMM22 force field
parameters and exactly the same alanine dipeptide geometries.
The prediction of a more favorable electrostatic solvation free
energy for theRR conformer relative to the other conformations
is in accord with published results.52,56Good agreement of FPB
results with the UHBD and DelPhi results is also observed.
However, there is a pronounced difference between our results
at zero added salt and those found in an earlier work obtained
by UHBD.63 This is probably due to differences in the
geometries of the alanine dipeptide conformers, the use of
dielectric boundary smoothing, and different grid spacings
employed in these UHBD calculations. As shown in Table 2
for this neutral molecule, addition of salt practically does not
affect the electrostatic solvation free energy of the alanine
dipeptide conformers. In summary, all PBE codes here consid-
ered predict the correct relative electrostatic solvation free
energies of the alanine dipeptide conformers. However, contrary
to the Tzaki and Doi study, which considered the AMBER
molecular mechanical force field, FPB and UHBD results

TABLE 1: Dependence of the Electrostatic Solvation Free
Energy of the C5 Alanine Dipeptide Conformer (at 0.1 M
NaCl) on the Surface Resolutiona

no. of boundary elements ∆Wsolv
elec (kcal/mol) CPU time (s)

394 -16.90 5.9
638 -13.20 10.2

1210 -12.54 29.8
2336 -12.22 52.2
4328 -12.14 129.9
7954 -12.09 239.4
1338 -12.06 480.2

32856 -12.04 1007.5
67212 -12.04 4590.0

a The timings were obtained on a Silicon Graphics single R10000
processor operating at 180 MHz.

TABLE 2: Electrostatic Solvation Free Energies (in kcal/
mol) of Four Conformers of Alanine Dipeptide (C7eq, C7ax,
C5, and rR), Obtained Using Different Poisson-Boltzmann
(PB) Algorithmsa

PB algorithm C7eq C7ax C5 RR

FPB (N ) 4328 BEs) -10.63 -10.60 -12.14 -13.85
(-10.62) (-10.60) (-12.13) (-13.84)

UHBD -10.31 -10.42 -11.95 -13.66
(-10.29) (-10.41) (-11.93) (-13.63)

UHBDb (no added salt) -9.85 -9.75 -11.00
DelPhi (no added salt) -10.59 -10.56 -12.09 -14.12

a The solute and solvent dielectric constants were 1 and 80,
respectively. The ionic strength was either 0 or 0.1 M. The number in
parentheses corresponds to no added salt.b These results were taken
from Schaefer et al.63
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suggest that the conformational preferences of the alanine
dipeptide are not affected by the addition of salt.

For these small molecules, accurate results are obtained using
relatively low BE counts. These calculations could, in fact, easily
be performed without the fast multipole algorithm. In the
remaining sections, larger numbers of boundary elements are
necessary to properly model the molecular geometry and
produce accurate results. Fast multipole technology is essential
in these calculations since without it the associated CPU and
storage penalties would be prohibitive.

C. Salt Dependence of the Electrostatic Solvation Free
Energy of Barnase and Barstar.Electrostatic interactions are
believed to play an important role in the biological function of
charged proteins. Some studies have shown that salt effects are
significant in the barnase-barstar association process.57-59 In
this section, the salt dependence of the proteinsswild-type
barnase (net charge of+2e) and its tight inhibitor barstar (net
charge of-6e)sare considered. The protocol for preparing the
systems and the assignment of parameters closely follow those
in earlier studies. The atomic coordinates of barnase and barstar
were taken from the X-ray structure of the barnase-barstar
complex60 and the missing residues and hydrogen atoms added
with the InsightII program (Accelrys, Inc). The structures were
then subjected to constrained energy minimization with the
heavy atom positions held fixed. The charges and radii of the

atoms were assigned from the AMBER molecular mechanical
force field.61 The proteins and solvent were assigned dielectric
constants of 4.0 and 80.0, respectively, and the temperature of
the aqueous NaCl solution was set to 298 K. No Stern layer
was considered.

The solvent-excluded (SE) molecular surface (1.4 Å probe
radius) was adopted in the FPB calculations. The initial
triangulation of these surfaces was developed with the MSMS
program followed by mesh adaptation withfr ) 2. The final
number of BEs isN ) 81 597 for barnase andN ) 65 656 for
barstar. Such element counts are well beyond the means of
conventional BEM-based PBE algorithms. For the UHBD
calculations a two-step focusing protocol was employed. The
grid size and grid spacing were 1403 and 2.0 Å in the first step
and 1403 and 0.35 Å in the second run. The boundary potential
was set using the Debye-Hückel approximation. UHBD results
were obtained using both the van der Waals (vdW) and solvent-
excluded surfaces, the latter being obtained by setting the UHBD
code parameters nmap) 1.4 Å (probe radius) and nsph) 500
(number of surface points per atom).

