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This article summarizes the development of a fast boundary element method for the linearPB@sonann

equation governing biomolecular electrostatics. Unlike previous fast boundary element implementations, the
present treatment accommodates finite salt concentrations thus enabling the study of biomolecular electrostatics
under realistic physiological conditions. This is achieved by using multipole expansions specifically designed
for the exponentially decaying Green'’s function of the linear Pois®wpitzmann equation. The particular
formulation adopted in the boundary element treatment directly affects the numerical conditioning and thus
convergence behavior of the method. Therefore, the formulation and reasons for its choice are first presented.
Next, the multipole approximation and its use in the context of a fast boundary element method are described
together with the iteration method employed to extract the surface distributions. The method is then subjected
to a series of computational tests involving a sphere with interior charges. The purpose of these tests is to
assess accuracy and verify the anticipated computational performance trends. Finally, the salt dependence of
electrostatic properties of several biomolecular systems (alanine dipeptide, barnase, barstar, and coiled coil
tetramer) is examined with the method and the results are compared with finite difference PBiskomann

codes.

I. Introduction immersed in salt solutions entail considerable computational
effort since they involve a large number of ions and water mole-
tcules and require accurate iowater, ion-ion, and ion-solute

potential functions. Obtaining thermodynamic quantities, such
as solvation and binding free energies, from free energy simu-
lations of biomolecules immersed in agueous salt solutions is

The properties and function of numerous charged biomol-
ecules and their complexes with other molecules are dependen
on the ionic strength of the environment. For example, the
conformational stability of highly charged peptides and proteins

is greatly affected by changes in salt concentration. Similarly, even more challenging. The introduction of efficient particle-

the binding affinities and association rates of blomolec_ular com- - <h Ewald (PME) algorithr8 which accurately account for
plexes are also strongly dependent on salt concentration. There;

fore, computational tools that reliably and accurately predict long-range Coulombic interactions has promoted the popularity

ionic strength dependent electrostatic interactions are essentiag>f S?;fnrgﬂf%‘gigfsyigggg stlvTeL\llzrocT:s ﬁ?edthzglg\év\?:ntlizgsirch
for an improved understanding of many biological processes. y : ’ P

- tools and advances in computer power, molecular dynamics
Moreover, to offer the user the ability to address large molecules _. ) o o
using readily accessible computers, the CPU and storageS'mma.monS of lonic strgngth effect's.m biomolecular systems
demands imposed by such tools must be kept at a minimum. 2"€ St",' T]Ot practical using an explicit §olyent moé;el.

The different theoretical approaches used to model salt effects _IMPlicit solvent models adopt a semi-microscopic treatment
in biomolecular systems can be divided into two broad cate- ©f the solute, but characterize the solvent in terms of its
gories according to whether they employ an explicit or implicit Macroscopic _phy3|cal properties (e.g., dielectric constant, ionic
solvent model. Explicit solvent models adopt microscopic Strength). This allows ionic strength effects to be accurately
representations of both solute (e.g., biomolecule) and solventeproduced at much Iower_computatl_onal_ c_ost than with explicit
molecules. Typically, explicit solvent-based approaches employ solvent approaches. For th!s reason, implicit sol\_/ent models such
potential energy functions and sample the conformational space®S those based on the Poiss@oltzmann equation (PBE) are
by either molecular dynamics or Monte Carlo techniques. "OW widely used. In particular, the linear Poissdoltzmann
Explicit solvent approaches produce accurate results, but are@Pproach considered here has been successfully used to account

very computer intensive. Molecular dynamics of biomolecules for the salt dependence of a variety of thermodynamic quantities
such as binding free energiepK shifts>~7 and biomolecular
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idealized geometries such as spheres and cylinders. For the (v) The electrostatic field of point charges and surface

complex molecular surfaces and arbitrary charge distribution elements is reproduced exactly at all points in space using the
of real molecules, the linear PoissoBoltzmann equation must  explicit mathematical expressions. This feature, in conjunction

be solved numerically using one of various numerical tech- with the inherent error averaging properties of an integral

niques. The most popular means of solving the linear Poisson method, confers high accuracy to the BEM.

Boltzmann equation is the finite difference method (FU‘W4 In ||ght of these advantageS, the BEM, especia"y when
In this approach, a discrete approximation to the governing accelerated with the fast methods described below, can provide
partial differential equations is procured upon a volume-filling 3 computational approach superior to FDM. However, the BEM
grid. Ideally, a boundary conforming grid (i.e., one that does js also valuable as an independent analysis tool for confirming
not intersect the molecular surface) is prefeffetiut such a  results. While the FDM and BEM use very different mathemati-
grid is difficult to generate about a complex molecular shape. cal and numerical approaches, when applied to the same
Therefore, in most implementations, such as the Wldely used governing equation (as done here) they should converge to
UHBD and DelPhi code}*%*® a regular lattice is laid over  identical answers as mesh resolution is increased. Therefore,
the molecule and cells are allowed to straddle the molecular gpplying FDM and BEM to the same problem provides a way
surface. A regular lattice arrangement also lends itself well to of establishing high confidence in the predictions (i.e., the FDM
efficient mu|tlgl’ld solution teChanues for Solving the a|gebraIC and BEM results are in close agreement) or uncovering mode“ng
equations resulting from the discretization of the partial dif- proplems (i.e., they show significant differences) that indicate
ferential equation? The finite element method differs from  the need for reexamination or higher resolution. The need for
the finite difference approach in that variational principles rather jndependent analyses of this kind has grown as increasingly

than finite difference approximations are used to derive the complex biomolecular systems come under examination and
discrete equation$:*>?> A major reason for adopting a finite  converged results are harder to establish.

element approach is that it accommodates unstructured grids
which offer improved geometric flexibility and variable mesh J1

spacing, albeit at considerably higher per-node storage and CP interactions between all elements. For a problem invol\Nhg

costs Cgmpared to .a regular lattice arrangement. ) elements, the calculation of the potential at all elements entails
Solutions to the linear PBE can also be expressed in termso(Ng) interactions. Moreover, each interaction involves singular
of singular surface in_tegrals. This representation is the basis Ofintegrals whose analytical and/or numerical evaluation is
the class of numerical procedures known as the boundaryexpensive. Inversion of the matrix to solve for the surface
element method (BEM). In the basic approach, the molecular potentials require©(N3) operations for direct inversion and
surface is approximated by a collection of boundary elements o(mn) for m steps of an iterative inversion method. Therefore,
whose electrostatic potential and normal potential gradients arej, practice, application of boundary element based Poisson or
to be determined. Once these surface values are known, th@jnear PBE algorithms has been limited to small numbers of

electrostatic potential at all other locations can be computed poyndary elements (up (1) and consequently small to
explicitly using the appropriate boundary integrals. Equations medium-sized molecules.

for the surface values are derived by considering the limiting
forms of the electrostatic potentials as one approaches the
molecular surface from the interior and exterior regions.
Numerous boundary element codes exist for solving the Poisson
and PoissorBoltzmann equations (e.g., refs-231). Because

In the conventional BEM, these advantages are offset by the
igh computational cost incurred in evaluating the mutual

To address these costs and accommodate large biomolecular
systems, fast multipole algorithms (FMA) have been em-
ployed3? These methods carefully combine a hierarchical
grouping procedure that assembles the elements into nested
o : . . . groups together with a low-cost multipole-based approximation
ic::t:ihnesit(): a;:jcvgﬁz;eensciié? Iﬁremlgtl)al\t/lloi?cmgiﬁgmeerf‘é?% ?N(i:r?;am metho_d for evaluatir_lg the pot_entia_l induced by_ an eleme_nt group,

