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ABSTRACT

Community-wide blind prediction experiments such as CAPRI and CASP provide an objective measure of the current state

of predictive methodology. Here we describe a community-wide assessment of methods to predict the effects of mutations

on protein–protein interactions. Twenty-two groups predicted the effects of comprehensive saturation mutagenesis for two

designed influenza hemagglutinin binders and the results were compared with experimental yeast display enrichment data

obtained using deep sequencing. The most successful methods explicitly considered the effects of mutation on monomer sta-

bility in addition to binding affinity, carried out explicit side-chain sampling and backbone relaxation, evaluated packing,

electrostatic, and solvation effects, and correctly identified around a third of the beneficial mutations. Much room for

improvement remains for even the best techniques, and large-scale fitness landscapes should continue to provide an excel-

lent test bed for continued evaluation of both existing and new prediction methodologies.

Proteins 2013; 81:1980–1987.
VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Protein–protein interactions are crucial in biology.1–3

Understanding the thermodynamics of protein–protein

interactions is important for quantitative understanding

of biological function and for enabling the design of pro-

teins, small molecules and other compounds to modulate

these interactions.4,5 A large number of computational

methods have been developed to predict protein–protein

binding affinity.6–9

Blind community-wide tests of computational meth-

ods provide a means to objectively assess the current

state of the art and identify potentially promising

approaches. CASP has actively evaluated protein struc-

ture prediction methodology, and CAPRI has evaluated

protein–protein docking methodology,10–13 but there

has been no similar test of methods for predicting the

effects of mutation on protein–protein interactions.

Here we describe the results of a community wide test

of methods for evaluating the effect of mutations on pro-

tein–protein interaction affinity. This test employed two

comprehensive datasets on the effects of every point

mutant on the enrichment under yeast display selection

of two designed protein binders of influenza hemaggluti-

nin (HA).

MATERIALS AND METHODS

Description of data

Enrichment data were derived from experiments

described previously.14 Briefly, single-point mutant var-

iants were created, corresponding to all 20 amino acids

at each of 53 and 45 positions for the computationally

designed influenza binders HB36.4 and HB80.3, respec-

tively. These were expressed as yeast cell surface-

conjugates, and subjected to a nonpurifying selection for

hemaglutannin binders using FACS (Fluorescence-Acti-

vated Cell Sorting) by using concentrations of HA

roughly at the KD of the respective interaction. The pre-

sort and enriched libraries were subjected to high-

throughput sequencing on an Illumina GA-II sequencer,
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and the enrichment value for each sequence was calcu-

lated as the base-2 logarithm of the ratio of the number

of times the sequence was seen in the enriched library to

the number seen in the na€ıve library.

Prediction

Participants in CAPRI round 26 exercise for targets

T55 (HB36) and T56 (HB80) were asked to predict both

the ranking (on an arbitrary 0–1 scale) and the muta-

tional class (beneficial/neutral/deleterious) of each of

mutation. A full description of the methods for each

group is included in the Supporting Information. Predic-

tions were completed prior to the public release of

Whitehead et al.14

For the initial prediction round, participants were pro-

vided with a description of how the experimental data

were derived, the starting sequences (Supporting Infor-

mation Table S3), the positions at which mutations were

made, and structures for HB36.3 (PDBID 3R2X)15 and

HB80.4 (provided as a prerelease structure, further

refined and submitted as PDBID 4EEF)14 complexes.

(The structures for the HB36.4 and HB80.3 complexes

were not provided, as they have not been crystallized.)

HB36.3 differs from HB36.4 by a K64N mutation, and

HB80.4 from HB80.3 by G12K, L17I, L21I, A35K, and

S42K. Additionally, in the prereleased structure, the first

HB80 chain, chain G, had been modeled with an addi-

tional K28A mutation.

To see if more specific knowledge of deep mutational

scanning experimental data would help prediction, a sec-

ond round of prediction was run. In addition to the

information available from the first round, participants

were also provided with the enrichment values of one

half of the mutations, randomly selected (9 aa at each of

the mutated positions plus the starting identity). Partici-

pants were free to modify their procedure how they saw

fit to account for the additional information—details on

how each group used the additional data are provided in

the Supporting Information.