Figure 5 depicts the variation of∆∆Welec
solv with salt concen-

tration for barnase and barstar. The plots clearly show a more
pronounced salt dependence of∆Welec

solv for the molecule with
higher net charge as is expected from (34). Physically, this
means that the transfer of a charged molecule from the gas phase
to the aqueous solution phase is more favorable when the net
charge of the molecule is higher and when salt is added to the
aqueous solution phase. According to (34), at sufficiently low
NaCl concentrations∆∆Welec varies linearly withκ and hence
with the square root of the salt concentration. Both UHBD and
FPB programs predict similar slopes for the charged proteins
at low salt concentrations. At 0.0001 M NaCl, the respective
slopes obtained by finite differencing with theκ ) 0 results
are -7.6 (FPB), -8.5 (UHBD + vdW surface), and-9.6
(UHBD + SE surface) kcal Å/mol. These compare well with
the analytical slope of-8.3 kcal Å/mol. For the more highly
charged protein, the limiting low-salt slopes are-73.1 (FPB),

Figure 5. Ionic strength dependence of∆∆Welec
solv for (a) barstar and

(b) barnase obtained using both FPB and UHBD programs. Both the
van der Waals (vdW) and solvent-excluded (SE) molecular surfaces
are employed to define the dielectric boundary. The limiting low-salt
slopes are in units of kcal Å/mol.

Figure 6. Surface electrostatic potential of barstar. The calculation
was done assuming a uniform dielectric constant of 80 for the solvent
and 2 for the protein interior and physiological ionic strength (i.e., 100
mM NaCl). The color of the surface represents the electrostatic potential
at the protein surface, going from red (potential of-6.8kBT/e) to blue
(potential of+6.8 kBT/e); white is neutral potential.
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-72.0 (UHBD + VdW), -72.8 (UHBD + SE), and-74.7
(analytical) kcal Å/mol. Both FPB and UHBD results show that
the low-salt slope agrees with the analytical result (34)
independent of the molecular surface and interior dielectric
constant (results not shown). At higher salt concentrations the
curves obtained with FPB and UHBD+ vdW diverge from
the UHBD + SES results. The salt dependence of the∆Welec

solv

of barnase and barstar obtained using the FPB code was
reproduced with an alternate finite difference PBE solver (results
not shown). Also, similar behavior was found using either the
vdW or SE surfaces. This is in contrast to the UHBD results,
which show that the salt dependence of these two molecules is
significantly affected by the choice of molecular surface.

D. Surface Electrostatic Potential of Protein Molecules.
Most of the biological activity of a biomolecule lies on its
surface. The mapping of the electrostatic potential on the
molecular surfaces of biomolecules is now widely used in the
identification of potential ligand binding and functional sites
and in determining electrostatic complementarity (e.g., in
protein-protein complexes). In the new era of computational
proteomics, with the increasing number and size of available
high-resolution X-ray crystallography and NMR biomolecular
structures, fast and accurate Poisson-Boltzmann solvers that
generate color-coded surface electrostatic potential maps and
other surface-based electrostatic properties (e.g., induced surface
charge density) are essential. The boundary element approach
used in the FPB code provides high accuracy for such surface
electrostatic potential and induced surface charge density maps
since these electrostatic properties at each surface element is
provided directly, without the need for any interpolation scheme,
such as required in the finite difference PBE approaches. The
FPB software provides VRML files containing the electrostatic
potential and induced surface charge density patterns on the
molecular surface.

Here, as a validation exercise we examine the surface
electrostatic potential of barstar and three elongated protein
molecules: parallel right-handed coiled coil tetramer (PDB
entry: 1FE6; net charge) -20e, 3279 atoms), FinO (PDB
entry: 1DVO, net charge) +6e, 2481 atoms), survivin (PDB

