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This paper presents a study of the behavior of a one-dimensional system, with two potential minima separated
by a barrier, coupled to a small set of harmonic oscillators. The time correlation function of equilibrium
fluctuations in particle number (number correlation function) is found by computer simulation. An analogue
of Kramers turnover in the barrier crossing rate is observed. The Gkbtees theory of non-Markovian rate
processes provides a reasonable estimate for the rate constant at intermediate frictions. However, at high
friction, the number correlation function becomes nonexponential, and the decay is much slower than expected
from the Grote-Hynes theory. The model shows that close coupling to a small heat bath provides a mechanism
for “internal friction”.

We report numerical experiments on the barrier crossing of requirement is that transition state theory is applicable in the
a one-dimensional system interacting with a small harmonic first place. We note that because of this requirement, th&elG
oscillator heat bath. The experiments had two quite different theory does not predict the Kramers turnover and is appropriate
motivations. We were curious to see how well a small harmonic for intermediate to high friction. One goal of these numerical
oscillator heat bath could effectively imitate the friction and experiments was to see how well Pollak’s version of k5
noise of conventional Brownian motion. And we were curious theory works when the heat bath is small.
to see if it could provide an “internal friction” that might affect The other interest motivating this work came originally from
the rates of unimolecular rearrangements of a group of atomsexperiments on the rearrangement of proteins in solition.
inside a protein. The experiments used molecular dynamics tothe high friction limit, Kramers’ rate theory predicts that the
follow the time dependent decay of a number correlation rate constants are inversely proportional to the friction, which
function. is usually attributed to the solvent viscosity. However, to fit

We found that in the particular system studied here, a small experimental data using Kramers’ theory, some additional
heat bath (10, 20, or 30 oscillators) leads to a decaying number“internal friction” is requirec® (In polymer literaturé, this is
correlation function. In some instances, the decay is approxi- called “internal viscosity”). It seems possible that this internal
mately exponential, but in others it is more complex. The results friction can come from a bath of oscillators that are part of the
do not follow the conventional Kramer$srote—Hynes picture. molecule rather than an external environment.

Kramers’ classic theory of Brownian motion over a potential ~ We start by reviewing some familiar material about Langevin
barrier is often used to account for the rate of rearrangement ofequations’ The system is described by a coordinatand its
amolecule in a viscous medium. The surrounding fluid provides conjugate momentump. The system Hamiltoniahls is
friction and random noise. Conventionally, the friction is
assumed to be Markovian and the noise is Gaussian and white.
In an extension of Kramers’ theory, Grote and Hyngisowed
how to deal with non-Markovian friction. Hanggi et%agjive a

historical review of the subject. In the numerical experiments, all masses have been set equal
Itis well-known that a frictional environment can be modeled to 1. The heat bath is described by a set of coordingigs

by the bilinear interaction of a system with a harmonic oscillator and their conjugate momenta;}. The heat bath Hamiltonian,
heat bati?.Pollak' showed that when multidimensional transition  for givenx, is

state theory is applied to this model, one immediately obtains

the rate constant predicted by the Grokéynes (G-H) theory. N plz o
Conventionally, one assumes that the oscillator heat bath Ho = _J+1-w_2 9 —ix )

contains an infinite number of oscillators, with a continuous B J; 2 2 17 2

spectrum. This allows for the construction of any kind of non- ]

Markovian memory function. However, it appears that Pollak’s ) ) . .

theory should still be applicable if the heat bath contains a small in Which oj is the frequency of thg-th oscillator, andy;

number of oscillators because the exact nature of the frequencyMeasures the strength of coupling of the system tojthe

spectrum does not appear in the derivation. A more decisive 0Scillator. Note the bilinear coupling of the system to the bath.
The combined Hamiltonians of system and bath lead to the

2
Hs =5 + Uk ®
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Figure 1. Memory functionK(t) (solid curve) and its Laplace transform
(dashed curve).

Figure 2. Time dependence of the position of the barrier crossing
particle in a short trajectory.

The memory function is more useful. Note that the transform is considerably smoother,
but unlike familiar memory functions, it vanishes at snmall
N ¥ This is a consequence of using a small number of oscillators.
K({t) = Z—COSwjt 4) (In normal applicationsk(0) does not vanish.)