. s . ! ) to achieve substantial reductions in computational requirements.
(i) The solution is completely characterized in terms of surface o example, the use of fast multipole algorithms in BEM-based
distributions. This “lowering of dimensionality” resu_lts in fewer  poisson equation solvers has led to orders of magnitude
unknowns compared to the FDM where the solution is devel- reqyctions in both storage and CPU compared to conventional
oped over the entire three-dimensional volume. implementationd334 However, since the Poisson equation

(i) Far-field boundary conditions are enforced exactiy addresses only zero salt conditions, such fast BEM Poisson
the FDM the grid is of finite extent so that the solution at the programs are limited. To our knowledge, fast multipole methods
outer boundaries must be approximated or calculated by alternatéenave not been previously incorporated into a BEM for solving
means. the PoissorrBoltzmann equation. Here, the fast BEM is

(iii) The surface geometry is represented to high precision extended to accommodate both the Poisson and linear Peisson
since the orientation and position of each boundary element areBoltzmann equations at finite salt concentrations. This is
close to those of the true surface. In the FDM only an accomplished by incorporating new multipole expansions that
approximate “staircase” rendering of the surface is possible sinceare explicitly designed for the exponential Green’s function
it is straddled by the grid cells. Hence, for comparable associated with the PBE.In the limit of zero salt concentration,
characteristic grid spacings, the discrete surface approximationthese expansions revert to the classical expansions for Cou-
adopted in the BEM will generally deviate much less from the lombic potentials.
true surface than in the FDM. Following a review of the boundary element method applied

(iv) The exact surface boundary conditions are explicitly to the linear PoissonBoltzmann equation, this article describes
enforced. In the FDM, continuity in the electrostatic potential how to formulate and implement a fast multipole algorithm to
is imposed, but the constraint upon the normal electrostatic field reduce computational costs. This section also introduces a mesh
is only weakly enforced in an average sense. Unless a boundaryadaptation method that allows high accuracy to be achieved with
conforming mesh is employed, there is no assurance that thefewer elements and provides a useful analytical result for
normal field at the surface converges to the correct value asvalidating any linear PoisserBoltzmann solver. This section
the grid spacing is reduced. is followed by an assessment of the computational performance
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and accuracy of the method when applied to the idealized case =y G = =

of a spherical cavity containing interior charges for which #(R) =4 —G,(R3) an(P) T 5 (Rp ) u(p)| dSRe L,
analytical solutions are known. Finally, the method is used to (6)
calculate the electrostatic properties of realistic biomolecules

including different conformers of alanine dipeptide, barnase and where the fundamental solution for the linear PoissBoltz-

barstar, survivin, coiled coil tetramer, and FinO. mann equation
Il. Methodolo = exp[—x|§ -9l
v | GRp) =P @)
A. Formulation. In this work, the solute molecule is treated 4r|R — p|

as a regionQ;, of low dielectric constantef) containing the
atom centered point charges and the surrounding solvent region,
Q,, is modeled as a structureless dielectric continuum having
dielectric constant,. The mobile ions are treated implicitly and
obey the Boltzmann distribution. Also, the Stern layer is omitted.
The solute is described in terms of its three-dimensional structure

obtained from NMR/X-ray crystallography or molecular model- im ¢(§) —¢(R) + fS[G (R P) (p)
i, 0

Note thatGo(ﬁi)') is the fundamental solution for the Poisson
equation. Using well-known limiting relations, (5) and (6) reduce
to the following forms as the evaluation poiR, approaches
the surfaces

ing techniques. The molecular surfaBgseparating the interior

and exterior region$€2; andQ,, can be taken as either the van 9G

der Waals, solvent-accessible, or solvent-excluded surféces. _()(§ 5) (o)
The choice of which molecular surface to use as the dielectric ’
interface is still open to deba#é.For Ny fixed interior point

charges,Qx, located at atomic centergy, the electrostatic . - 1 - = U
potential, #(R), at a point,R, in the interior regionQ, is %L@MR) =u(R) +#4—G.(Rp) )+
governed by the Poisson equation:

Ng

ds+ kz AGo(R By (8)

[ CH
—n (RP) u(p)| dS (9)
Ny n
2 DY — D _ =
V(R = I(qué(R h (1) where a locally smooth surface is assumed &idand St
represent the surfaces located an infinitesimal amount below

whered(s) is the Dirac delta function andy = Qules. In the (i.e., inQ) and above (irk2;) S respectively.
exterior regionQ;, the electrostatic potential, obeys the linear Equations 8 and 9 in conjunction with the specified boundary
Poissor-Boltzmann equation: conditions, (4), comprise a complete set of equations that can

be solved for the surface distributions ¢fand d¢/on. A so-

_ called “nonderivative” boundary element (BE) formulation
(V" =+ Ry =0 (2) derived directly from these equations is adopted by several
groups?®31.38 Unfortunately, the resulting system of linear
algebraic equations becomes increasingly ill-conditioned as the
number of boundary elements grows. For this reason, the
alternate “derivative” BE formulation introduced by Juffer and
co-workerg® is used which maintains a well-conditioned sys-
tem of algebraic equations for arbitrary boundary element

The Debye-Hickel screening parametar, representing the
attenuation of electrostatic interactions by the presence of salt
in the solution, is related to the ionic strength of the aqueous
salt solution,|, according to

2
K= 8rel (3) counts?* Under this approach, (8) and (9) are linearly combined
ekgT to obtain
wheree s the elementary chargks is the Boltzmann constant, 1 _ o
andT is the solution temperature. 1+ )R = $4(G, — G,) —(p) —
At the common interface between the two regions (i.e., an N
dielectric boundary), the electrostatic potential and the normal 3Gy G, d
gradient of the electric displacement are continuous; thus an ¢(P) dS+ Z quo(R P (10)
¢(§) =y(§),%(§) =€ %%(ﬁ);ﬁ €S (4a,b) Note that (4) has been used to eliminateand du/on. A

second equation is obtained by differentiating (8) and (9) with
respect to the normaiy = n(R) and combining the results to

wheree = exle; andti is the surface normal directed outward produce

from region Q; to Q». The regularity conditions that both
Ru(R) and RZVM(R) remain finite asR = |R| — oo also apply.