entry: 1F3H, net charge) -6e, 4450 atoms). The input
parameters are the same as used for barstar in section III.C
above. The solvent molecules, ions, and other ligand molecules
in the crystal structures were removed. The hydrogen atoms
were added (using a pH value of 7) with the InsightII program
(Accelrys, Inc.), and the final structures were subjected to a
1000 cycle conjugate gradient energy minimization (based on
the AMBER force field) using the Discover module imple-
mented in InsightII (Accelrys, Inc.). A formal charge set
parameter was used in the Poisson-Boltzmann calculations. The
van der Waals radii were taken from the GRASP62 default radii
parameter set: H) 1 Å; C ) 1.7 Å, O) 1.6 Å; N ) 1.65 Å.
The dielectric boundary between the proteins and solvent was
defined by the solvent-excluded surface using a 1.4 Å solvent
probe. The MSMS program was used to generate the triangular
elements. The number of elements after mesh adaptation (fr )
2) was 117 541(parallel right-handed coiled coil tetramer),
101 794 (FinO), and 145 690 (survivin). The ionic strength of
the solution was either zero or 100 mM NaCl, and the
temperature of the solution was 298 K. The interior dielectric
constant was 2, and an exterior value of 80 was employed.

The globular and negatively charged barstar molecule has a
large region of negative electrostatic potential due to the large
number of negatively charged residues (see Figure 6). Figure 7
compares the electrostatic potential on the surface of the highly
negatively charged parallel right-handed coiled coil tetramer
calculated under the conditions of no added salt and 100 mM

Figure 7. Surface electrostatic potential of the parallel right-handed
coiled coil tetramer at zero added salt (a) and 100 mM NaCl (b),
respectively. The scale is (-10.2,0,+0.5) for (a) and (-5.1,0,+3.4)
for (b), respectively, in GRASP notation and units ofkBT/e, where
negative values are red and positive values are blue.

Figure 8. Mapping of the electrostatic potential (inkBT/e ) 0.59 kcal/
mol/e) on the surface of the FinO basic protein at 100 mM NaCl,
computed with the FPB (a) and GRASP (b) programs, respectively.
The scale is (-6.8,0,+6.8) for (a) and (-10.9,0,+13.3) for (b),
respectively, in GRASP notation.
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NaCl. At zero salt concentration the surface electrostatic
potential is very negative over most of the molecular surface
due to the large number of acidic residues. The screening effect
of the salt produces smaller absolute electrostatic potentials and
regions of positive electrostatic potential appear. Next, we
compare the surface electrostatic potential of the basic FinO
RNA binding protein computed with the FPB and GRASP linear
PBE solvers at 100 mM NaCl. As shown in Figure 8 both
Poisson-Boltzmann codes predict similar regions of both
positive and negative electrostatic potential. Both PBE programs
generate two distinct regions of positive electrostatic potential
(one in the central domain and one in the end of the index finger
of the right-hand fist motif of this protein) that could be regions
where the negatively charged RNA molecule could bind to the
protein. Last, the surface electrostatic potential of a larger
elongated acidic survivin protein obtained with the FPB program
is compared with that computed with the GRASP program. In
Figure 9 we observe that due to the asymmetric distribution of
acidic and basic residues there are many distinct regions of both
positive and negative electrostatic potential. Both FPB and
GRASP electrostatic potential maps are in good qualitative
agreement, with both programs predicting a large region of
negative electrostatic potential in the BIR domains (shown
protruding from the center of the molecule; the BIR domains
are located in the region where the twoR-helices come together),
where zinc ions bind.

IV. Conclusions

A fast multipole algorithm has been successfully incorporated
into a boundary element method to solve the Poisson-
Boltzmann equation. By selecting the appropriate multipole
expansion, problems involving finite salt concentrations can be
accurately addressed with the method, thus generalizing previous
fast boundary element based treatments that were limited to zero
salt concentration. A derivative formulation23 is adopted to
ensure good numerical conditioning at large element counts and
is shown to sustain fast convergence rates irrespective of
problem size. A simple, yet effective adaptive capability has
been incorporated to ensure adequate resolution and allow
efficient modeling of problems involving near-surface charges.
Application of the approach to the idealized configuration of a
sphere containing interior charges has demonstrated good
accuracy and confirmed the anticipatedO(N log N) CPU and
storage trends. For typical meshes, the errors introduced by the
multipole approximation are found to be negligible compared
to those incurred by the use of finite size elements and
approximate surface distributions. Demonstration calculations
involving more than 1 million elements have also been
performed to illustrate the ability to address truly large systems
with a fast boundary element method. Finally, the fast multipole-
accelerated Poisson-Boltzmann solver has been used to study
the salt dependence of electrostatic properties of several
biomolecules. This study has shown that the fast BEM-based
Poisson-Boltzmann solver accurately predicts energies, surface
potentials, and the variations of these properties with salt
concentration for realistic biomolecular configurations.
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