= a)jz The simulation involves solving Hamilton’s equations for the
coupled system and oscillator bath. The main goal was to find
and the noise, which is a linear combination of heat bath initial the number correlation function (time correlation function of
conditions, has a Gaussian distribution with the second momentequilibrium fluctuations in particle numbeg(t), defined by

2

[Fo(DFL(t) 0= KTK(t — t) ©) C(t) = 2H[x(1)]H[x(0)]C— 1 (10)

Although formally correct, this Langevin equation is useful as whereH(x) is the unit step function. The barrier heightls =
a practical matter only if there is a clear separation of ime 5 Note that this is small enough that barrier crossing is not a
scales, so that the system is slow and the heat bath is fast. 56 eyent. Except for one microcanonical run, the system was
The possible choices for the system potential energy, the yrenared by choosing oscillator initial conditions from a
oscillator spectrum, and lthe coupling constants, are Ilmltless_. canonical ensemble distribution witeT = 1 (referred to as
Here, some arbitrary choices are made. The potential energy is«:anonjcal runs”). In typical runs, 5000 trajectories were started
quartic from the right side of the quartic potential, and the averaged
2 2 number correlation function was calculated. Figure 2 shows a
U(X) = Ug(x" — 1) (6) small piece of one trajectory; it is evident that the system jumps
back and forth between regions where< 0 andx > 0.
A single very long microcanonical run, wheke= 30 and
the total constant energy is equal to the average energy of the
canonical runs, reproduces the averaged behavior of the canoni-
cal runs.
Figure 3 shows the decay d@&(t) when the number of
oscillatorsN was either 10, 20, or 30. and the coupling strength
y was set equal to 1. Fof = 10, C(t) does not appear to decay

The frequencies of the heat bath Hamiltonian are arbitrarily
chosen to be

w’=c,1<j=<N 7)

The coefficientc is unity for N = 10, and for othel, it is
determined by

N 10 to zero, probably because some initial states did not have enough
c= Z(llj)/Z(lfj) (8) total energy to cross the barrier. Fbr= 30, the decay is
approximately exponential, and is fit reasonably well by exp-
. _ (—t/7.62).
The coupling constanty; are all equal toy. This has the In Figure 4, we showC(t) when the coupling constant was

consequence that the initial value of the memory function does yecreased tp2 = 0. 1 and 0.01. Note that there is a substantial
not change ad\ is varied. The memory function is a sum of slowing down of the decay ag decreases below 1. Figure 4

cosines also shows that there is substantial slowing down in the decay
N 1 of C(t) wheny?is increased past 1. (That the fastest decay comes
_ > : . . .
K(t) = V2 —COS(\/gjt) ) at y2 near 1 is an accidental result of the_partlculflr_ chou,:’e_of
Cj spectrum.) Because the memory function or “friction” is

proportional toy?, this behavior is reminiscent of the Kramers
Figure 1 shows the early time behaviorkt) for N = 30 and turnover. Note that ay? = 10, C(t) has an initial oscillatory
y = 1. It does not resemble any familiar memory function, and decay which is followed by a very slow decay.
at long times, it appears quite random. For many purposes, We now test the applicability of the €4 theory to the
however, its Laplace transforiy(z), also shown in Figure 1,is  present system under intermediate and high friction. The first
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I T T — The curvature at the barrier is characterized by the frequency
| | wy = 2,/U,. Then one solves the equation
0.8 - a)b2
Zr=—m (12)
L | z + K(z)
06 _ The G—H rate is given by
s | | z*
© Ke-n = w_kTST (13)
b
04+ ~
I | For the coupling constant = 1, this leads to the decay time
7.3, which is closer than the TST time to the observed time
02 - 7.6.
| M‘MW\Q However, the G-H approach does not appear to work so
. well in the limit of large coupling. For example, whei =
D EEE— ‘1 S ""1'0 L Deadad P b0 10, the predicted decay time is 18, which is much shorter than

. what is seen in the simulations. The rattis small, and for
Figure 3. Number correlation function for = 1 andN = 10, 20, and smallz, the memory function is proportional @ for N = 30,

30. The smooth solid curve is a fit of tie= 30 data to the exponential it is

expt/7.62). K(z) — 0.86&3/2 (14)

! and the root of the GH condition is

T T T T T T T T T T T T T TTTT

z o
(1+0.866)"2

For largey, the decay time is predicted to be proportional to
the first power ofy, in distinction to the familiar GH theory,
where it is proportional te2. Neither dependence gnis what

one sees from the simulation, where the decay time increases
much more rapidly as the coupling strength increases.

We see that a small oscillator heat bath can lead to barrier
crossing events. Further, the decay of the number correlation
function suggests that it may be reasonable to speak of some
kind of “internal friction” in the system. However, this does
not behave like the friction that appears in conventional
Brownian motion theory, and small oscillator heat baths do not
appear to be useful mimics of that friction.

After writing this paper, we became aware of a pdgdsr

! Plyukhin and Schofield that dealt with the effects of a finite
Figure 4. Number correlation functiop 2= 0.1, 0.01, and 10 ani oscillator heat bath in a different context.
= 30.

Wy
~ 1.0747 (15)
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