The general solution for the electrostatic potential in each 1 14 (}) %(ﬁ) _ Gy 195 a¢ 25—
region is given b¥? 2 el| an, an, € any/ an
- g 3G, _ ’G, G, N 3G,
¢(R) = fs[Go(R,ﬁ) %(*p) - E(R’T)) ¢(p)| dS+ angon  angan ¢(p)| dS+ Z G (R p (11)
%qkeo(ﬁ,;sk), Re Q, (5) The linear combination (11) is unique in that nonintegrable
k= singularities are completely eliminated. In any other combina-
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tion, the second-order gradients give riseQi/r3) hypersin- and inversion techniques. The immediate difficulty concerns the
gular integralg? 1/rP singularities present in the integrands. Gauss quadrature
B. Discretization and Quadrature. In the present work, a  methods developed for smooth functions are ineffective near
discrete approximation to the integral equations, (10) and (11), such singularities and can require hundreds of quadrature points
is obtained by dividing the molecular surface into a collection to achieve even moderate accuracy. An improved approach is
of boundary elements (triangles and quadrilaterals) and ap-to transform to polar coordinates which essentially reduces the
proximating the surface solutiong,and d¢/on, by piecewise order of the singularity by 1 and thus is useful for integrands
constant distributions. This combination constitutes a “low- of O(1/r). However, additional and rather elaborate procedures
order” model since the higher order effects of surface curvature must be employed to tackle the more complicated singularities
and solution variations over each element are neglected.associated with the normal derivative;,/an. In the current
Curvilinear treatments that capture these higher order effectswork, advantage is taken of the fact that for zero ion screening
generally deliver better accuracy, thus allowing fewer elements (pure Coulombic potentials) and planar elements the quadratures
to be used, but require more CPU per element and morecan be evaluated exacfly.#! For finite salt concentration(
elaborate quadrature schemes. Conversely, low-order descrip= 0) such analytical expressions do not seem available.
tiong?6:29.34facilitate the construction of robust surface quadrature Nevertheless, it is possible to separate each integral into (i) a
rules for the singular integrands, are less sensitive to surfacesingular component correspondingste= 0 which is evaluated
mesh imperfections such as gaps or overlaps, and are ideallyexactly and (ii) a smooth, nonsingular correction term that
suited to mesh adaptation. Note, however, that the fast multipoleaccounts for the finite salt effects and can be accurately
algorithm can be equally well applied to both low- and high- evaluated by Gauss quadrature. The regular correction term
order methods. vanishes ag — 0 so that in the absence of ion screening all
Let the molecular surface be represented by a collection of integrals are performed analytically.
N boundary element$, each having area, normal, and centroid  To illustrate, consider the expression #y;;. Starting with
denoted by, n;, andR;, respectively. Under this representation

equations, (10) and (11), governing the electrostatic potential G, e @4wr) = -
# = ¢(R) and its normal potential gradieht = a@(R)/an;, at oy~ VG =M |———(R-p)[,r=IR—-pl
the center of element, reduce to r (14a,b)
1 N N and replacing the exponential factor, €xxr}, by its Taylor
5 1+ e = Z Ay + Z Agiihy + series, then one can readily identify all singular terms. This leads
=1 g to
Ng r
By e “"(1+«r)— -
k; AGo(Rip) =Ty (122) VG, = — %(R —P)=— r_];'(R - %) -
T\ N N 9G, _ R—5)
‘(1 + _)hi = ZA3ij¢j + ZA4ijhj T Z O ——(R.p) =Ty Al (19)
2 € = ' J_: ' k= 8no
=1 (12b) where the nonsingular function
where e (L+kr)—1
dy(ery =L =1 , ) (16)
ad Tr
Ay =/, ar€Ce — Go) dA (13a)

It is easy to show thatd;(«x,r) — —(x%2) asr — 0; also,
_ _ di(x,r) — 0 asx — 0 so that this term vanishes with decreasing
A= | Gy— G, dA 13b L . :
2 f A0 « (13b) salt concentration. For smailldi(k,r) is accurately and robustly
evaluated in terms of its Taylor series expansion; for larger

2 2
Ay = f G, _ Gy (13c) values ofr, (16) is used directly. Substituting (15) into (14)
A A\dn, an  an, an and then into (13a) leads to
a 1
Ay = —(G ——G)dA 13d 9 3Gy
i ﬁﬁani 0 ex (13d) Ay = fA‘_%(eGK—GO)dA=(e—1) ﬁimdA—i-
] —
Note that for planar surface elements the diagonal entries of ﬁj'(R —p)
these coefficients reduce tdy;i = As5i = 0, where the fA,Edl(K’r) r dA (17)

Cauchy principal values of the quadratures ao¢ included
since they are already accounted for on the left-hand side of The first integral on the right-hand side involves only the
(12). The surface solutiongy and h;, are obtained by in-  Coulombic potential and is evaluated in closed féfnf! The
verting the N equations, (12). Once these surface values are second integral involves the smooth functiai(,r), and the
known, the electrostatic potential can be computed in the in- nonsingular termfj(R — p)/|R — 5|, whose magnitude is
terior and exterior regions using the discrete forms of (5) bounded by unity. This integral is accurately evaluated by Gauss
and (6). guadrature. The remaining coefficients in (13) are treated in a
The accurate and efficient evaluation of the boundary element similar fashion.
integrals is essential to obtaining reliable predictions of the  C. Fast Multipole Method. Evaluation of the Al influence
electrostatic potentials. However, the procedure is only briefly coefficients, Agjj, is time-consuming. Moreover, during the
described here since the emphasis is upon the fast summatiorsolution process these coefficients must be accessed several
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Form multipole Evaluate and third kind are defined as

coefficients at multipole
location, R4 expansion

i—t'?ﬂcog irrwllz(z) = lel mi12(2) (19a)
Boundary
7T

Extrapolate to evalu- % = [Z
ation ':D)?)int, R, using Km+l/2(z) - 22 KrT'H—l/Z(Z) (lgb)

Taylor series

wherelm12(2) andKmy1/2(2) are the corresponding conventional

Figure 1. Schematic showing the location of source and field points (j.e., not spherical) modified Bessel functions of the first and
relative to the origin of the coordinate system. third kinds, respectively.

times, so in the interest of reduced computation time, it is Itis convenient to define

advantageous to store them after the first evaluation. The storage
then scales asNf so that even at the modest resolutiorNof

10 000 the total storage is 1.6 GB (for single precision), which
exceeds the in-core memory capacity of most present-day 1
workstations. To reduce these computational bottlenecks and G.(2 = 2 4l K @ (20Db)
address large systems, recourse is made to fast multipole m m1-35..-2m—1) m+1/2

methods. These methods combine two basic components. The

first is a hierarchical grouping procedure that assembles the BEs . memk(9.¢)

into nested groups of specified size. Because of its ability to W(p) = —c. (21a)
readily accommodate complex BE assemblies, the adaptive data mk

1:3:5-...(2m+ 1).
On(d) = 2& MEL D (209)

structure known as an octr@ds used for this purpose. The ~ 4z CorYmdouB)

octree also facilitates efficient search operations and tests to YmdR) =57 ) (21b)
distinguish between near- and far-field interactions. The second

component is a multipole approximation to the electrostatic 2m+ 1)(m— K!(m+ K)!

potential and forces induced by a collection of BEs at suf- Crk= \/ e (21c)

ficiently well-separated, far-field points. The remaining near-
field interactions are computed in the conventional way using
direct evaluation.

The successful incorporation of fast multipole methods into

BEM-based electrostatic models has been demonstrated by - e i ~ =
several researchet$3443However, all past such implementa- 4rG(Rp) = nZo Gn(kp) Gr(kR) z YenlP) Y (R)

tions have been restricted to zero salt concentratios (). k=mm (22)
The reason for this is that whereas multipole expansions
have been thoroughly developed for Coulombic potentias, This rearrangement is useful in several respects. First, when

= 1/(4nr), the generalization to screened electrostatic inter- x — 0, the small argument behavior of the SMBFs reveals that
actions of the formG, = e */(4xnr) has only recently re- gm(kr) — 1 andGm(kR) — 1. Thus

ceived attention. In ref 35, a fast multipole algorithm that

formally accommodates solutions to the linear Poisson 1 e m

Boltzmann equation was described. This algorithm is appli- i R7) = _ — = *( R

cable to both zerox(= 0) and finite salt £ > 0) conditions IKILTJJLMG’((R’p) r n;, Z Pl P) Ymi(R) (23)

and forms the basis of the present fast BEM Pois®witzmann

analysis. The following discussion briefly reviews the multipole 54 that the multipole expansion for the Coulombic potential is

expansion for the Green’s function,"&r, and then describes  recovered. This analytical result is also easily reproduced

how it is used in the context of the BEM solution of the linear numerically using the rapidly convergent and stable (with re-

PBE. ) ) . . spect to round-off) small argument representationgpand
Consider (see Figure 1) one of a collection of source points g The rescalings for the spherical harmonic functions, (21),

located at positionp, and an observation poirlR. The relative are motivated by the simplified integral expressions sy

position vector between the source and observation point is g+ which facilitate development of recursion relation-

= R — % and the distance is = [f|. Upon expressing the  ghips and evaluation of these functions in Cartesian coordi-

position vectors in spherical coordinates, i.g(p,0,¢) and nates. These functions are also directly related to the so-called

R(..R’a’ﬁ)’ a well-known m“'?'po'e expansion for the Debye “inner” and “outer” functions,lkm(b’) and Oﬁ](ﬁ), employed by

Hiickel (screened Coulombic) potentfavalid for R > p may White and Gordoff and are useful in that there is no need to

be written as follows: transform to spherical coordinates to evaluate them. Complete
details regarding these functions are given in Appendix A of
ref 35.

