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This paper presents a study of the behavior of a one-dimensional system, with two potential minima separated
by a barrier, coupled to a small set of harmonic oscillators. The time correlation function of equilibrium
fluctuations in particle number (number correlation function) is found by computer simulation. An analogue
of Kramers turnover in the barrier crossing rate is observed. The Grote-Hynes theory of non-Markovian rate
processes provides a reasonable estimate for the rate constant at intermediate frictions. However, at high
friction, the number correlation function becomes nonexponential, and the decay is much slower than expected
from the Grote-Hynes theory. The model shows that close coupling to a small heat bath provides a mechanism
for “internal friction”.

We report numerical experiments on the barrier crossing of
a one-dimensional system interacting with a small harmonic
oscillator heat bath. The experiments had two quite different
motivations. We were curious to see how well a small harmonic
oscillator heat bath could effectively imitate the friction and
noise of conventional Brownian motion. And we were curious
to see if it could provide an “internal friction” that might affect
the rates of unimolecular rearrangements of a group of atoms
inside a protein. The experiments used molecular dynamics to
follow the time dependent decay of a number correlation
function.

We found that in the particular system studied here, a small
heat bath (10, 20, or 30 oscillators) leads to a decaying number
correlation function. In some instances, the decay is approxi-
mately exponential, but in others it is more complex. The results
do not follow the conventional Kramers-Grote-Hynes picture.

Kramers’ classic theory of Brownian motion over a potential
barrier is often used to account for the rate of rearrangement of
a molecule in a viscous medium. The surrounding fluid provides
friction and random noise. Conventionally, the friction is
assumed to be Markovian and the noise is Gaussian and white.
In an extension of Kramers’ theory, Grote and Hynes1 showed
how to deal with non-Markovian friction. Hanggi et al.2 give a
historical review of the subject.

It is well-known that a frictional environment can be modeled
by the bilinear interaction of a system with a harmonic oscillator
heat bath.3 Pollak4 showed that when multidimensional transition
state theory is applied to this model, one immediately obtains
the rate constant predicted by the Grote-Hynes (G-H) theory.

Conventionally, one assumes that the oscillator heat bath
contains an infinite number of oscillators, with a continuous
spectrum. This allows for the construction of any kind of non-
Markovian memory function. However, it appears that Pollak’s
theory should still be applicable if the heat bath contains a small
number of oscillators because the exact nature of the frequency
spectrum does not appear in the derivation. A more decisive

requirement is that transition state theory is applicable in the
first place. We note that because of this requirement, the G-H
theory does not predict the Kramers turnover and is appropriate
for intermediate to high friction. One goal of these numerical
experiments was to see how well Pollak’s version of G-H
theory works when the heat bath is small.

The other interest motivating this work came originally from
experiments on the rearrangement of proteins in solution.5 In
the high friction limit, Kramers’ rate theory predicts that the
rate constants are inversely proportional to the friction, which
is usually attributed to the solvent viscosity. However, to fit
experimental data using Kramers’ theory, some additional
“internal friction” is required.6 (In polymer literature,7 this is
called “internal viscosity”). It seems possible that this internal
friction can come from a bath of oscillators that are part of the
molecule rather than an external environment.

We start by reviewing some familiar material about Langevin
equations.3 The system is described by a coordinatex and its
conjugate momentump. The system HamiltonianHs is

In the numerical experiments, all masses have been set equal
to 1. The heat bath is described by a set of coordinates{qj}
and their conjugate momenta{pj}. The heat bath Hamiltonian,
for given x, is

in which ωj is the frequency of thej-th oscillator, andγj

measures the strength of coupling of the system to thej-th
oscillator. Note the bilinear coupling of the system to the bath.
The combined Hamiltonians of system and bath lead to the
generalized Langevin equation† Part of the special issue “G. Wilse Robinson Festschrift”.

* To whom correspondence should be addressed. E-mail: hxzhou@
einstein.drexel.edu. E-mail zwanzig@sunder.niddk.nih.gov.

‡ Physics Department, Drexel University.
§ Laboratory of Chemical Physics, National Institutes of Health.

HS ) p2

2
+ U(x) (1)

HB ) ∑
j)1

N (pj
2

2
+

1

2
ωj

2(qj -
γj

ωj
2
x)2) (2)

dp(t)
dt

) -U′(x(t)) - ∫0

t
dsK(s)p(t - s) + Fp(t) (3)

7562 J. Phys. Chem. A2002,106,7562-7564

10.1021/jp013707w CCC: $22.00 © 2002 American Chemical Society
Published on Web 03/08/2002



The memory function is

and the noise, which is a linear combination of heat bath initial
conditions, has a Gaussian distribution with the second moment

Although formally correct, this Langevin equation is useful as
a practical matter only if there is a clear separation of time
scales, so that the system is slow and the heat bath is fast.

