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Macromolecular crowding inside cells affects the thermodynamic and kinetic properties of proteins. The
scaled particle theory �SPT� has played an important role toward establishing a qualitative picture for the
effects of crowding. However, SPT-based modeling lacks molecular details. Molecular dynamics simulations
overcome this limitation, but at great computational cost. Here, we present a theoretical method for modeling
crowding at the atomic level. The method makes it possible to achieve exhaustive conformational sampling in
modeling crowding effects and to tackle challenges posed by large protein oligomers and by complex mixtures
of crowders.
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I. INTRODUCTION

The total protein and RNA concentrations inside cells
reach 300–400 g/l �1� and the macromolecules together are
estimated to occupy over 30% of cellular volume. The
crowded environments are expected to have profound effects
on the thermodynamics and kinetics of protein folding, bind-
ing, aggregation, and other more complex biological events
�2�. Numerous in vitro experiments now support this expec-
tation �3–20�. Historically the scaled particle theory �SPT�
�21� has played an important role toward establishing a
qualitative picture for the effects of crowding �2,22�. How-
ever, SPT-based modeling of crowding effects lacks molecu-
lar details.

This limitation has been overcome by recent molecular
dynamics �MD� simulations of crowding, via two approaches
�12,23–30�. In the direct simulation approach, a protein mol-
ecule is placed inside a box of crowders, and the motions of
the protein and the crowders are followed simultaneously.
The computational demands presented by such large simula-
tion systems have necessitated the use of coarse-grained
models �23–25,27,29�.

We have developed a “postprocessing” approach for
simulations of crowding �12,26,28,30�, whereby the protein
is simulated in the absence of crowders and the conforma-
tions thus sampled are reweighted according to crowding-
induced changes in chemical potential. The postprocessing
approach makes it possible to represent the protein at the
atomic level, but the calculation of crowding-induced
changes in chemical potential, by devising a procedure akin
to Widom’s insertion method �31�, still requires significant
computer times. Here, we present a theoretical method for
calculating crowding-induced changes in chemical potential
for atomistic proteins. This method yields accurate results
but at substantially reduced computational cost, opening the
possibility of more exhaustive conformational sampling in
modeling crowding effects. Moreover, it enables computa-
tional studies of challenging problems presented by large
protein oligomers, on which effects exerted by crowding are
especially dramatic �3,4,15–20�, and by complex mixtures of

many species of crowders, which are required for realisti-
cally mimicking the intracellular milieu.

II. THEORY AND IMPLEMENTATION

Our method is based on the fundamental measure theory
�FMT� �32–34�, which is a type of density functional theory
for fluids but specialized to mixtures of convex hard par-
ticles. Unlike the SPT, the FMT does not rely on any as-
sumption about the shapes of the convex particles, and de-
rives the SPT for the special case of spherical particles �33�.
When a test protein is randomly placed into a distribution of
convex crowders, the FMT predicts the increase in chemical
potential of the test protein as �33�

�� = �cvp + �csp + �clp − kBT ln�1 − �� , �1�

where kB is Boltzmann’s constant and T is the absolute tem-
perature; vp, sp, and lp are the volume, surface area, and
linear size of the test protein; �c is the osmotic pressure of
the crowders, and �c and �c are the corresponding quantities
for surface tension and bending rigidity; and � is the total
volume fraction of the crowders. The latter quantities are
expressed in terms of the weighted number densities of the
different species of crowders:
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�
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�
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�
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where c� is the number density of species � crowders, and
l�, s�, and v� are their linear size, surface area, and volume,
respectively. The results are
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The FMT has been applied to convex particles with rela-
tively simple geometric shapes �33�.*Corresponding author; hzhou4@fsu.edu
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We generalize the FMT to test proteins represented at the
atomic level and refer to our method the generalized funda-
mental measure theory �GFMT�. A hint of the GFMT ap-
peared when we found that �� obtained in our previous
work �12,26� by the insertion procedure could be fitted to Eq.
�1�. However, the fitting did not produce a predictive
method, because it was not clear how vp, sp, and lp could be
calculated. An atomistic protein is not a convex particle. But,
we realized that, regardless of whether the test particle is

convex, what matters to �� is the spatial region excluded to
the crowders �the magnitude of �� depends on both the size
and the shape of this region�. For a convex test particle, this
region is the same as the physical space occupied by the
particle. However, for a nonconvex test particle, the particu-
lar region excluded to a crowder depends on the latter’s size
and shape.

