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Supplementary Information 
 
1.  Further details on the crowder-exclusion surface 

We point out that the volume vp and area sp as described in the main text are those of 
the crowder-exclusion surface, but the points used for calculating rg are located on a surface 
that is slightly inflated.  The crowder-exclusion surface and the inflated surface are shown in 
Fig. S1. 
 
 

 
 

 
 
Fig. S1  Comparison of (a) the crowder-exclusion surface for calculating vp and sp and (b) the 
inflated surface for calculating rg. 
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The difference between the two surfaces can be illustrated by a simple test particle: a 
spherocylinder (see Fig. S2).  For this convex particle, the crowder-exclusion surface is 
identical to the surface of the particle.  The inflated surface for calculating rg consists of the 
proximal intersection points between rays emanating from the center of the test particle and 
crowders around the test particle; the crowders are all in contact with the test particles and the 
rays end at the center positions of the crowders.  Note that, when the crowder radius (denoted 
as Rc hereafter) is zero, the inflated surface coincides with the crowder-exclusion surface. 
 

 
Fig. S2  The inflated surface (in blue) illustrated on a spherocylindrical test particle (in red).  
A crowder in contact with the test particle is shown as a circle in dash.  The arrow shows a 
ray pointing from the center of the test particle to the center of the crowder.  A black dot 
indicates the proximal intersection of the ray and the crowder; the collection of such 
intersection points as the crowder rolls around the test particle defines the inflated surface. 
 

Let the spherocylinder, with radius Rsc, be oriented such that its center is at the origin 
and its central axis be along the z axis of a Cartesian coordinate system.  For a crowder 
located at (xc, 0, zc), the proximal intersection is located at (xi, 0, zi), where 

 c
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A crowder in contact with the cylindrical portion of the test particle has xc = Rsc + Rc and –Lsc 
< zc < Lsc, where Lsc the half length of the cylindrical portion.  A crowder in contact with the 
upper hemisphere of the test particle has xc = (Rsc + Rc)sinθ and zc = (Rsc + Rc)cosθ + Lsc, 
where 0 < θ < π/2. 

For a test protein represented at the atomic level, we found that rg calculated on the 
inflated surface is ~10% higher than rg calculated on the crowder-exclusion surface.  We also 
found that the higher rg leads to better agreement with the Δμ results obtained by the insertion 
procedure, explaining why we use the inflated surface for rg.  Note that both the crowder-
exclusion surface and the inflated surface depend on the crowder radius. 
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2.  Comparison of lp and rg for a spherocylindrical test protein 
According to the fundament measure theory [1], the linear size lp of a 

spherocylindrical test protein is 
 p sc sc / 2.l R L= +  (2) 
The radius of gyration can be calculated from 

 
2

i2
g ,

r ds
r

ds
= ∫
∫

 (3) 

where 2 2 1/ 2
i i i( )r x z= +  is the distance from the center of the spherocylinder to a point on the 

inflated surface; the integration is over the entire inflated surface, and ds is the surface area 
element.  For comparison, we also calculate the integration on the crowder-exclusion surface 
(which in the present case is the same as the surface of the test particle), and denote the 
corresponding result by rg0.  When Rc = 0, rg reduces to rg0.  For rg0, the integration can be 
calculated analytically. The result is 
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We have not been able to calculate the in integration analytically for rg; therefore we calculate 
rg by numerical integration. 

When Lsc/Rsc → 0, the spherocylinder becomes a sphere, we have rg = rg0 = Rsc, which 
is the correct result for lp.  In the opposite limit Lsc/Rsc → ∞, the spherocylinder becomes a 
long needle; then rg → rg0 → Lsc/31/2, which slightly overestimates the result of Eq. (2) for this 
case, lp = Lsc/2.  Figure S3 shows that rg is numerically close to lp over a wide range of Lsc/Rsc. 

 

Fig. S3  Comparison of lp and rg for a spherocylindrical test protein.  The crowder radius, 
scaled by Rsc, is either 0 or 1. 
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3.  Comparison of methods for calculating sp and vp 
The sp and vp results obtained by our method are very close to those obtained by a 

method recently developed by Voss et al. [2].  Figure S4 shows a comparison on the results of 
the two methods for 8 test systems when the crowder radius is 15 Å.  The relative differences 
in sp are < 0.5%; those in vp are < 1.3%. 

Our method is significantly faster than that of Voss et al.  The CPU times of our 
method are independent of the crowder radius, and are ~10 s per conformation for the 
barnase-barstar complex.  In contrast, the CPU times of the method of Voss et al. show a 
significant increase with increasing crowder radii, going from 54 s at a crowder radius of 15 
Å to 1030 s at a crowder radius of 30 Å for each conformation of the barnase-barstar 
complex. 
 
4.  Information on molecular dynamics simulations 

In all direct simulations of crowding reported to date [3-7], coarse-grained 
representations of the test protein have been used.  We have developed an alternative 
approach [8-10], referred to as postprocessing.  In the postprocessing approach, the motions 
of the test protein and those of the crowders are followed in two separate simulations.  The 
effects of crowding are then modeled by calculating Δμ, the change in the chemical potential 
of the test protein.  The calculation entailed fictitiously placing one by one the protein 
conformations randomly inside snapshots of the crowder trajectory, much like implementing 
Widom’s insertion theorem [11].  Like in direct simulations [3-7], the interactions between 
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Fig. S4  Comparison of (a) sp and (b) vp results between our method and that of Voss et al.  
Areas and volumes are in Å2 and Å3, respectively.  Diagonal lines indicate exact match of 
the two methods.  sp values from small to large correspond to barstar, θ subunit of E. coli 
DNA polymerase III (Pol III), barnase, folded cytochrome b562, unfolded cytochrome b562, ε 
subunit of Pol III, barnase-barstar complex, and Pol III ε-θ complex.  The orders between 
barstar and Pol III θ and between barnase and folded cytochrome b562 are reversed according 
to vp values.  Averages over protein conformations (see below) are shown, with error bars 
representing variations among the conformations. 
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the atoms of the test protein and the crowders were assumed to be hard-core repulsion.  In that 
case, Δμ is related to the average probability of successfully placing protein conformations 
into the snapshots of crowder configurations.  A successful placement is one that is free of 
any protein-crowder overlap. 

In essence, the generalized fundamental measure theory (GFMT) presented here is a 
new method for calculating Δμ.  To directly test this method, we study the same 8 test 
systems (listed in Fig. S4) as those in our previous work developing and applying the 
postprocessing approach [8, 9], and use the same protein conformations generated in the 
absence of crowders.  The numbers of conformations used were 1000 each for folded and 
unfolded cytochrome b562; 548 each for barnase, barstar, and their complex; and 700 each for 
Pol III ε and θ subunits and their complex.  Briefly, these conformations were sampled from 
molecular dynamics simulations of proteins solvated by TIP3P, which were run in the 
AMBER force field.  For 7 of the 8 test systems, the simulations were at room temperature.  
For unfolded cytochrome b562, a high temperature (500 K) was used to denature the protein.  
Once the conformations are selected, temperature enters the GFMT only together with kB to 
serve as the unit of Δμ [see Eq. (1) of the main text]. 
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