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ABSTRACT

We report the first assessment of blind predictions of water positions at protein–protein interfaces, performed as part of the

critical assessment of predicted interactions (CAPRI) community-wide experiment. Groups submitting docking predictions

for the complex of the DNase domain of colicin E2 and Im2 immunity protein (CAPRI Target 47), were invited to predict

the positions of interfacial water molecules using the method of their choice. The predictions—20 groups submitted a total

of 195 models—were assessed by measuring the recall fraction of water-mediated protein contacts. Of the 176 high- or

medium-quality docking models—a very good docking performance per se—only 44% had a recall fraction above 0.3, and a

mere 6% above 0.5. The actual water positions were in general predicted to an accuracy level no better than 1.5 Å, and even

in good models about half of the contacts represented false positives. This notwithstanding, three hotspot interface water

positions were quite well predicted, and so was one of the water positions that is believed to stabilize the loop that confers

specificity in these complexes. Overall the best interface water predictions was achieved by groups that also produced high-

quality docking models, indicating that accurate modelling of the protein portion is a determinant factor. The use of estab-

lished molecular mechanics force fields, coupled to sampling and optimization procedures also seemed to confer an advant-

age. Insights gained from this analysis should help improve the prediction of protein–water interactions and their role in

stabilizing protein complexes.

Proteins 2014; 82:620–632.
VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Water plays a major role in stabilizing the conforma-

tion of individual proteins and of their complexes with

other molecules and macromolecules, including other

proteins.1,2 In addition to its role as a solvent, which

underlies important physical phenomena such as the

hydrophobic effect3,4 and electrostatic screening,5 water

molecules also form specific associations with macromo-

lecules.6,7 These associations, and their dynamic proper-

ties make important contributions to protein folding and

stability,8 to enzyme substrate recognition and catalysis,9

and to molecular recognition in general.2,10

Analysis of protein complexes and their interfaces has

provided compelling evidence that protein-associated

water crucially influences the structure and stability of
protein–protein interfaces.11,12 An excellent example is
the very high affinity barnase–barstar complex, where as
many as 18 water molecules are fully buried in the inter-

face between the interacting proteins.13 Water also plays
an essential role in mediating transient protein–protein
interactions, which are at the basis of most cellular
processes.14

Atomic-scale computational analyses of protein–water

systems have been extremely valuable in providing

insights into the dynamic and energetic properties of

protein–water interactions and their role in conferring

protein stability,15 protein–ligand interaction specific-

ity10,16 and in enzymatic catalysis.17 A significant body

of work has also been devoted to computational methods

for predicting bound water positions in known protein

structures,18–21 and particularly to modelling water

molecules in protein–ligand docking procedures, com-

monly used in computational drug design, where water-

mediated contacts often play a very important role. A

plethora of methods has been developed to tackle the lat-

ter category of problems. These include methods that

incorporate water molecules implicitly or explicitly to
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predict protein–ligand docking poses, implemented in

packages such as GOLD, AUTODOCK, or GLIDE,22–27

and algorithms such as WaterMap28 and WaterDock.29

Other approaches such as SuperStar30 and AcquaAlta31

identify hydration sites in proteins using knowledge-

based approaches.

In comparison, very few methods have been proposed

for the prediction of hydration water positions at pro-

tein–protein interfaces.32,33 Similarly, in computational

protein docking procedures modelling the role of water

has in general been limited to approximating its bulk

effects (see for example Ref. 34). Only very few methods

so far incorporate explicit water molecules in the dock-

ing calculations with positive impact on the quality of

the predicted complexes.35,36

Protein–protein docking procedures37–40 are

designed to predict the detailed atomic structure of a

protein complex from the three-dimensional (3D)

structure of the individual protein components, which

have either been determined independently, or are

derived by homology modelling41 from the known

structure of one or more related proteins. These proce-

dures usually involve sampling a very large number of

possible association modes between the two proteins

and selecting those likely to form stable associa-

tions.42–44 These tasks are very computationally inten-

sive and current methods are still encountering

difficulties in incorporating any additional degrees of

freedom as part of the docking calculations to model

conformational changes that often occur upon associa-

tion.45 This may be one of the reasons why most pro-

tein docking methods refrain from modelling

interactions with water molecules. Another likely rea-

son is the current limited understanding of how to

account for the structural and energetic contributions

of bound water molecules to protein association in the

calculations.