For classification purposes, mutations with a log2(en-

richment ratio) greater than 12 were considered benefi-

cial, and those with values less than 22 were considered

deleterious. For the BLOSUM model, each mutation was

assigned the BLOSUM6216 matrix value (an integer in

the range of 24 to 11) for the wild type/mutation amino

acid pair. BLOSUM values greater than or equal to 12

were considered beneficial, and those less than or equal

to 22 were considered deleterious. These cutoffs

were chosen to most closely approximate the distribution

of beneficial/neutral/deleterious mutations that was

observed experimentally.

Continuous predictions were evaluated by the Kendall

tau-b correlation to the log2(enrichment ratio) values, as

calculated by the cor() function of R.17 Kendall’s tau

examines the experimental and predicted values for the

exhaustive list of mutation pairs, considering them con-

cordant (e.g., x1< x2 & p1< p2) or discordant (e.g.,

x1< x2 & p1> p2). The tau-b metric is then (C–D)/

�(NxNp), where C is the number of concordant pairs, D

the number of discordant pairs, and Nx and Np the

number of total pairs not tied on experimental and pre-

dicted values, respectively. To evaluate the correlation of

mutants for a single position, a derivative of Kendall’s

tau-b was used, where pairs were evaluated only between

mutations at the same position, but summed across all

positions. AUC values were calculated with the ROCR

package in R.18 Predictions were evaluated on recall

([number of correctly predicted mutations for a class]/

[total number of mutations in that class experimentally])

and precision ([number of correctly predicted mutations

for a class]/[total number of mutations predicted to be

in that class]).

RESULTS

The HA binders HB36.4 and HB80.3 were designed

previously using Rosetta.15 Starting with these base

designs, exhaustive single point mutant libraries were

made and subjected to yeast display enrichment for

binding to HA using nonpurifying FACS (Fluorescence-

Activated Cell Sorting) selection.14 By comparing the

frequency of mutations in the enriched and unenriched

libraries, an estimate of the effect of each point mutant

on binding was obtained (the enrichment value, the log2

of the ratio of amino acid frequencies in the enriched

library to that of the unenriched library).

Using crystal structures of design variants of HB36

and HB80 bound to HA as a guide (Fig. 1), participants

made predictions of the effects of mutation on HA

binding. These predictions were then compared to the

Figure 1
The structures of (A) HB36 (B) HB80 in complex with HA (blue)
which were provided to participants. Residues probed in the deep

sequencing enrichment experiment are in orange; the remainder are in
grey. Residues at the interface are represented as sticks.
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experimental enrichment values (Supporting Information

Fig. S1). The 22 groups that made submissions varied

considerably in their ability to distinguish beneficial and

deleterious mutations (Fig. 2A and B). Only two groups

(G15, Weng, and G21s, Dehouck) had Kendall correla-

tions above those of the BLOSUM62 model for both

HB36 and HB80, although a few others (including G47,

Flores, who only submitted predictions for HB36) were

improved for a single protein (Supporting Information

Table S1).

Of particular interest for applications of the prediction

methods are the recall—the fraction of the experimen-

tally beneficial mutations which are identified as such—

and the precision—the fraction of predicted beneficial

mutations which actually are. For HB36, 3.4% of the

substitutions are experimentally beneficial, and for HB80,

2.4%. The precision of a method that selected randomly

would hence be �3%; the BLOSUM model is roughly at

this level. Three groups had precision better than 10%

for both proteins (G05s, Bates; G15, Weng; G21, Fernan-

dez-Recio), two of which (Weng and Fernandez-Recio)

had recalls in the 25–40% range for both proteins (Sup-

porting Information Table S1).

