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Using the concept of transient complex for
affinity predictions in CAPRI rounds 20–27
and beyond
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ABSTRACT

Predictions of protein–protein binders and binding affinities have traditionally focused on features pertaining to the native

complexes. In developing a computational method for predicting protein–protein association rate constants, we introduced

the concept of transient complex after mapping the interaction energy surface. The transient complex is located at the outer

boundary of the bound-state energy well, having near-native separation and relative orientation between the subunits but

not yet formed most of the short-range native interactions. We found that the width of the binding funnel and the electro-

static interaction energy of the transient complex are among the features predictive of binders and binding affinities. These

ideas were very promising for the five affinity-related targets (T43-45, 55, and 56) of CAPRI rounds 20–27. For T43, we

ranked the single crystallographic complex as number 1 and were one of only two groups that clearly identified that com-

plex as a true binder; for T44, we ranked the only design with measurable binding affinity as number 4. For the nine dock-

ing targets, continuing on our success in previous CAPRI rounds, we produced 10 medium-quality models for T47 and

acceptable models for T48 and T49. We conclude that the interaction energy landscape and the transient complex in particu-

lar will complement existing features in leading to better prediction of binding affinities.
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INTRODUCTION

The predictions of binders and binding affinities are

important themes in the study of protein–protein inter-

actions. Recent years have seen significant progress in the

prediction of binders1,2 and growing efforts in the pre-

diction of binding affinities.3–6 These predictions have

mostly been based on structural and energetic features

pertaining to the native complexes. Potentially the full

interaction energy surface of the two subunits encodes

information for predicting binders and binding affinities.

Here we explore this potential and report our findings

for affinity-related targets in CAPRI rounds 20–27.

The inter-protein interaction energy surface is not

directly observable but it determines the observable enti-

ties such as the structure of the native complex, whether

the two subunits have measurable binding affinity (i.e.,

classification as either binders or nonbinders), and if so

the magnitude of the binding affinity and the association

and dissociation rate constants. The potential value of

the full interaction energy surface for predicting such

observable entities has been demonstrated in previous

studies. Shen et al.7 used semi-definite underestimation

to search for local minima on the interaction energy sur-

face and to locate the native complex (corresponding to

the global minimum). They suggested that this search

process mimics the diffusional approach of the subunits

in forming the native complex.

The association rate constant is certainly dependent on

the full interaction energy surface. In developing a theory

for the association rate constant, we mapped the interac-

tion energy surface to introduce the concept of transient

complex.8,9 This is an intermediate on the association

pathway, located at the outer boundary of the native-

complex energy well (Fig. 1). It separates the “near”

region, where the two subunits have significant native
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interactions but their relative translation and rotation are

restricted, and the “far” region, where the two subunits

have few specific interactions but have nearly unre-

stricted translational and rotational freedom. The two

subunits reach the transient complex by translational and

rotational diffusion. Subsequently they can undergo fur-

ther conformational rearrangements and tightening of

the binding interface to reach the native complex. When

this forward step is fast (relative to the breakup of the

transient complex by diffusion in the reverse direction),

the overall association rate constant is well approximated

by the rate constant for reaching the transient complex

by diffusion. We have developed an automated method

called TransComp (http://pipe.sc.fsu.edu/transcomp/) for

predicting the association rate constant in this diffusion-

limited regime.10

Here we report the use of the interaction energy land-

scape and the transient complex in particular for the five

affinity-related targets (T43-45, 55, and 56) of CAPRI

rounds 20–27. We found that the width of the binding

funnel and the electrostatic interaction energy of the

transient complex are among the features predictive of

binders and binding affinities. For the nine docking tar-

gets, continuing on our success in previous CAPRI

rounds,11,12 we produced 10 medium-quality models

for T47 and acceptable models for T48 and T49.

METHODS

Mapping of interaction energy surface and
generation of transient complex

The procedure for mapping the interaction energy sur-

face and identifying the transient complex was published

previously.8–10 Briefly, the mapping involved sampling

in the 6-dimensional space of relative translation and

Figure 1
Identification of the transient complex of two proteins, A and B. A: The three translational coordinates, as defined by the relative displacement r

between the centers of the binding sites on the two subunits; and the three rotational coordinates, as defined by the unit vector e attached to subu-
nit B and the rotation angle v around this unit vector. B: Scatter plot of contact number (Nc) versus v. Only clash-free poses are present in the

scatter plot. C: Specification of the transient complex, by fitting the standard deviation of v values of clash-free poses at a given Nc to a function
modeling two-state protein denaturation. The set of poses with the Nc value (designated as Nc

*) at the midpoint of the transition constitutes the

transient complex. The Nc
* value is highlighted in both (B) and (C) by a blue dashed line. D: The interaction free energy surface in the r-v space.