The critical assessment of predicted interactions

(CAPRI) experiment45,46 has been playing a central role

in evaluating and fostering progress in protein docking

methods. Initially designed to assess the quality of pre-

dicted structures of protein complexes, it has since then

undertaken the evaluation of the functions used to score

protein–protein interfaces45,47 and more recently that

of predicting the relative affinity of protein–protein

association.48,49

Here we report a first step toward extending the

scope of CAPRI to the assessment of blind predictions

of water positions at protein–protein interfaces.

Groups submitting standard docking predictions for

the complex of the DNase domain of colicin E2 and

Im2 immunity protein (CAPRI Target 47)50 were

invited to predict the positions of water molecules

involved in the interface of the complex using the

method of their choice. Interfacial water molecules are

known to play a critical role in both the stability and

specificity of colicin DNase–immunity protein com-

plexes.51,52 In the current exercise, groups thus had to

predict both the structure of the protein–protein inter-

face as well as the water positions in this interface and

that, without previous knowledge of the correct answer

for either modelling problems. This represented a more

challenging task than in previous efforts of predicting

water positions in interfaces of known protein

complexes.32,33

Twenty groups rose up to the challenge, submitting

water predictions for a total 195 models of the Colicin

E2 DNase–Im2 complex. These predictions were assessed

by comparing protein–water interactions in the predicted

interfaces to those in the target. In the following,

we describe the assessment method, and report the

assessment results. The methods used to predict water

positions are briefly reviewed with additional details

provided by individual participants as Supporting

Information.

THE TARGET COMPLEX AND ITS
INTERFACIAL WATER
MOLECULES

The target complex (CAPRI target T47) for which the

prediction of interface water positions is evaluated here,

was that of the DNase domain of colicin E2 with the

cognate Im2 immunity protein50 (RCSB-PDB code

3U43), solved at 1.72 Å resolution at 100 K. Using a

cryogenic structure as a benchmark for the investigation

and prediction of specific protein water interactions

makes good sense. In cryogenic structures hydration

sites are more clearly defined than those in structures

solved at room temperature and therefore the number

of identifiable hydration sites is between 1.5 and 3 times

that at ambient temperature.53 But sites observed at

room temperature are also present in the cryogenic

experiments.

Defining interface water positions as any crystallo-

graphic water molecules found within a distance of 3.5 Å

of both ligand and receptor residues, the target structure

comprised a total of 23 interface water positions, of

which 9 are buried (with <10% solvent accessibility).

Furthermore, a total of 3 interface water positions (3, 6,

and 16, numbered 32, 87, and 88 in the original publica-

tion) occupy conserved positions in related colicin

DNase–immunity complexes.50

The 23 interface waters participate in 35 water-

mediated ligand-receptor contacts, 21 of which originate

from the 9 buried waters. The list of water-mediated

contacts is provided in the Supporting Information. Fig-

ure 1 illustrates the interface water positions in the tar-

get, and the hydrogen-bonding network formed by the

subset of buried water molecules.
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METHODS USED TO PREDICT
INTERFACIAL WATER
MOLECULES

Groups participating in this prediction challenge

needed to first predict the structure of the complex from

those of the individual protein components. While no

3D structures of the Colicin E2 DNase domain or the

Im2 proteins were available in the Protein Data Bank

(PDB), those of several related complexes between Im7-

colicin E7 (PDB code 7CEI), Im9-colicin E9 (PDB code

1EMV), Im2-colicin E9 (PDB code 2WPT), and others,

were available. Predictor groups were hence able to

model the colicin E2 DNase–Im2 complex by homology

modelling techniques using the structures of the proteins

in one (or several) of these complexes as templates. This

made for a relatively easy target for the docking chal-

lenge, but not necessarily for the interface water predic-

tions, given that the precise atomic positions in the

interfaces of the docking models are likely to differ from

those in the target, especially those of side chains and

loops.