Another very useful property of the products

which when substituted into (18) produce

k==m

—KI

- e © . . m
4aG (Rp)=—=8 Zo |y 1/2(k0) Kook R) Z
= k=—m

r

Ynd0.8) Y (a,5),R> p (18) = =
00 T QuilkR) = GrkR) YR (24)
where Yk is the spherical harmonic function of orderand
degreek. The asterisk denotes the complex conjugate, and is that their spatial gradients can be expressed as linear
the spherical modified Bessel functions (SMBFs) of the first combinations ofQq of different order and degree:
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! Qmi1k-1
VQn= 5 i 0 Qmi1k
020 Qmi1xt1
K2 mel,kfl
[Nd —Qn1x (25a)

(2m— 1)(2m+ 1)"

m—1k+1
[N,] = diag{ (m+ K)(m+ k — 1), (m+ K)(m — k),
(m—K(m—k— 1)} (25b)

Recursive application of this relation allows derivatives of
arbitrary orderg, to be developed (simply insert appropriate

Boschitsch et al.
n¢
1 ny¢
B} = — W (5) dA 29a
{mj%AMF i) (292)
i

ng
f = 1 ny¢ -
{Bmd j;;} Jo s ‘gm(xp)lvmmdA (29b)
J

Note that these coefficients are independent of the evaluation
point, R, and can be calculated using only the properijgs,

— 1 order derivatives on the right-hand side of (25a)). Note and the element geometry) of the BEs in the grdu@}. The
that if « — 0 then the second term on the right-hand side of integrals in (29) involve well-behaved nonsingular functions and

(25a) disappears and— ¥mk So that the identity foVymk

is obtained. The derivations of these relations and additional

are evaluated using Gauss quadrature.
Having established the multipole expansions for a group of

properties of the SMBFs appear elsewhere (see Appendix B inelements, the fast evaluation of the electrostatic potential at any

ref 35).
D. Fast Computation of the Electrostatic Potential.To see

how the multipole approximation is used in the context of a
fast BEM linear PoissonBoltzmann equation, consider the

electrostatic potential induced by a collection of BEs,{ G},
at a well-separated poinR. From (5) and (6)

96 (R = > i, GoRAN + V Go(RF)-Tigy dA (262)
(G}

- — =
s (R =— z ![;\ GK(R,ﬁ);hj + ViG.(R6) ¢, dA
J(G} (26b)

whereh; = (d¢/9n); and the surface boundary conditions, (4),

have been imposed. Substituting f&; in (26b) using the
multipole expansion, (22), and reordering:

_ hj B
v g heen g { 3,

h B
;ng(xp)wmk(ﬁ) dA} G, (kR *(R) (27a)

Ve 472G (RP)Fip dA =V
R jeé} fAj K( p)n]¢] R ; {JE%;}
S, In0) P (BT dA} G (R) i (R) =
2(3 i, o)W ()T 0A}-VeQui (k) (27D)

point in space becomes a matter of organizing the calculation
to appropriately sum contributions from far- and near-field
groups. The far-field contribution from a well-separated group
of BEs is given by (28). In general, there will be several such
groups{ G}, for which a multipole expansion may be invoked
and these groups are identified during a pruned downward search
through the octree. Contributions from all remaining BEs not
contained in one of these groups must be evaluated directly using
the conventional singular integrals. In this way all BE contribu-
tions are accounted for, so that from (5) and (6):

R) =
¢( ) J'Dga} fAj

dA +

- a
tho(R'P) — ¢ —Gy(Rp)
Nq

Z G k; 4Go(R 5y (30a)

1 ~ 0
NG.(R7) — ¢ —G,Rp)| A+

€ i

R =
“® J'Dgu} fA’

Y ey (R) (30)

The first sum contains contributions from BEs considered
near-field toR—those that are not contained in one of the well-
separated groudss.}. The second sum contains the contribu-
tions from the far-field groups and are evaluated using the
multipole approximation, (28).

The simplest implementation that does not use any Taylor
series extrapolations proceeds as follows:

1. Develop an octree about the configuration of BEs and

In the last identity, (27b), the definition (24) has been used define the hierarchical groupach group{G}, is comprised
and gradient operator transferred as indicated since the termsf the BEs whose centroids lie within a particular box or cell,

inside the bracket§-} are independent oR. The far-field

approximation to (26a) is similarly derived using the limiting

form of the expansion, (23), as— 0. Thus, one obtains

M m
¢ (R =+ 33 {Vevmd(R i (R}{BLY (289)

k=—m
M

ua® =- > 2 {VeQui(R): Qu(RH{Br}  (28b)

=0 k=—m

where the expansion has been truncatetterms to reflect

practical implementation. The multipole coefficients for the

group of BEsjj € {G}, are

o, of the octree.

2. Compute the multipole coefficien®9mandB<m for each
group according to (29).

3. Loop over the evaluation points (usually an element
centroid or a charge sitel), For each evaluation point conduct
a top-to-bottom search through the octree. Starting with the root
cell encompassing the entire domain, descendant cells are
recursively searched and processed according to the following
conditions:

(@) The cell is far-field-evaluate the multipole evaluation
and prune the downward search at this cell (i.e., do not search
through any descendant cells).

(b) The cell is near-field and has no descendant edtlep
over the BEsj, in this cell and evaluate contributions directly.
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(c) The cell is near-field but contains descendant eells near the surface the local surface solution behaves(@s~
continue search through the descendants. A — pul and @¢/an)(p) ~ BR+(p — pK)/|p — pxl3. Hence a$p

A cell, o, is classified as far-field with respect to evaluation — ok the surface solution becomes singular. The use of higher
point,R, if IR — Ry| > (1 + es)Qq, WhereRy, is the cell center order interpolation methods is unlikely to offer computational
and Q, is the group size. benefits in this case since they only provide good approximations

The preceding algorithm formally exhibit((M + N) log to solutions that are very smooth. Juffer and co-worers
N) computational cost wherb! is the number of evaluation  addressed the problem of modeling near surface charges by
points andN is the number of BEs. The computational cost introducing the technique of charge peak separation. Here the
can be reduced further ©(M + N) (not including the cost of  surface solution is separated into a rapidly varying part that is
constructing the octree) through the use of Taylor extrapolation approximated analytically and a smoothly varying part that is
(also known as inner-to-inner translations). Here the loop over obtained by the boundary element method. Though improving
individual evaluation points in step 3 above is replaced by accuracy, this approach appears to substantially increase the
another top-to-bottom octree search. Finally, the charge-inducedcomputational costs and coding complexity (e.g., obtaining
Coulombic potential appearing in (5), (10), and (11) can also accurate surface quadratures of the rapidly varying terms is
be evaluated using the fast algorithm. In the interest of brevity, nontrivial). Spatial adaptation, on the other hand, is very easy
the reader is referred to ref 35 for more detailed descriptions of to implement in a low-order fast boundary element method,
these operations. requires no alteration to the basic code except during the initial