The location of the transient complex is sketched. Adapted from Alsallaq and Zhou8 and Qin et al.10
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relative rotation between the subunits [Fig. 1(A)]. The

sampling covered the native-complex basin and the sur-

rounding region. Each subunit was treated as rigid and

adopted the native conformation. The 3 translational

coordinates were specified by the displacement vector r

between the centers of the binding sites on the two subu-

nits. The 3 rotational coordinates were specified by a

unit vector e attached to subunit B and the rotation

angle v around this unit vector. In the native complex,

this unit vector is perpendicular to the least-squares

plane of the interface atoms and points from subunit A

to subunit B. Poses in this 6-dimensional space was ran-

domly generated, with the restriction that the magnitude

of r (i.e., r) was below a cutoff rcut.

Of all the randomly generated poses, the clash-free

ones were saved. For each of these, the number of con-

tacts, Nc, between interaction locus atoms was calculated

[Fig. 1(B)]. The interaction locus atoms were selected

from interface atoms and came in cognate pairs. In each

clash-free pose, contacts formed between cognate atoms

were denoted as native and between non-cognate atoms

as nonnative. Both were counted in calculating Nc. For

poses at a given Nc, the standard deviation, rv, of v was

calculated [Fig. 1(C)]. The dependence of rv on Nc was

used to identify the transient complex. An earlier scheme

relied on how rv grew with decreasing Nc;9 in the subse-

quent, automated implementation, the dependence of rv

on Nc was fitted to a function for modeling protein

denaturation data [Fig. 1(C)].10 The midpoint of the

transition from the native-complex basin (with high Nc

and low rv) to the far region (with low Nc but high rv)

was identified as the transient complex. That is, all the

poses with the midpoint Nc (designated as Nc
*) consti-

tuted the transient complex.

The width of the binding funnel [see Fig. 1(D)] can

be measured in different ways. We used this parameter

for targets T55 and T56, adopting a very simple measure.

This was the fraction fcf, of clash-free poses among all

the randomly generated poses with rcut 5 6 Å.

Calculation of electrostatic interaction
energy

Except for targets T55 and T56, the electrostatic inter-

action free energy was calculated by solving the nonlinear

Poisson-Boltzmann equation. We used the APBS

solver,13 following a protocol described previously.10 For

the native complex, the electrostatic interaction free

energy is

DGel 5Gel Cð Þ2Gel Að Þ2Gel Bð Þ (1)

where Gel(C), Gel(A), and Gel(B) are the electrostatic free

energies of the complex and their two subunits. The elec-

trostatic interaction free energy of the transient complex,

DGel
*, was calculated similarly for each pose within the

transient-complex ensemble, and then averaged over 100

or 10 representative poses.

For target T55 and T56, because the large amounts of

calculations needed to deal with the �1000 mutants, we

used the simple Debye-H€uckel potential:

DGel 5332

X

i;j

qiqje
2jrij

Erij

(2)

where qi and qj are the atomic partial charges of subunits

A and B, respectively, rij are the distances between atoms,

e 5 78.5 is the dielectric constant of water, and j is the

Debye-H€uckel screening parameter (at ionic strength

0.15M).

Method for docking targets

Model generation and selection largely followed our

previous work.11,12 For targets where only a homolo-

gous template of a subunit was provided, the structure

of the subunit was built by using MODELLER 8v2.14

Except for T47 and T57, all docking poses were gener-

ated by ZDOCK 2.3.15 The docking poses were then

selected according to biochemical information if avail-

able. The poses were clustered and representatives of

clusters were manually inspected. The final selected 10

models were subjected to energy minimization by the

AMBER program (including 50 steps of steepest

descent). Models were generated by homology modeling

and HADDOCK16 for T47 and by Autodock Vina17 for

T57.

RESULTS AND DISCUSSION

CAPRI rounds 20–27 had five affinity-related targets:

T43-45, 55, and 56; and nine docking targets: T46-T51,

T53, T54, and T58. Below we briefly describe our per-

formance and what we have learned from these exercises.