The approaches used to predict interface water posi-

tions in the computed models spanned a wide range and

were generally quite complex. They involved different

methods for generating the initial water positions, sam-

pling alternative positions and optimizing the interac-

tions with protein atoms at the interface. Table I

provides a very crude overview of the salient features of

the methods used by individual groups. Detailed descrip-

tions of these methods, provided by the participants

themselves, are available in the Supporting Information.

The vast majority of the groups modelled water posi-

tions a posteriori into the interface of the best docking

models generated in absence of water molecules. Among

these groups, a few (Wolfson, Zacharias) modelled water

positions ab initio, by adding a box of water molecules at

the expected density, followed by several cycles of molec-

ular dynamics or energy refinement and pruning, to

select only interface waters and to eliminate overlap

between water molecules. Water positions were then

rescored or refined using energy functions based on force

fields from packages such as CHARMM,54 AMBER,55

or Rosetta56 and only those with lowest energy were

submitted as candidate positions for evaluation. Most

other groups (Bates, Eisenstein, Gray, Vakser, Mitchell,

Nakamura, Shen, Seok) applied a similar strategy, but

starting from water positions derived from the structures

of related complexes in the PDB. These positions were

either considered alone, or complemented with addi-

tional ab initio water positions. Grudinin and Dere-

vyanko used knowledge-based protein–water scoring

functions to model water positions, Vajda and Kozakov

adapted an earlier procedure for ligand binding sites pre-

dictions to treat water binding, whereas Fern�andez-Recio

used the optimization procedure in DOWSER57 to pre-

dict the position of buried water molecules. Bonvin/Had-

dock and Shen were the only groups to model initial

interface water position during the docking calculations.

These positions were then pruned, remodelled and

scored, using analogous strategies to those already men-

tioned. Finally, Weng and Zhou relied on very simple

water placement procedures, starting from water posi-

tions derived from related complexes.

EVALUATING INTERFACE
WATER PREDICTIONS

The correspondence between the predicted water posi-

tions and those observed in the crystal structure of the

Figure 1
The Colicin E2 DNase–Im2 interface highlighting interface water mole-
cules and hydrogen bond networks made by water molecules buried at

the interface. (a) Interface water molecules in the DNase–Im2 complex.
The protein subunits are illustrated using colored light blue and orange,

respectively. The 9 buried interface water molecules are shown as blue

spheres, the remaining 14 interface waters as red spheres. Atomic coor-
dinates were taken from Ref. 50 (PDB-RCSB code 3U43). The illustra-

tion was produced using the PyMol software (www.PyMol.org). (b) The
hydrogen bond network formed by the water molecules buried in the

interface of the DNase–Im2 complex. Shown are water–water and
water–protein contacts, formed between the water oxygens and polar

heavy atoms of the proteins at a distance of 3.5 Å or less.

Blind Prediction of Interfacial Water Positions
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target was evaluated for all the docking models submit-

ted (at most 10) by each participant. To this end we

identified the so-called water-mediated receptor–ligand

contacts, in the target structure and in submitted docking

models, respectively. Such water-mediated contacts are

defined whenever residues from both the ligand and the

receptor proteins have one or more heavy atoms within

a 3.5 Å distance of the same water molecule, as illus-

trated in Figure 2. As in standard CAPRI assessment the

larger protein in the complex is denoted as the receptor,

whereas the smaller one as the ligand. As shown in Fig-

ure 2, a given interface water position may give rise to

more than one water-mediated residue–residue contact,

so that the number of such contacts tends to be larger

than the number of interface water positions. The 23

water molecules in the target interface thus form 35

water-mediated contacts.