E. Inversion for Surface Distributions. The preceding grid setup, and offers good a priori error control.
section developed fast evaluation procedures to calculate the In the present implementation, an elemdnts uniformly
electrostatic properties at a pomiventhe surface solutiong; subdivided if
andh;. In the BEM, however, one must first solve an inverse =
problem and deduce the surface singularities satisfying (12). IR — ol < fAs (32)
To this end, an iterative procedure must be used since in the ~
fast BEM the full influence coefficient matrix is no longer Wwherep is a fixed charge positiorRR is the element control
available (far-field contributions are represented by multipole point, As is the characteristic element size, ads a user-
approximations). The simplest method is GatSsidel iteration ~ specified parameter controlling the degree of mesh adaptation.
where the boundary elementsare visited in succession and If fr = 0, no mesh refinement takes place;fass increased,
the solutionsg; and h; are updated before proceeding to the Mmesh refinement s carried out to smaller scales and takes place
next boundary element. For each elemerthe right-hand side ~ at more distant locations from the charges. Generally, at least
of (12), ry; andry;, are first computed using the current values fr = 1 is recommended to ensure that the piecewise constant
of ¢j andh;. The local solution is then updated according to ~ solution representation does not invite gross efrer3 appears

to deliver consistently good accuracy. The criterion (32) is

1 1 applied recursively to the initial triangulation by sweeping
5(1 +e) Ay Ag i — §(1 + €, through the elements and subdividing those whose size exceeds
1 nNAR[ = 1 1 (31a) the permissible level. The subdivided elements are revisited to
—Agji E(l + g) ' Mo — 5(1 + g)hi see whether they need to be further subdivided. This process
continues until no further subdivision takes place.
¢~ ¢t Ag, h—h + Ahy (31b) G. Pre- and Postprocessing and Overall Code Operation.
The fast BEM-based treatment of the linear PoissBaltzmann
before proceeding to the next boundary element. equation has been embodied in Continuum Dynamics, Inc.’s

To improve convergence further, a generalized minimal FPB (Fast PoissonBoltzmann analysis) code. To successfully
residual (GMRES)-based outer iteration strategy is also in- conduct an electrostatic calculation, FPB must be accompanied
voked?#® One GaussSeidel sweep essentially modifies the by (i) a surface mesh triangulation routine and (i) a file
solution vector{y} = {¢,h}, from {y}" to {y}"1. An error containing the atomic coordinates, charges, and radii for the
vector,{e(y")} = {y}""1 — {y}" can therefore be defined and biomolecule being studied. A typical electrostatics computation
the GMRES scheme invoked to soli&fy)} = {0} by adjusting exercising these components proceeds as follows. A formatted
{y}. A description of how GMRES is applied to this equation file containing atomic coordinates, charges, and radii is read in
is given elsewhefé47 and will be not be repeated here. The by the FPB code. The atomic positions and radii are then passed
combination of GaussSeidel and GMRES iteration produces to the surface triangulation routine. In our work, the efficient
very efficient convergence rategypically no more than 10 and robust MSMS triangulation routine developed by Sanner
20 evaluations of the right-hand side are required. More and Olsof® (MSMS is available from http://www.scripps.edu/
importantly, convergence is virtually unaffected by the number pub/olson-web/people/sanner/html/msms_home.html) has been
of BEs—a result that is attributed to adopting the numerically adopted for this task. This software generates the molecular
well-behaved derivative BEM formulatich. surface and creates a pair of files defining the associated

F. Mesh Adaptation. A primary advantage to using a low- triangulation. The FPB code also has the capability to read the
order boundary element method is the flexibility it offers for appropriate files from other surface triangulation programs such
adaptive mesh refinement. This advantage arises because in thas SMART4® The MSMS or SMART files, together with the
piecewise constant representation the surface solution is storednolecule input file and a run file specifying desired input
at the element centers rather than at the element nodes (as iparameters and outputs, are read in by the FPB software. Upon
typical of higher order treatments). This allows surface elements completion of the calculations, postprocessing operations are
to be subdivided independently from their neighbors without carried out. Currently, various energies (Coulombic, reaction
having to maintain a logically contiguous element-to-element field, total electrostatic, etc.) are evaluated together with
connectivity structure. Mesh adaptation is especially beneficial potentials and fields at the charge sites. Optionally, electrostatic
when some of the interior charges are in close proximity to the properties can be evaluated at user-specified points and surface
surface. One can shéWthat for a single charge located &t electrostatic potential maps can be created in the VRML format.
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I1l. Results

Numerous computational experiments have been carried out

to validate the FPB code, assess its computational performance
and accuracy, and demonstrate its ability to treat large molecules

of biological interest. In the following section, results are first
presented for a sphere containing interior charges. Analytical
results are available for this case, thus allowing rigorous
assessment of accuracy. Calculations for biomoleetdémine
dipeptide, barnase, barstar, survivin, FinO, and a coiled caoill
tetramer-are then performed and compared against predictions
using the finite difference PoissetBoltzmann codes, UHBD,
DelPhi, and GRASP. Of particular interest in these studies is
the salt-dependent behavior of the energetics of biomolecules.
Quantitative measures of this behavior are provided by the
following energies:

1 —
Wi(k€5) = Ez%(Pk)Qk (33a)
q
AWER = Wii(k,€,) — W(0,1) (33b)
AAWER = AWER(k €2) — AWgi(Oe,)  (33c)
AW, = Wy(k,e,) — W(0,6,) = AAWER  (33d)

which are, respectively, the reaction field energy, electrostatic
solvation free energy, and ion contribution to the electrostatic
solvation free energy. The last expression shows pol

is equivalently the ion contribution to the reaction field energy,
AW The reaction field potentiadyy, is evaluated at the charge
sites,pk, and is defined as the surface integral appearing in (5)
(i.e., omitting the last sum in (5) which represents the Coulombic
potential). One can show that in the limit of zero salt concentra-

tion:

8er _ 0 _ i ol ] — Q2
[W k=0 B [&(Awrf)] k=0 B [f}IC(AAVVZIeD k=0 =33 €s
(34)

whereQ is the net charge. The conversion factor of 332 assumes
that Q has units ofe (i.e., protonic chargey is expressed in
1/A and energy is given in units of kcal/mol. The result (34)
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Figure 2. Computation times required to compute the electrostatic
potential of the unit spherical cavity containing a centrally located unit
charge, immersed in an aqueous solution. The dielectric constants
= 2 ande, = 80. Timings were obtained upon a Silicon Graphics single
R10000 processor operating at 180 MHz.

of results, one examining the CPU and storage trends and the
other assessing errors, are presented.