Native complexes generally have favorable
electrostatic interactions

Before going into CAPRI rounds 20–27, we knew that

electrostatic interactions between subunits in native com-

plexes are generally favorable (i.e., DGel< 0). While test-

ing the robustness of our automated TransComp method

for predicting association rate constants, we ran this

method on the 176 complexes in benchmark 4.0 of

Hwang et al.,18 and successfully completed these runs

for 132 cases. The distribution of the electrostatic inter-

action free energies (DGel
*) in the transient complexes

peaks at 20.5 kcal/mol [Fig. 2(A)]. The favorable elec-

trostatic interactions are even more significant in the

native complexes [Fig. 2(B)], with the distribution peak-

ing at 22.5 kcal/mol. However, native complexes some-

times can contain unphysically close contacts (due to low

Transient Complex and Binding Affinity
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resolution of the structure or poor quality of modeling),

which may lead to spurious results for DGel. One such

case actually occurred among the 132 complexes [the

resulting spurious DGel was not included in Fig. 2(B)].

Because DGel
* and DGel show reasonable correlation

[R2 5 0.48; Fig. 2(C)] and the subunits in the transient

complex are usually separated by a layer of solvent such

that there is less chance for unphysically close contacts,

whenever possible we chose to use DGel
* for the affinity-

related CAPRI targets.

Of course van der Waals interactions should also be

favorable in native complexes and may even dominate

over electrostatic interactions. However, given their

strong dependence on interatomic distances, we reasoned

that they might not be particularly useful for discrimi-

nating between binders and non-binders among designed

complexes. In particular, the effects of subunit conforma-

tions, poor contacts, and the neglect of water molecules

on van der Waals interaction energies would be very

unpredictable. Indeed, while many groups found electro-

static interactions to be useful for the affinity-related tar-

gets,19,20 the same cannot be said about van der Waals

interactions.

The finding of generally favorable electrostatic interac-

tions between the subunits is in contrast to the previous

conclusion of Sheinerman et al.21 that “the total effect

of electrostatics is generally net destabilizing” for pro-

tein–protein complexes. We have noticed that the calcu-

lated electrostatic free energy from solving the Poisson-

Boltzmann equation is very sensitive to the choice of the

boundary between the protein low dielectric and the sol-

vent high dielectric.22,23 The popular choice of using

the molecular surface as the dielectric boundary indeed

generally produces unfavorable electrostatic contributions

to protein folding and binding. However, the alternative

choice of using the van der Waals surface typically

reverses the sign of DGel, thus predicting a stabilizing

effect on binding stability for electrostatic interac-

tions,24–26 consistent with the results shown in Figure

2(B).

Our systematic assessment of calculated effects of

charge mutations on protein folding and binding

stability led us to conclude that the use of the van der

Waals surface as the dielectric boundary produces

better agreement with experimental results.22–27 More-

over, significant electrostatic enhancements of rate

constants observed for many protein complexes can

only be produced by the use of the van der Waals

surface.9,28 The Poisson-Boltzmann equation-based elec-

trostatic calculations carried out here followed this

protocol.

Target T43

For T43 we were given 20 models generated by Rosetta

along with a blinded crystal structure (also based on

Figure 2
Generally favorable electrostatic interaction free energies in native complexes and in transient complexes. A: Histogram of DGel

* values for 132 pro-
tein–protein complexes in benchmark 4.0 of Hwang et al.18 B: Histogram of DGel values. C: Correlation of DGel and DGel

*. Results were calculated

by solving the nonlinear Poisson-Boltzmann equation at a temperature of 298 K (with e 5 78.5) and an ionic strength of 0.15M.
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Rosetta design). We generated transient complexes for

these models and calculated the electrostatic interaction

free energies of the transient complexes. The results,

sorted according to DGel
*, are listed in Table I. The top-

ranked Model 10 has a significantly more favorable DGel
*

value (at 27.02 kcal/mol) than the other 20 models

(closest DGel
* at 24.95 kcal/mol, for Model 9).