Next, we computed the quantity f wmc(nat) defined as

the fraction of water-mediated contacts in the target that

is recalled by the docking model. This quantity is analo-

gous to the f(nat) quantity (fraction of recalled direct

native residue–residue contacts) used in CAPRI to assess

docking models,45 only here the contacts are not direct

receptor-ligand contacts, but indirect water-mediated

contacts.

We then used f wmc(nat) to rank and classify water pre-

dictions in individual models. To avoid evaluating trivial

water models where the predicted interface is filled with

densely packed (or overlapping) water molecules, we

used a clash threshold to accept or reject predicted waterTa
bl
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Figure 2
Schematic illustration of water–mediated residue–residue contacts at an

interface of a protein–protein complex. Water molecules are indicated

as coloured circles, with red water molecules engaging in two, and
orange waters in a single water-mediated contact. Blue surface waters

are only bound to a single of the entities (ligand or receptor) and do
not contribute to the water-mediated contact list.
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positions. We identified interface water molecules in

both the target and predicted models with their number

denoted, respectively, as nw
t and nw

p , and defined a clash

as a contact of <2.5 Å between two interface water mole-

cules. In the predicted models, the number of such

clashes should not exceed the number of native interface

waters. As clashes turned out not to be a major issue in

the current exercise, we ignore them. Table II lists the

ranges of f wmc(nat) values used to rank and classify pre-

dictions. These ranges are the same as those used for the

“classic” CAPRI f(nat) criterion, except that we add the

outstanding category for f wmc(nat) � 0.8.

In addition to evaluating the recall of water-mediated

contacts, we also evaluated the recall of the native inter-

face water positions themselves. This measure, denoted

as f w(nat), is defined as follows:

f wðnatÞðrÞ5
nw

p2matchedðrÞ
nw

t

where nw
t is defined as previously and nw

p2matchedðrÞ is the

number of predicted interface water molecules within a

certain distance r of a crystallographic interface water.

The quantity f w(nat) was computed for different values

of r (0.5, 1.0, 1.5, and 2.0 Å) after fitting the interface

residues of the predicted and target complexes. Interface

residues were defined as residues from both proteins that

have any of their atoms within 5 Å distance of one

another. The fitting was performed on the backbone

atoms of all interface residues from both proteins.

f w(nat) values were not used to rank predictions in this

experiment.

PREDICTION RESULTS

Performance across groups

Water positions were assessed in a total of 195 docking

models of the Colicin E2 DNase–Im2 complex submitted

by 20 predictor groups. The standard docking assessment

classified the submitted models into four quality catego-

ries (incorrect, acceptable, medium, and high) based on

the usual CAPRI criteria.45 Each of these models was

further classified into five categories according to its

interface water prediction quality on the basis the

f wmc(nat) criterion (Table II).

The global water prediction performance, summarized

in Table III, highlights the clear dependence of the pre-

diction performance, as measured by the f wmc(nat) val-

ues, on the quality of the predicted docking models. All

the nine incorrect docking models, had “incorrect” inter-

face water predictions (f wmc(nat) < 0.1). Of the 10

acceptable models, only 4 had “fair” interface water pre-

dictions (40% of the models), whereas among the 88

medium-quality docking models, as many as 77 models

(88%) had water predictions of “fair” quality or higher,

including 7 models with an “excellent” water prediction

quality. The best prediction performance was for the 88

high-quality docking models, with 82 of these models

(93%) having water predictions of fair quality or better.

None of the models ranked as “outstanding” (f wmc(nat)

� 0.8).

It is noteworthy, that the majority of the models con-

tained a significant fraction of false positive (non-native)

water-mediated contacts, for example, contacts that were

not formed in the target. The fraction of these non-

native contacts—denoted as f wmc(non-nat)—ranged

between 0.4 and 0.6, even in models featuring excellent

water predictions as judged by their f wmc(nat) value (see

Supporting Information Table S2 for details).