In this work, we model the test protein at the atomic level
but the crowders as spheres �Fig. 1�a��, like in previous stud-
ies using MD simulations �12,23–27�. For spherical crowders
at a given radius, the test protein’s region of exclusion is
enclosed by what we refer to as the crowder-exclusion sur-
face. This surface is the same as the solvent-exclusion sur-
face, except here the solvent probe is a crowder. �The
solvent-exclusion surface when calculated with a 1.4-Å sol-
vent probe is better known as the molecular surface �35�; it
consists of contact parts, which are convex, and reentrant
parts, which are concave.� It is obvious to identify vp as the
volume enclosed by the crowder-exclusion surface and sp as
the area of this surface. This identification is similar in spirit
to the morphometric approach of Roth et al. �36�. For the
linear size lp, we looked for a quantity that would measure
how far the different parts of the crowder-exclusion surface
are dispersed in space. Such a quantity seemed to be pro-

(b)

(a)

FIG. 1. �Color online� �a� All-atom representation of the
barnase-barstar complex surrounded by crowders. �b� Results of ��
for the protein complex. Symbols are obtained in our previous work
�26� by the insertion procedure, with results for crowder radii of 15,
20, 30, and 50 Å shown as circles, squares, diamonds, and tri-
angles, respectively, while curves are predictions of the GFMT. In
all GFMT calculations, 10 000 directions were used to define the
crowder-exclusion surface; the cubic grid representing the excluded
volume had a spacing of 0.5 Å. At each crowder size, the calcula-
tion of vp, sp, and lp per protein conformation took �10 s of CPU
time on an AMD Opteron 2382 processor; subsequently using vp,
sp, and lp in Eq. �1� to calculate �� at different crowder volume
fractions required negligible amounts of time. In comparison, the
aggregate CPU times for four crowder volume fractions at each
crowder size were 80–160 s per snapshot of crowder configurations
by the insertion procedure; to reduce statistical errors, the calcula-
tions for each protein conformation were repeated on 10–100 snap-
shots of crowder configurations, bringing the total CPU times per
protein conformation at a given crowder size to 800–16 000 s.
Overall the GFMT gained a speed up of �102 to 103-fold over the
insertion procedure.

(b)

(a)

FIG. 2. �Color online� Effects of crowding on the �a� folding
free energy of cytochrome b562 and �b� binding free energy of bar-
nase and barstar. Symbols are obtained in our previous work �26� by
the insertion procedure, while curves are predictions of the GFMT.
The different curves represent the different crowder radii listed in
Fig. 1�b�.
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vided by the radius of gyration, rg, of points uniformly dis-
tributed on the surface. We therefore assumed that lp
rg. To
determine the proportionality constant, we noted that, for a
spherical test protein, lp is known to be its radius, and rg is
also calculated to be the radius; therefore, we set the propor-
tionality constant to be 1, i.e., lp=rg. �Further details on the
calculation of rg, including a comparison of rg and the FMT
result for lp can be found in the supplementary information
�37�.� In contrast to the fact that the morphometric approach
has no predictive power, we show below that Eq. �1�, with
vp, sp, and lp calculated according to the crowder-exclusion
surface, gives accurate predictions of ��.