For the first set of calculations, a unit charge is located at
the center of the sphere and the dielectric constants are set to
€1 = 2 ande; = 80. Results foxw = 0 (Poisson equation) and
« = 3 (linear PBE) were obtained using different resolution
surface grids obtained by recursively subdividing an icosahe-
dron. For comparison, direct computations using low BE counts
were also carried out. Note that GauSeidel + GMRES
iteration rather than full inversion was used in the direct
computation since it is much faster and gives practically identical
results. The CPU times (corresponding to a Silicon Graphics
single processor R10000 operating at 180 MHz) required to
complete the calculation are recorded in Figure 2. Due to
memory constraints, it was not possible to perform direct
computations using more than 5120 BEs. Nevertheless, the CPU
time closely follows a quadratic scaling withso that reliable
projections of CPU time can be made. These projections reveal
that forN = 1P an approximately 2 orders of magnitude speed
up is achieved using the fast multipole technology. Also, the

does not depend on the detailed molecular shape, chargeCPU time for the fast BE-based PBE solver closely adheres to

distribution, or solute dielectric constast, It therefore is useful
in providing an independent check upon the accuracy of any
linear PoissorBoltzmann equation solver for general systems.

the theoretically anticipate@(N log N) behavior. The number
of GMRES iterations required to converge the solution is
virtually independent of problem size. At all resolutions,

Unless stated otherwise, in all fast FPB calculations presentedconvergence to machine round-off was accomplished in three

here second-ordeM = 2) multipole expansions and Taylor
series approximations were employed, the maximum number
of BEs per terminal octree box was setrtg = 12 (i.e., any
box containing more than 12 BEs is subdivided into 8 child

boxes), and the parameter controlling the extent of the near-

field region was set tesc = 2.0. Calculations performed with-
out Taylor series approximations produced virtually no changes
in computed results, but increased CPU time by a factor of
about 2.

A. Sphere with Interior Charge. The first configuration
considered is that of a unit radius spherical cavity, containing

an interior unit positive charge, surrounded by aqueous solution.

Since analytical expressions for the solution of the linear
Poissonr-Boltzmann equation are available for all> 05051

GMRES iterations each involving four fast potential evaluations.
This substantiates the earlier comments regarding the excellent
numerical conditioning afforded by the derivative BEM for-
mulation?*

The greatest performance gains achieved by adopting a fast
BEM Poisson-Boltzmann algorithm are in the storage require-
ments. In conventional BEM PBE analyses, memory costs
normally hinder large-scale calculations well before CPU times
become prohibitive. Figure 3 depicts the number of stored near-
field influence coefficients required for an electrostatic calcula-
tion involving N boundary elements. Since this number domi-
nates the total storage, it constitutes a good measure of overall
memory requirements. For direct summation, the number of
influence coefficients is given exactly bgi)2, wherep = 1 if

this case constitutes a useful benchmark for establishing thex = 0 andp = 2 whenk > 0. The plot confirms that multiple
overall accuracy and performance of the FPB code. Two setsorder of magnitude reduction in memory requirements are made
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Figure 3. Number of near-field influence coefficients required in the
calculation of the electrostatic potential of the unit sphere containing a
centrally located unit charge. The dielectric constants are given in the
legend of Figure 1.

[%]

[

possible by the FPB analysis. If the maximum number of near-
field influence coefficients allowed is $0then FPB extends

the maximum number of elements from 4000 to 90 000. It then
becomes possible to address correspondingly larger molecules
and their complexes or to conduct higher surface resolution
calculations than previously possible with the conventional
BEM.

Relative Reaction Field Energy Error, E

To illustrate the ability to perform truly large-scale calcula- Fast Summation Direct Summation |
tions using the fast BEM PBE solver, the results for a 1.3 million 3 || —=—1.280 BEs +adaptation  ---©--- 1,280 BESs + adaptation
BE calculation are also shown. Unlike the previous results, this T esess
calculation did not employ the Taylor series approximation; also — J — -
the octree subdivision criterion for this casg = 7. As is - ' 02 """"'_M o6 o8 ,

evident from Figure 3, these alterations reduced the total number
of near-field influence coefficients, which rendered the com- Charge location, p,,,,, /2
putation feasible on our machine. These modifications also
increased CPU time slightly as seen in Figure 2. The ability to of a single charge placed gdargda (Whereais the radius of the sphere)
accommodat@(10°) elements in a PoisserBoltzmann cal- i the interior of a unit radius sphere embedded in aqueous solution.
culation is of great value when contemplating the study of very The dielectric constants; = 1 ande, = 80. The Debye Hiickel
large biologically important molecules. parameter (ay = 0 and (b)x = 3.

The idealized spherical geometry was used next to assess
accuracy. We varied the distanegargeOf the charge from the  experience in calculating the electrostatic properties of actual
center of the sphere and monitored the relative erfggr= biomolecules, it seems that discretization errors dominate in
(Wif)comd (Wif)exact — 1, whereWs is the reaction field energy. general. Only when the resolution becomes very fine do
In general, there are several potential sources of error such asnultipole series truncation errors become significant (relative
surface quadrature, idealization of the surface geometry, trunca-to truncation error). Thus, initially, accuracy is best improved
tion of the multipole series, and approximation of the surface by using increasingly finer meshes to reduce discretization error.
solution. Space limitations do not allow an in-depth examination A point is eventually reached, however, where the truncation
of all these errors. Instead, we seek to (i) show that the fast errors in the multipole approximation become important. Further
multipole approximation does not adversely affect overall reductions in mesh spacing must then be accompanied by an
accuracy, (ii) demonstrate how mesh adaptation provides a veryincrease in the number of terms retained in the multipole series
cost-effective approach for accurately modeling molecular and/or an increase in the extent of the near-field region.
electrostatics, and (iii) identify the dominant error contributors.  In nonadaptive mesh calculations, accuracy deteriorates as
Figure 4 shows how; varies with charge location. The relative the charge approaches the surface since the mesh cannot
error is quite low and behaves in a predictable manner. The adequately resolve the increasingly rapid variations in surface
relative errors incurred when using fast and conventional potential induced by the charge. For tNe= 5120 boundary
summation of the element interactions are similar, which implies element discretizatiorEs remains below 1% untipchargda =
that the errors due to truncation of the multipole expansions 0.9 (@ = sphere radius); for the = 20 480 element model the
are small compared to other error sources. The discretizationsame accuracy was sustained upoteagda = 0.95. In both
error associated with finite size elements controls overall cases the height above the surface where the error began to grow
accuracy, especially for the coarser surface meshes. This camapidly is abouth = 2As, where the characteristic panel size
be seen upon inspecting how the errors vary with surface As = (47/N)Y2. To demonstrate the effectiveness of adaptive
resolution when the charge is placed at the center. From ourmeshing, a calculation was performed using an initial discreti-

Figure 4. Variation of reaction field energy errdg, with the position



2750 J. Phys. Chem. B, Vol. 106, No. 10, 2002 Boschitsch et al.

zation of 1280 BEs which were then adaptively refined TABLE 1. Dependence of the Electrostatic Solvation Free
according to (32) witt; = 4. The error is now seen to remain Elng:rlgy of E\heSCSfAlanlg]e Dl'P?Pg'de Conformer (at 0.1 M
small even when the charge is very close to the surface. For'NaCl) on the Surface Resolutio

penargdd = 0.985 (the closest chargsurface interaction con- no. of boundary elements AW (kcal/mol)  CPU time (s)
sidered) the number of elements in the final adapted mesh was 394 —16.90 59
only N = 1892 and the relative err@ < 0.5%. By comparison, 638 —-13.20 10.2
a nonadaptive mesh calculation of comparable accuracy would 1210 —12.54 29.8
require approximately 900 000 elements. Clearly, mesh adapta- iggg :igﬁ 125%
tion offers a p_owerful approach for achieving high accuracy at 7954 _12.09 2394
low computational cost. 1338 ~12.06 480.2
We make a final observation on a charge that is placed well 32856 —12.04 1007.5
away from the surface. The error on the calculated electrostatic 67212 —12.04 4590.0

potential is closely related to how well the numerical method 2 The timings were obtained on a Silicon Graphics single R10000
represents the distance between the charge and the surface. Hrocessor operating at 180 MHz.