Model 10 turned out to be the crystal structure (Pro-

tein Data Bank ID 3Q9N).29 (Only one other group

clearly identified Model 10 as a true binder.) The two

subunits feature very strong electrostatic complementar-

ity at the interface [Fig. 3(A)], thus explaining the strong

favorable DGel
*. Our TransComp web server predicted an

association rate constant of 4.6 3 108 M21 s21, with

over three orders of magnitude electrostatic rate

enhancement. Karanicolas et al.29 reported a rate con-

stant of (7–9) 3 105 M21 s21 for a precursor of 3Q9N

(before affinity maturation) using surface plasmon reso-

nance (SPR). However, this experimental technique is

limited by mass transport, precluding accurate determi-

nation of rate constants higher than about 106 M21

s21.28 The affinity maturation may have further

improved the association rate constant, as Karanicolas

et al. noted large contribution of charged residue

Table I
Ranking of Models for T43 and T44 According to DGel

* (in kcal/mol)

T43 T44

Model DGel
* Model DGel

*

10a 27.02 10 20.88
9 24.95 19 20.73
11 22.31 17 20.57
8 21.23 2b 20.56
2 20.59 16 20.34
6 20.48 3 20.29
20 20.21 1 20.19
14 0.14 8 20.05
7 0.17 15 0.05
3 0.22 11 0.14
16 0.30 20 0.41
15 0.34 14 0.43
19 0.41 5 0.52
12 0.56 6 0.63
21 0.63 18 0.64
17 0.75 4 0.69
18 0.84 9 0.74
4 1.02 21 0.93
5 1.11 12 0.95
13 1.32 7 1.01

aThis top-ranked model corresponds to crystal structure 3Q9N.
bThis fourth-ranked model was shown to have measurable binding affinity.

Figure 3
T43 and T44 models. A: Crystal structure 3Q9N, corresponding to Model 10 of T43. B: Rosetta-generated structure for Model 2 of T44. Each

model is presented in two views, rotated 180� from each other. In each view, one subunit is represented by the electrostatic surface and the other
as ribbon; the representations are then swapped in the other view.
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mutations during the affinity maturation. They also

noted high salt sensitivity of the binding free energy.

These observations all point to a significant role of elec-

trostatic interactions, consistent with our calculations.

Target T44

There were also 21 Rosetta-generated models for T44.

We again ranked the models according to DGel
* (Table I).

This time the DGel
* values were all moderate; the top-

ranked model had DGel
* 5 20.88 kcal/mol. After the rank-

ing of the models was submitted, the CAPRI participants

were informed by the Baker group that Model 2 had meas-

urable binding affinity. We ranked this model as 4th.

Examining of the electrostatic surfaces of the subunits

in Model 2 shows that one features a strong positive

patch and the other features a strong negative patch [Fig.

3(B)]. However, in the model of the complex generated

by Rosetta, these strong complementary patches are not

placed within the interface. Rather the interface is posi-

tioned at the peripheries of both patches, explaining the

moderate DGel
* for this model (at 20.56 kcal/mol). It is

possible that in the complex actually formed the comple-

mentary electrostatic patches on the two subunits are

placed in the interface.

Target T45

The goal for this target was to discriminate between

Rosetta-designed interfaces from natural complexes. The

87 designed interfaces had favorable computed binding

energies but did not show measurable binding affinities;

the 120 natural complexes were from benchmark 3.0 of

Hwang et al.30 Again we used DGel
* as the role parameter

for ranking, with modest success. Our AUC value, 0.69,

falls in the lower mid-range among the 28 participating

groups (full AUC range is between 0.55 and 0.86).19

Our retrospect comparison shows that the designs and

natural complexes do show distinct distributions in

DGel
*, with a significant overall shift toward higher DGel

*

for the designs (Fig. 4). However, the two distributions

also have significant overlap over the range of DGel
*

from 22 to 3 kcal/mol. This suggests that, while electro-

static calculations are useful for characterizing natural

complexes (e.g., in the regulation of binding affinity and

association rate constant), they have limited ability in

discriminating decoy interfaces from natural ones.

Targets T55 and T56

The goal of these two targets was to test the ability of

predicting how single mutations affect the binding affin-

ities of two designed protein inhibitors of Influenza

hemagglutinin, HB36.4 and HB80.3. The experimental

data were provided by the enrichment of mutant sequen-

ces in a selection for hemagglutinin binding;31 the enrich-

ment data were used as the proxy for mutational effects

on binding affinity in lieu of direct affinity measurements.

To predict the effect of each mutation, we used an

energy function with the combination

DG5DGel 1ln fcf (3)

where DGel is the electrostatic energy calculated accord-

ing to the Debye-H€uckel potential [Eq (2)], and fcf is the

fraction of clash-free poses in generating the transient

complex. The latter quantity was expected to capture the

influence on the binding affinity by the width of the

binding funnel. Our performance on T55 and T56 was

reasonably successful. Evaluated according to Kendall’s

tau-b coefficient, among 22 participating groups, we

ranked 7th for T55 and 6th for T56.20

We carried out retrospective analysis to assess the rela-

tive contributions of the two terms of Eq. (3) (Table II).