One limitation of the participant submitted classifica-

tions is that their performance is dependent on a some-

what arbitrary choice of threshold separating beneficial

and nonbeneficial mutations. Another approach is to

examine the performance of the ranking across all

choices of thresholds with the area under the receiver

operator characteristic (ROC) curve (AUC), which can

also be interpreted as the probability that a randomly

chosen positive item will be ranked appropriately against

a randomly chosen negative item.19 Several groups

exceed the performance of the simple BLOSUM model

for predicting both true beneficial (against neutral and

deleterious) and true deleterious (against neutral and

beneficial) mutations, with G15 (Weng; HB36 beneficial,

deleterious AUC; HB80 beneficial, deleterious AUC:

0.667, 0.657; 0.705, 0.668) and G21 (Fernandez-Recio;

0.610, 0.726; 0.743, 0.651) on the Pareto front (Support-

ing Information Fig. S4).

The groups showing good performance were particu-

larly successful in predicting deleterious mutations: low-

ranking predictions were generally observed to be delete-

rious, whereas only a subset of the high-ranking predic-

tions were beneficial (Supporting Information Fig. S1).

Mutations can influence binding if they disrupt the

folded state, an effect particularly relevant for mutations

away from the interface. To focus more on the ability of

the methods to model-binding affinity independent of

monomer stability, we also compared results on the sub-

set of residues at the protein–protein interface (Fig. 2C,

D, Supporting Information Fig. S1 and Table S1). The

overall ranking of the groups did not change significantly

on this subset.

It is instructive to break the results down based on the

polarity of the initial and substituted residue. While the

best groups did well predicting the effects of apolar to

polar mutations, they overestimated the affinity of polar

to polar and polar to apolar mutations (Fig. 3). This

could be due to inaccuracies in treating electrostatics in

the interfaces, as five of the six polar residues in the

starting sequence for HB36 and three of the nine for

HB80 are charged.

To test whether participants would be able to do better

if they had additional data, in a second round nine

mutations were randomly selected at each position of the

two designed binders, and the experimental enrichment

values for those mutations and for the starting amino

acid were provided to participants. Fourteen groups sub-

mitted updated results, with improved results in most

cases (Fig. 4A, B, Supporting Information Figs. S2, S3,

and Table S1). Groups using machine learning techniques

showed the greatest gains, though others using simpler

reweighting strategies also improved performance. The

top performing of these groups (G05s, Bates, and G21,

Fernandez-Recio) included information from position/

site specific models derived from the unblinded portion

of the data, which, while potentially useful for evaluating

combinations of mutations or modeling from sparse

experimental data, would not be generalizable to other

binding systems lacking experimental enrichment data.

Figure 2
Predictor performance. Participant predictions (provided as a value

between 0 and 1) are plotted versus the experimental enrichment value,
with predictions of beneficial/neutral/deleterious colored green/blue/red.

Enrichment ratios of 22 and 2, which defines the range of mutation
considered experimentally neutral, are plotted with dotted lines. (A)

Plot of all submitted predictions for HB80 for one of the top perform-

ing groups (G15, Weng). (B) Plot of all submitted predictions for HB80
for an average performing group. (C, D) As in (A) and (B), but only

mutations at those positions in the interface are plotted.
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Features contributing to good predictions

We used three approaches to identify factors which

contributed to good predictions. First, to identify overall

trends we evaluated the scoring and methodological fea-

tures used by high performing groups. Second, we eval-

uated individual scoring terms used by several of the

top-performing groups. Third, we released all of the

experimental data to predictors, and asked groups to ret-

rospectively identify which terms contributed to their

performance.

The various protocols differ in how the mutant com-

plexes are modeled. Some groups used coarse-grained

models which do not require side-chain modeling, others

kept all side chains other than the mutated one fixed,

and others carried out various combinations of side-

chain rotamer optimization, off-rotamer sampling, and

backbone optimization. Many of the top performing

groups optimized surrounding residues with off-rotamer

sampling and backbone flexibility (Table I). Groups

which normalized the score of the optimized mutant

based on that of a similarly optimized reference structure

also did somewhat better than average.

Groups which explicitly accounted for the effect of the

mutant on structural stability generally performed better

(Table I). Mutations which disrupt folding will necessarily

Figure 4
Improved performance upon refitting. Comparison of prediction results
for group 21 (Fernandez-Recio) for (A) all round 1 HB80 interface pre-

dictions and (B) the reserved HB80 interface mutations for the round 2

predictions. (C) Prediction results for all interface positions when refit
to the completely unblinded data without the position/site specific

model.