one triangulates the surface of a unit sphere ulifigt elements ) . S
: : TABLE 2: Electrostatic Solvation Free Energies (in kcal/
whose vertices lie on the sphere, then one can show that themol) of Four Conformers of Alanine Dipeptidge (C(7eq, C7ax,

centroid of each element lies at a radius of approximatety 1 5, "and aR), Obtained Using Different Poissor-Boltzmann
(4.8N). Thus, for a central charge, the potential induced by the (PB) Algorithms?

charge at the element control poin_ts diff_ers _from the exact value PB algorithm C7eq C7ax c5 oR
_by about 4.3)0._ For the 12_8(_) BE dlscretlzatl(_)n, this dlf_ference FPB(N—4328BEs) 1063 —1060 —1214 —13.85
is 0.4%, so it is not surprising that the relative erigg, is on (-10.62) (-10.60) (12.13) (-13.84)
this order. Moreover, in this case the error reduces only inversely ynsp ~1031 -1042 —11.95 —13.66
with N so that a 10-fold error reduction warrants a 10-fold (—10.29) (10.41) 11.93) (13.63)
increase in the number of elements. This problem could be UHBD" (no added salt) —-9.85  —9.75 —11.00

simply rectified by using flat elements whose vertices lie on a DelPhi (noadded sal) —10.59  —10.56 —12.09 -14.12
slightly larger sphere (or, alternatively, by the use of curvilinear ~ aThe solute and solvent dielectric constants were 1 and 80,
elements). As the charge approaches the surface, the energy sumespectively. The ionic strength was either 0 or 0.1 M. The number in
is dominated by contributions from the nearest surface elementsparentheses corresponds to no added a@hese results were taken
and curvature effects are relatively unimportant. The surface from Schaefer et &f

potential now varies rapidly, and mesh adaptation is the most ) . . o
effective means of improving overall accuracy. using different BE densities (with = 0). These results indicate
. . . . . that the energies are essentially converged ubdirg 4328
B. Electrostatic Solvation Free Energies of Alanine Dipep- . .
elements (i.e., higher element counts produce less than 1%

tide. As a validation exercise for the FPB code, the classical variations in computed energy) or about 200 BEs/atom. The
alanine dipeptide molecule was considered. Many studies have P 9y . ; . .
results reported in Table 2 are obtained with this resolution.

examined the conformational dependence of the solvation free_l_h ber of GMRES iterai ired to obtai d
energy of alanine dipeptide, which is a neutral molecule with '€ NUMOEro lerations required to obtain a converge
rsolutlon ranged between 4 and 5 for all surface resolutions

22 atoms (e.g.,ref 52). It has been shown that, due to their large . . o . .
net dipole moments, the helical-like conformation®(@ndoL) considered in Table 1. The computation time essentially varies
linearly with the number of BEs, thus confirming that the

of alanine dipeptide have more favorable solvation free energies . .
compared to the C7ax, C7eq, and C5 conforrirlso, a theo_retlca}l CPU 'Frends expected for the fast BEM are indeed
theoretical study by Tazaki and Ddishows that the confor-  OPtained in practice.
mational stability of different conformations of alanine dipeptide ~ Table 2 compares the electrostatic solvation free energy of
is affected by the addition of salt. Here, the electrostatic all four conformers of alanine dipeptide obtained using the FPB
component of the solvation free energy is computed for different program and finite difference based PBE algorithms. All PBE
conformers of alanine dipeptide at zero added salt and 0.1 M codes predict very similar relativ& WS for the conformers
NaCl, using the FPB, DelPhi, and UHBD programs. of alanine dipeptide, based on the CHARMM22 force field
The geometries of the different alanine dipeptide conformers parameters and exactly the same alanine dipeptide geometries.
(C7eq, C5, C7axqR) were taken from the study of Scarsdale The prediction of a more favorable electrostatic solvation free
et al> The CHARMM22 molecular mechanical force fié¥d energy for thexR conformer relative to the other conformations
was used to assign atomic charges and radii. The solvent-is in accord with published resuft3°6Good agreement of FPB
excluded surface (SES) (using a 1.4 A probe radius) was results with the UHBD and DelPhi results is also observed.
employed to define the dielectric interface between the solute However, there is a pronounced difference between our results
and solvent regions. The dielectric constants were taken as at zero added salt and those found in an earlier work obtained
= 1 (solute) and, = 80. The solution temperature was 298 K. by UHBD.$3 This is probably due to differences in the
For the DelPhi calculations a 29grid with 12.5 grid points/A geometries of the alanine dipeptide conformers, the use of
was employed and no focusing was invoked. For the UHBD dielectric boundary smoothing, and different grid spacings
calculations a two-step focusing protocol was employed with employed in these UHBD calculations. As shown in Table 2
grid sizes and spacings of 1%and 0.5 A (first step) and 140 for this neutral molecule, addition of salt practically does not
and 0.1 A (second step). In both DelPhi and UHBD codes, the affect the electrostatic solvation free energy of the alanine
potential at each boundary point was set using the Debye dipeptide conformers. In summary, all PBE codes here consid-
Huckel approximation and no dielectric boundary smoothing ered predict the correct relative electrostatic solvation free
was employed. energies of the alanine dipeptide conformers. However, contrary
Table 1 summarizes the computation times and electrostaticto the Tzaki and Doi study, which considered the AMBER
solvation free energy predictions obtained with the FPB program molecular mechanical force field, FPB and UHBD results
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Y S v s vl S PUURE the aqueous NaCl solution was set to 298 K. No Stern layer

was considered.

The solvent-excluded (SE) molecular surface (1.4 A probe
radius) was adopted in the FPB calculations. The initial
Figure 5. lonic strength dependence AfA\/\/;?el\é for (a) barstar and triangulation of these surfaces was developed with the MSMS
(b) barnase obtained using both FPB and UHBD programs. Both the program followed by mesh adaptation with= 2. The final
van der Waals (vdW) and solvent-excluded (SE) molecular surfaces number of BEs isN = 81 597 for barnase arid = 65 656 for
are employed to define the dielectric boundary. The limiting low-salt parstar. Such element counts are well beyond the means of
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square root of the salt concentration, M'”

slopes are in units of kcal A/mol. conventional BEM-based PBE algorithms. For the UHBD
suggest that the conformational preferences of the alaninecalculations a two-step focusing protocol was employed. The
dipeptide are not affected by the addition of salt. grid size and grid spacing were F4énd 2.0 A in the first step

For these small molecules, accurate results are obtained usingnd 146 and 0.35 A in the second run. The boundary potential
relatively low BE counts. These calculations could, in fact, easily Was set using the DebyéHuckel approximation. UHBD results
be performed without the fast multipole algorithm. In the Wwere obtained using both the van der Waals (vdW) and solvent-
remaining sections, larger numbers of boundary elements areexcluded surfaces, the latter being obtained by setting the UHBD
necessary to properly model the molecular geometry and code parameters nmap1.4 A (probe radius) and nsph 500
produce accurate results. Fast multipole technology is essentialnumber of surface points per atom).
in these calculations since without it the associated CPU and  Figure 5 depicts the variation dfAWS( with salt concen-
storage penalties would be prohibitive. tration for barnase and barstar. The plots clearly show a more