The possible choices for the system potential energy, the
oscillator spectrum, and the coupling constants, are limitless.
Here, some arbitrary choices are made. The potential energy is
quartic

The frequencies of the heat bath Hamiltonian are arbitrarily
chosen to be

The coefficientc is unity for N ) 10, and for otherN, it is
determined by

The coupling constantsγj are all equal toγ. This has the
consequence that the initial value of the memory function does
not change asN is varied. The memory function is a sum of
cosines

Figure 1 shows the early time behavior ofK(t) for N ) 30 and
γ ) 1. It does not resemble any familiar memory function, and
at long times, it appears quite random. For many purposes,
however, its Laplace transformK̂(z), also shown in Figure 1, is

more useful. Note that the transform is considerably smoother,
but unlike familiar memory functions, it vanishes at smallz.
This is a consequence of using a small number of oscillators.
(In normal applications,K̂(0) does not vanish.)

The simulation involves solving Hamilton’s equations for the
coupled system and oscillator bath. The main goal was to find
the number correlation function (time correlation function of
equilibrium fluctuations in particle number)C(t), defined by

whereH(x) is the unit step function. The barrier height isU0 )
2. Note that this is small enough that barrier crossing is not a
rare event. Except for one microcanonical run, the system was
prepared by choosing oscillator initial conditions from a
canonical ensemble distribution withkBT ) 1 (referred to as
“canonical runs”). In typical runs, 5000 trajectories were started
from the right side of the quartic potential, and the averaged
number correlation function was calculated. Figure 2 shows a
small piece of one trajectory; it is evident that the system jumps
back and forth between regions wherex < 0 andx > 0.

A single very long microcanonical run, whereN ) 30 and
the total constant energy is equal to the average energy of the
canonical runs, reproduces the averaged behavior of the canoni-
cal runs.

Figure 3 shows the decay ofC(t) when the number of
oscillatorsN was either 10, 20, or 30. and the coupling strength
γ was set equal to 1. ForN ) 10,C(t) does not appear to decay
to zero, probably because some initial states did not have enough
total energy to cross the barrier. ForN ) 30, the decay is
approximately exponential, and is fit reasonably well by exp-
(-t/7.62).

In Figure 4, we showC(t) when the coupling constant was
decreased toγ2 ) 0. 1 and 0.01. Note that there is a substantial
slowing down of the decay asγ2 decreases below 1. Figure 4
also shows that there is substantial slowing down in the decay
of C(t) whenγ2 is increased past 1. (That the fastest decay comes
at γ2 near 1 is an accidental result of the particular choice of
spectrum.) Because the memory function or “friction” is
proportional toγ2, this behavior is reminiscent of the Kramers
turnover. Note that atγ2 ) 10, C(t) has an initial oscillatory
decay which is followed by a very slow decay.

We now test the applicability of the G-H theory to the
present system under intermediate and high friction. The first

Figure 1. Memory functionK(t) (solid curve) and its Laplace transform
(dashed curve).

K(t) ) ∑
j)1

N γj
2

ωj
2
cosωjt (4)

〈Fp(t)Fp(t′)〉 ) kTK(t - t′) (5)

U(x) ) U0(x
2 - 1)2 (6)

ωj
2 ) cj, 1 e j e N (7)

c ) ∑
1

N

(1/j)/∑
1

10

(1/j) (8)

K(t) ) γ2∑
1

N 1

cj
cos(xcjt) (9)

Figure 2. Time dependence of the position of the barrier crossing
particle in a short trajectory.
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stage is to find the conventional transition state theory rate. This
is determined by the initial decay of the number correlation
function.3,8 For U0 ) 2, the TST decay time isτ ) 6.5
(calculated using the full potential rather than its harmonic
approximation). The result is independent of the coupling to
the heat bath; however, it is close to the decay time 7.6 that
was found in the simulation runs whereγ2 ) 1.

The next stage is to find the Laplace transform of the memory
function

The curvature at the barrier is characterized by the frequency
ωb ) 2xU0. Then one solves the equation

The G-H rate is given by

For the coupling constantγ2 ) 1, this leads to the decay time
7.3, which is closer than the TST time to the observed time
7.6.

However, the G-H approach does not appear to work so
well in the limit of large coupling. For example, whenγ2 )
10, the predicted decay time is 18, which is much shorter than
what is seen in the simulations. The rootz* is small, and for
smallz, the memory function is proportional toz; for N ) 30,
it is

and the root of the G-H condition is

For largeγ, the decay time is predicted to be proportional to
the first power ofγ, in distinction to the familiar G-H theory,
where it is proportional toγ2. Neither dependence onγ is what
one sees from the simulation, where the decay time increases
much more rapidly as the coupling strength increases.

We see that a small oscillator heat bath can lead to barrier
crossing events. Further, the decay of the number correlation
function suggests that it may be reasonable to speak of some
kind of “internal friction” in the system. However, this does
not behave like the friction that appears in conventional
Brownian motion theory, and small oscillator heat baths do not
appear to be useful mimics of that friction.

After writing this paper, we became aware of a paper9 by
Plyukhin and Schofield that dealt with the effects of a finite
oscillator heat bath in a different context.
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Figure 3. Number correlation function forγ ) 1 andN ) 10, 20, and
30. The smooth solid curve is a fit of theN ) 30 data to the exponential
exp(-t/7.62).

Figure 4. Number correlation functionγ 2 ) 0.1, 0.01, and 10 andN
) 30.
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