Table I
Common features of top performing methods. Tallies of (# of groups
using item in best performing half)/(# in other half)

All Positions Interface

Structural stability 5/3 6/2
Comparison to re-optimized starting structure 5/2 4/3
Entropy metric 4/1 3/2
Off-rotamer sampling 5/3 5/3
Statistical contact/distance metric 9/6 9/6
Lennard-Jones-style van der Waals 7/6 7/6
Other packing metrics 6/2 6/2
Optimization of surrounding residues 6/5 8/3
Backbone flexibility 5/3 6/2
Amino acid identity metric 2/3 1/4

Figure 3
Mutations involving polar residues are more difficult to model. Break-
down by mutation polarity for a representative top performing group

(G21s, Dehouck). The subset of HB36 interface mutations which are
classed as (A) apolar to apolar, (B) apolar to polar, (C) polar to apolar,

and (D) polar to polar for a representative top-performing group are dis-
played. For this analysis, residues D, E, H, K, N, Q, R, S, T, and Y are

considered polar, and A, C, F, G, I, L, M, P, V, and W apolar. Green/

blue/red correspond to participant’s prediction of beneficial/neutral/dele-
terious. As a reference, the remaining interface mutations (those from

the other three polarity groups for each graph) are plotted in grey.

R. Moretti et al.
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disrupt binding: P(binding) 5 P(folding)P(binding|folded),

and mutations can affect either term. Methods which assume

a stably folded protein will miss the effects of mutation on

the first term. Accounting for stability is likely to be of partic-

ular importance for proteins with low starting stability.20

The highest performing groups employed packing

metrics such as Lennard–Jones potentials (Table I). For

example, the attractive portion of the van der Waals

potential term was identified as one of the important

terms by the Weng group (Table III), and statistical con-

tact and distance scores, such as the OPUS_PSP group

potential21 and the Tobi coarse-grained potentials,22

were among the single terms with the highest correlation

to the enrichment data (Table II).

Other measures of packing such as convoluted fit and

volume delta also correlated with improved performance

(Table I). Of particular note is the PoPMuSiC packing

defect term23 from the Dehouck group, which correlated

well with experimental results in both all residue and

interface-only contexts (Table II), and was identified as

the most influential term in the Dehouck group models

(Table III). This coarse-grained metric measures the dif-

ference in residue volume between the starting and

mutated residues, weighted for solvent accessibility.

Top groups also explicitly modeled electrostatics and

solvation. Short range electrostatics were important for

HB36, and Lazaridis-Karplus solvation24 for HB80,

according to the Weng group’s analysis (Table III). While

the ACE solvation term25 by itself was correlated with the

HB80 experimental results (Table II), adding it to a model

with other terms had no appreciable benefit (Table III).

The FoldX hydrophobic solvation term26 correlates with

interface enrichment values in both proteins (Table II),

and the FoldX electrostatic terms ranked high in model

feature importance (Supporting Information Table S2).

Poisson–Boltzmann electrostatics have previously been

shown to improve modeling this enrichment data.14

DISCUSSION

In the community wide test of methods for predicting

the effects of point mutations on protein interaction

reported here, the best groups are able to identify one-

third of the beneficial mutations with less than a 103

Table III
Evaluation of contribution of individual terms to prediction perform-

ance. Difference in Pearson correlation on omitting terms from all-data
linear refits.

Dehouck Group23,40,41 HB36 HB80

packing defect 0.167 0.075
Solvent accessibility 0.018 0.005
Pairwise interactions 0.000 0.004
Backbone conformational preference 0.018 0.000

Weng Group42 HB36 HB80

vdW attractive 0.055 0.056
vdW repulsive 0.000 0.000
Solvation 0.012 0.050
Short range elec 0.052 0.020
Long range elec 0.015 0.029
Hydrogen bond 0.001 0.001
ACE 0.000 0.000

Table II
Kendall correlation of individual metrics against experimental enrichment values.