Existing codes for generating the molecular surface are
either too slow or do not work at all for the range of probe
radius of interest here. We therefore devised a simple and
fast procedure to generate the crowder-exclusion surface.
The basic idea is to place a crowder probe at many positions
�totaling N� around the test protein, where the crowder
comes into contact with the test protein. These positions are
along rays with uniformly separated directions emanating
from the geometric center of the test protein. Along each ray
the crowder is positioned at the farthest point where it is
tangent to at least one protein atom. From this position, the
ray is traced backward for a length equal to the crowder
radius, arriving at the crowder surface. That final location is
taken to be a sample point on the crowder-exclusion surface.
The solid angle around each of the N directions is 4	 /N. If
the radial distance of sample point i is ri, then the surface
area, �si, accorded to the sample point is �4	 /N�ri

2. Because
the ri and hence �si values are not uniform, the sample
points are not uniformly distributed on the crowder-
exclusion surface. When averaging over the surface, �si
must be introduced as a weight.

To calculate vp, the volume inside the sphere with radius
equal to the largest value of ri is discretized into a cubic grid.
A voxel in the grid is eliminated when either it is separated
from every atom by more than the sum of the atomic radius
and crowder radius or it is inside the crowder probe while the
latter is placed at each of the N positions. The remaining

voxels make up vp. The calculation of sp follows an algo-
rithm proposed by Windreich et al. �38�. Basically, each
voxel comprising vp is assigned a weight according to how
its six faces are buried by its neighbors. �Our vp and sp re-
sults are virtually identical to those obtained from an existing
method �39� but require substantially less CPU times; see
supplementary information �37�.� Finally lp is calculated as
the radius of gyration of sample points on the crowder-
exclusion surface:

lp
2 =

�
i,j

�si�sjrij
2

2�
i,j

�si�sj

, �6�

where rij are the distances between sample points and the
weight factors �si account for the non-uniform distribution
of the sample points.

In our postprocessing approach to crowding simulations
�12,26�, the motions of the test protein and those of the crow-
ders are followed in two separate simulations. For each rep-
resentative conformation of the protein in a given state, ��
is then calculated by the insertion procedure over different
snapshots of crowder configurations. Finally the results for
exp�−�� /kBT� are averaged over protein conformations and
over crowder configurations. With the GFMT, the crowder
simulation is no longer needed. Instead, for each protein con-
formation, we calculate vp, sp, and lp for the given crowder
size and then use Eq. �1� to calculate ��.

III. APPLICATIONS

We illustrate the predictive power of the GMFT for
crowding effects on two central biophysical problems: the
folding equilibria of individual proteins and the binding

FIG. 3. �Color online� Effects of mixed crowding on the folding
free energy of cytochrome b562. Two species of crowders, with
15-Å and 50-Å radii, are mixed at different ratios. Symbols are
obtained in our previous work �26� by the insertion procedure,
while curves are predictions of the GFMT.

FIG. 4. GMFT predictions for the effects on the binding free
energy of barnase and barstar by increasingly complex mixtures of
crowders. The total volume fraction of crowders is fixed at 35%. Nc

denotes the number of crowder species. At Nc=1, all crowders have
a 50-Å radius. At Nc=2, crowders with 50-Å and 45-Å radii are
mixed. Each successive increase in Nc introduces a new species that
is 5 Å smaller than the previous smallest crowders. At Nc=9, the
crowder radii range from 10 to 50 Å. At each Nc, all the species
have the same volume fraction.
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equilibria of proteins pairs. The test systems, cytochrome
b562 in the folded and unfolded states and barnase and barstar
in the unbound and bound states, are the same as those in our
previous work presenting the postprocessing approach �26�;
the same protein conformations generated in the absence of
crowders are used here �additional information is found in
supplementary information �37��. In Table I, we list the av-
eraged values of vp, sp, and lp �over conformations� for the
test systems, calculated for three crowder sizes ranging from
15 to 50 Å. The averaged vp, sp, and lp increase with in-
creasing crowder size, as expected. Note that we do not use
these averaged values in Eq. �1� to calculate the final ��;
rather, we use the vp, sp, and lp values from the different
protein conformations to obtain individual results for �� and
then average the results for exp�−�� /kBT�. The agreement
between the GFMT predictions on �� and those obtained in
our previous work �26� by the insertion procedure is illus-
trated in Fig. 1�b�.