C. Salt Dependence of the Electrostatic Solvation Free  pronounced salt dependence ®NE: for the molecule with
Energy of Barnase and Barstar.Electrostatic interactions are  higher net charge as is expected from (34). Physically, this
believed to play an important role in the biological function of means that the transfer of a charged molecule from the gas phase
charged proteins. Some studies have shown that salt effects ar¢o the aqueous solution phase is more favorable when the net
significant in the barnasebarstar association proceds® In charge of the molecule is higher and when salt is added to the
this section, the salt dependence of the proteimgd-type aqueous solution phase. According to (34), at sufficiently low
barnase (net charge éf2e) and its tight inhibitor barstar (net  NaCl concentrationA AWgec varies linearly withe and hence
charge of—6e)—are considered. The protocol for preparing the with the square root of the salt concentration. Both UHBD and
systems and the assignment of parameters closely follow thoseFPB programs predict similar slopes for the charged proteins
in earlier studies. The atomic coordinates of barnase and barstaat low salt concentrations. At 0.0001 M NacCl, the respective
were taken from the X-ray structure of the barnabarstar slopes obtained by finite differencing with the= 0 results
compleXC and the missing residues and hydrogen atoms addedare —7.6 (FPB), —8.5 (UHBD + vdW surface), and-9.6
with the Insightll program (Accelrys, Inc). The structures were (UHBD + SE surface) kcal A/mol. These compare well with
then subjected to constrained energy minimization with the the analytical slope 0f8.3 kcal A/mol. For the more highly
heavy atom positions held fixed. The charges and radii of the charged protein, the limiting low-salt slopes ar&3.1 (FPB),
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Figure 7. Surface electrostatic potential of the parallel right-handed
coiled coil tetramer at zero added salt (a) and 100 mM NacCl (b),
respectively. The scale is-(0.2,0;+0.5) for (a) and {5.1,0;+3.4)

for (b), respectively, in GRASP notation and units l@fl/e, where
negative values are red and positive values are blue.

—72.0 (UHBD + Vdw), —72.8 (UHBD + SE), and—74.7
(analytical) kcal A/mol. Both FPB and UHBD results show that
the low-salt slope agrees with the analytical result (34)
independent of the molecular surface and interior dielectric
constant (results not shown). At higher salt concentrations the
curves obtained with FPB and UHBB vdW diverge from
the UHBD + SES results. The_ salt dependence of e?ehé Figure 8. Mapping of the electrostatic potential (T/e = 0.59 kcal/
of barnase and barstar obtained using the FPB code wasmgl/e) on the surface of the FinO basic protein at 100 mM NaCl,
reproduced with an alternate finite difference PBE solver (results computed with the FPB (a) and GRASP (b) programs, respectively.
not shown). Also, similar behavior was found using either the The scale is £6.8,0;7+6.8) for (a) and £10.9,0:+13.3) for (b),
vdW or SE surfaces. This is in contrast to the UHBD results, respectively, in GRASP notation.
which show that the salt dependence of these two molecules is
significantly affected by the choice of molecular surface. entry: 1F3H, net charge= —6e, 4450 atoms). The input

D. Surface Electrostatic Potential of Protein Molecules. ~ parameters are the same as used for barstar in section I1l.C
Most of the biological activity of a biomolecule lies on its above. The solvent molecules, ions, and other ligand molecules
surface. The mapping of the electrostatic potential on the in the crystal structures were removed. The hydrogen atoms
molecular surfaces of biomolecules is now widely used in the were added (using a pH value of 7) with the Insightll program
identification of potential ligand binding and functional sites (Accelrys, Inc.), and the final structures were subjected to a
and in determining electrostatic complementarity (e.g., in 1000 cycle conjugate gradient energy minimization (based on
protein—protein complexes). In the new era of computational the AMBER force field) using the Discover module imple-
proteomics, with the increasing number and size of available mented in Insightll (Accelrys, Inc.). A formal charge set
high-resolution X-ray crystallography and NMR biomolecular Parameter was used in the Poiss@oltzmann calculations. The
structures, fast and accurate PoissBoltzmann solvers that ~ van der Waals radii were taken from the GRASgefault radii
generate color-coded surface electrostatic potential maps andarameter set: = 1A; C=1.7A, 0=1.6 A,N=1.65 A.
other surface-based electrostatic properties (e.g., induced surfacd he dielectric boundary between the proteins and solvent was
charge density) are essential. The boundary element approaci§iefined by the solvent-excluded surface using a 1.4 A solvent
used in the FPB code provides high accuracy for such surfaceProbe. The MSMS program was used to generate the triangular
electrostatic potential and induced surface charge density maps£lements. The number of elements after mesh adaptdtien (
since these electrostatic properties at each surface element ig) was 117 541(parallel right-handed coiled coil tetramer),
provided directly, without the need for any interpolation scheme, 101 794 (FinO), and 145 690 (survivin). The ionic strength of
such as required in the finite difference PBE approaches. Thethe solution was either zero or 100 mM NaCl, and the
FPB software provides VRML files containing the electrostatic temperature of the solution was 298 K. The interior dielectric
potential and induced surface charge density patterns on theconstant was 2, and an exterior value of 80 was employed.
molecular surface. The globular and negatively charged barstar molecule has a

Here, as a validation exercise we examine the surface large region of negative electrostatic potential due to the large
electrostatic potential of barstar and three elongated proteinnumber of negatively charged residues (see Figure 6). Figure 7
molecules: parallel right-handed coiled coil tetramer (PDB compares the electrostatic potential on the surface of the highly
entry: 1FEG6; net charges —20e, 3279 atoms), FinO (PDB negatively charged parallel right-handed coiled coil tetramer
entry: 1DVO, net charges +6e, 2481 atoms), survivin (PDB  calculated under the conditions of no added salt and 100 mM
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Figure 9. Electrostatic potential surface (kgT/€) rendering of survivin
at 100 mM NacCl (a). The GRASP surface electrostatic potential is

shown in (b). Regions colored blue and red indicate negative and

positive electrostatic potentials, respectively. The scale18(6,0;+10.2)
for (@) and 9.7,0;+9.4) for (b), respectively, in GRASP notation.
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IV. Conclusions

A fast multipole algorithm has been successfully incorporated
into a boundary element method to solve the Poisson
Boltzmann equation. By selecting the appropriate multipole
expansion, problems involving finite salt concentrations can be
accurately addressed with the method, thus generalizing previous
fast boundary element based treatments that were limited to zero
salt concentration. A derivative formulati&nis adopted to
ensure good numerical conditioning at large element counts and
is shown to sustain fast convergence rates irrespective of
problem size. A simple, yet effective adaptive capability has
been incorporated to ensure adequate resolution and allow
efficient modeling of problems involving near-surface charges.
Application of the approach to the idealized configuration of a
sphere containing interior charges has demonstrated good
accuracy and confirmed the anticipat®N log N) CPU and
storage trends. For typical meshes, the errors introduced by the
multipole approximation are found to be negligible compared
to those incurred by the use of finite size elements and
approximate surface distributions. Demonstration calculations
involving more than 1 million elements have also been
performed to illustrate the ability to address truly large systems
with a fast boundary element method. Finally, the fast multipole-
accelerated PoisseiBoltzmann solver has been used to study
the salt dependence of electrostatic properties of several
biomolecules. This study has shown that the fast BEM-based
Poissor-Boltzmann solver accurately predicts energies, surface
potentials, and the variations of these properties with salt
concentration for realistic biomolecular configurations.
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