The terms appear to be synergistic in their impact on

prediction accuracy; Kendall’s tau-b coefficient for the

combined energy function is much higher than that for

either term. Interestingly, the contribution of fcf seems

more significant for T55 whereas that of DGel seems

more significant for T56.

Docking targets

We submitted 10 medium-quality models for T47, 3

acceptable models for T48 and 1 acceptable model for

Figure 4
Distributions of DGel

* for 120 natural complexes and 87 designs.

Table II
Retrospective Analysis on the Contributions of the Two Terms of Our
Energy Function for T55 and T56

T55 T56

Factor Kendall P-value Kendall P-value

DGel 0.0386 0.06 0.0737 9.6E-4
fcf 0.102 1.3E-6 0.0210 0.36
Both 0.145a 1.8E-12 0.131b 4.21E-9

aThe corresponding value from the official evaluation is 0.165.
bThe corresponding value from the official evaluation is 0.147.
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T49. T47 is the complex of DNase E2 with immunity pro-

tein Im2;32 the CAPRI participants were told that inter-

face water was to be the focus of prediction. We generated

docking poses by HADDOCK, using as input 11 homol-

ogy models of E2 based on the structure of E9 in 2WPT

(for the E9-Im2 complex) and 60 models of Im2 in the

NMR structure 2NO8 along with the structure of Im2 in

2WPT. In two independent HADDOCK runs, residues

K83, F86, and R98 on E2 and D33, R38, E41, and R42 on

IM2 were defined as active restraints, based on mutational

studies of Li et al.33 10 models were selected based on

clustering and manual inspection, with all water molecules

stripped. To each of these models, we added 10 interface

water molecules conserved between the structures of the

E9-Im9 complex (1EMV) and the E9-Im2 complex

(2WPT). The final models were subject to 200 steps of

energy minimization before submission.

T48 and T49 are the complex of T4moH and T4moC,

components of the toluene 4-monooxygenase holo-

enzyme. T4moH was taken from 3DHH for T48 and was

an unpublished unbound structure for T49. The active

site in T4moH is buried, with three tunnels leading to

the exterior.34 In identifying a possible binding site for

T4moC, we focused on the largest channel of the three.

For convenience, we used a residue, S187, near the center

of this channel as a representative. We chose models in

which the iron-sulfur cluster of T4moC is close to S187.

Specifically, the final 10 models all have< 10 Å distances

between T4moH S187 and T4moC H47 or H67, which

coordinate the iron-sulfur cluster.

T58 serves as an example for the docking targets for

which we failed to submit at least an acceptable model.

This is the complex of the SalG lysozyme with the inhib-

itor PliG.35 Mutation studies of Leysen et al.36 suggested

that mutations on PliG Y47 and R119 significantly

reduced inhibitory activity; these authors also noted that

these residues are located in an area predicted by our

meta-PPISP web server.37 Our model selection thus

placed SalG lysozyme active-site residues E73, D86, and

D97 and PliG Y47 and R119 in the interface, assuming

that the inhibitor completely blocked the substrate-

binding site. It turned out that in the actual complex

(4G9S)35 the inhibitor blocks only half of the substrate-

binding site, from a sideway direction. In retrospect our

assumption is untenable, since the substrate-binding site

is too shallow to hold the inhibitor from a “head-on”

direction, so we had to pull the inhibitor away to avoid

clash, leading to a physically unreasonable interface.

Additional work with affinity prediction

Partly due to the encouraging results on targets T55

and T56, we attempted to develop a predictor for pro-

tein–protein binding affinities, based on linear regression

analysis of features defining the full protein–protein

interaction surface. For a subset of 33 complexes from an

affinity benchmark3 that have relatively small differences

between bound and unbound structures (I-RMSD< 1

Å), we found a linear combination of parameters, akin

to Eq. (3), that strongly correlates with the binding free

energies (R2 5 0.64). The parameters included the num-

ber of nonnative contacts (part of Nc defined above) in

the native complex, the curvature of the binding funnel,

the largest gap in Nc in the configurational sampling to

generate the transient complex, and I-RMSD. We con-

clude that the interaction energy landscape and the tran-

sient complex in particular will complement existing

features3–6 in leading to better prediction of binding

affinities.
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