In vitro experiments �5–9� and MD simulations
�23,25,26,29� have found modest enhancements of protein
folding stability by crowding; similar effects have been
found on the binding stability of small proteins �12�. Figure 2
shows that, when the difference in �� is taken between the
folded and unfolded states of cytochrome b562 or between the
bound and unbound states of barnase and barstar, the modest
increases in folding stability and binding stability found by
the postprocessing approach in our previous work �26� are
still predicted well by the GFMT.

The concentrated intracellular milieu is comprised of
many species of macromolecules, each at a low concentra-
tion. As a step toward realistically mimicking in vivo envi-
ronments, we have studied in in vitro experiments the effect
of a mixture of two crowding agents on folding stability �9�.
By using the postprocessing approach for simulations of
crowding, we also studied the effect of mixing crowders of
two different sizes �26�. As shown by Table I, the vp, sp, and
lp parameters for atomistic proteins depend on crowder size.
To signify this dependence, we denote by vp� the volume of
the test protein excluded to a species � crowder, and simi-
larly by sp� and lp� the crowder-species specific area and
linear size. When a mixture of crowders is present, we pro-
pose the following mixing rule:

qp = �
�

�c�/c�qp�, �7�

where q=v, s, or l. Figure 3 shows that the resulting predic-
tions for the effects of a mixture of 15-Å and 50-Å crowders
on folding stability are in good agreement with results ob-
tained by the postprocessing approach in our previous work
�26�. As we emphasized previously �26�, the stabilization
effect of the mixture is greater than the sum of the two con-
stituents. This nonadditive effect of mixed crowding is cap-
tured by the GFMT.

We have demonstrated that the GFMT gains significant
computational speed over the insertion procedure without
loss of accuracy. The speed up may be particularly useful for
exhaustive sampling of states �such as the unfolded state of a
protein; Qin et al., to be published� comprised of vastly dif-
ferent conformations. More importantly, the GFMT applies
equally well to situations where the insertion procedure faces
tremendous challenges. Examples of such situations are large
protein oligomers and mixtures of many crowder species. A
particularly large oligomeric complex is the ribosome, which
carries out the essential function of protein synthesis. There
is experimental evidence that macromolecular crowding may
significantly shift the association/dissociation equilibrium of
the large and small subunits of the ribosome �4�; our prelimi-
nary calculation with the GFMT indicates that macromolecu-
lar crowding may stabilize the ribosome against dissociation
by as much as 40 kBT. The GFMT can similarly be used to
model at the atomic level protein aggregation and polymer-
ization under crowding; there the effects of crowding have
been found to be especially dramatic �3,15–20�. We will also
be able to model mixtures of many crowder species, as illus-
trated in Fig. 4. Future work will be directed at further de-
velopment of the GFMT when crowders are also represented
at the atomic level.
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TABLE I. Average values of vp, sp, and lp for the test systems.

Proteins
vp

a

�Å3�
sp

a

�Å2�
lp

a

�Å�

Folded cytochrome b562 21022.4; 22861.1; 24013.8 4462.2; 4525.9;4586.0 21.1; 21.4; 21.8

Unfolded cytochrome b562 25674.3; 29931.6; 32897.8 5711.0; 5875.4; 6026.7 24.5; 25.4; 25.9

Barnase 21393.7; 23301.2; 24377.7 4326.7; 4409.4; 4473.2 19.7; 20.2; 20.5

Barstar 17132.1; 18203.7; 18809.9 3569.2; 3617.4; 3654.4 17.6; 17.9; 18.1

Barnase-barstar complex 39011.1; 42311.1; 44266.2 6577.8; 6673.7; 6752.6 24.5; 25.2; 25.6

aAveraged values for vp, sp, and lp are listed for three crowder sizes: 15 Å, 30 Å, and 50 Å.
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