HB36 All Residues HB80 All Residues HB36 Interface HB80 Interface

PoPMuSiC Packing Defect (Da)23 0.300 0.288 0.294 0.260
Tobi T2 APb (F)22 0.162 0.110 0.270 0.254
Tobi T1 AP (F)22 0.135 0.094 0.268 0.225
OPUS PSP (F)21 0.134 0.077 0.228 0.223
Tobi TSC CP (F)22 0.135 0.069 0.217 0.230
Skolnick SJKG CP (F)30 0.116 0.118 0.219 0.209
Floudas RMFCA CP (F)31 0.078 0.045 0.209 0.208
DComplex (F)32 0.140 0.071 0.256 0.206
FoldX hydrophob solv (B)26 ncc nc 0.204 0.212
Park-Levitt HLPL CP (F)33 0.121 0.082 0.235 0.201

Li & Liang GEOMETRIC (F) 0.119 0.026 0.270 0.131
Boniecki Qp CP(F)34 0.182 0.062 0.265 0.155
Vendruscolo BFKV CP (F)35 0.166 0.057 0.242 0.185
Skolnick SKOa CP (F)36 0.155 0.087 0.237 0.160
FoldX bb_hbond (B)26 nc nc 0.234 0.005

Miyazawa-Jernigan MJ2h CP (F)37 0.092 0.131 0.198 0.265
DFIRE2 (B)38 0.212 0.216 0.196 0.261
ACE (W)25 0.105 0.171 0.145 0.252
Tobi TB CP (F)22 0.109 0.070 0.111 0.233
Tanaka-Scheraga TS CP (F)39 0.050 0.096 0.153 0.223

aCalculated by (D)ehouck, (F)ernandez-Recio, (B)aker, (W)eng groups.
bAP—atomistic statistical potential; CP—coarse-grain statistical potential.
cNot calculated.
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excess of mispredicted mutations. This is better than the

performance of a simple model based on BLOSUM

scores, and over three times the value expected from a

random assignment. Accurate modeling clearly requires

explicit consideration of the effects of mutations on sta-

bility, as methods which did not take this into account

did not do as well. The best performing groups also

modeled packing—either using a Lennard Jones model

or considering volume changes—and electrostatics and

solvation. The best methods used diverse overall

approaches: machine learning (G21, Fernandez-Recio,

and G05s, Bates), atom-level energy functions (G15,

Weng), or coarse-grained models (G21s, Dehouck). The

community wide experiment also reveals that there is

considerable room for improvement in current methods;

predicting the effect of mutations on polar starting posi-

tions appears to be a particular challenge.

We anticipate that many more comprehensive single-

site scanning datasets should become available over the

next several years as next generation sequencing method-

ology is increasingly applied to problems in biophysics.

When modeling these data sets, it is important to recog-

nize that there are a number of factors beyond binding

affinity, such as stability, which contribute to the observed

enrichment ratios in these experiments, and must be

accounted for. Although enrichment results do not

directly represent binding DDG values, consideration of

stability effects in making predictions is generally useful,

as a theoretically tight binder is not useful if it is difficult

or impossible to produce a folded protein. For those pro-

teins which are stably folded, the values from deep muta-

tional scanning experiments have been shown to match

binding affinities.27, 28 In particular, McLaughlin et al.

found good correlation with the measured enrichment

value and the DDG of binding for 85 selected mutants

(ref. 29, Supporting Information Fig. S2d).

The thousands of mutations which can be analyzed in

parallel under identical conditions should compensate for

many of the limitations of the high-throughput binding

assays. For example, the prediction of small molecule-

binding affinity to proteins is confounded by the fact that

the available datasets consist of a small number of muta-

tions on many different scaffolds with affinities measured

by different groups using different techniques. As more

comprehensive scanning datasets become available, further

community wide experiments should continue to be useful

for assessing methods and determining how best to model

the effects of mutations on protein–protein interactions.

The development of improved energy functions would also

of course benefit from additional data from lower through-

put but more accurate direct KD measurements.
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