The relationship between f wmc(nat) values and various

quality measures of the predicted docking models is

illustrated in Figure 3. As expected, higher quality mod-

els, those with higher f(nat) values tend to lead to higher

quality water predictions [higher f wmc(nat), values; Fig.

3(a)]. However, except for the clear absence of valid

water predictions for incorrect models, the correlation

between the quality measures of the model and the water

predictions is poor, as witnessed from the large spread of

f wmc(nat) values for the medium and high-quality dock-

ing models [f(nat) > 0.7]. A similar poor correlation is

displayed between f wmc(nat) values and those of I-rmsd

and S-rmsd [Fig. 3(b,c)]. The interface and side-chain

RMSD values (I-rmsd and S-rmsd) are calculated over

interface residue backbone and side-chain atoms, respec-

tively, after a fit (model over target) on the backbone

Table II
Ranges of fwmc(nat) Values Used to Assign Water Predictions to One of

Five Categories

0 Bad f wmc(nat) < 0.1
1 Fair 0.1 � f wmc(nat) < 0.3
21 Good 0.3 � f wmc(nat) < 0.5
31 Excellent 0.5 � f wmc(nat) < 0.8
41 Outstanding 0.8 � f wmc(nat)

f wmc(nat) is defined as the fraction of recalled water mediated contacts in the tar-

get that is recalled in the predicted model. In analogy to the stars (*) for the

docking prediction, we assign plusses (1) for the water prediction quality.

Table III
Models With Different Quality Water Predictions for Different Category
of Docking Models

Docking
models

Models
w/bad

Models
w/fair

Models
w/good

Models
w/excellent

Incorrect 9 9 0 0 0
acceptable 10 6 4 0 0
Medium 88 11 45 25 7
High 88 6 35 43 4

Listed are the numbers of models with bad, fair, good, and excellent predictions

of water-mediated contacts (Columns 3–6) for each number of docking models

ranked as incorrect, acceptable, medium or high quality in the classical CAPRI

assessment (Columns 1 and 2).
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atoms of interface residues (in both cases). Here too,

incorrect models (I- or S-rmsd > 4 Å) invariably have

poor water predictions, but models of medium or high-

quality display a large spread in the quality of their water

predictions [0 < f wmc(nat) < 0.6].

It can thus be concluded that in general, docking

models of acceptable quality or worse do not produce

good interface water prediction models; at least a

medium-quality model seems to be required, but in this

exercise high-quality docking models only lead to mar-

ginally better water prediction results than medium-

quality models.

Lastly, we also examined the relation between the

recall of water mediated contacts and actual interface

water positions. Figure 4 shows scatter plots of f wmc(nat)

versus f w(nat) the fraction of recalled interface water

positions, where the latter is computed for four values of

r, the allowed maximum distance between a predicted

and target water position. When requiring that water

positions be accurately predicted (r � 0.5 Å) the recall of

interface water positions remains poor, even for

f wmc(nat) ranges corresponding to “good” and “fair”

water-mediated contact recall fractions. There is as a

result little correlation between the performance meas-

ured by the recall of water-mediated contacts, and the

recall of actual water positions. This correlation signifi-

cantly improves however, as the accuracy requirements

are relaxed (larger r values). Accepting as correct any

predicted water position within 2 Å distance of a water

molecule in the target leads to an excellent performance

for water position recall: a total of 32 models had

f w(nat) � 0.5, including 2 models with f w(nat) � 0.9

(Fig. 4). The 2 Å distance threshold is smaller than the

average distance between two water molecules in the

bulk (2.85 Å), or the distance of 2.5 Å used here to

Figure 3
Relationships between f wmc(nat) and various measures for evaluating the quality of docking models in the regular CAPRI assessment. (a) Scatter

plot illustrating the relationship between f wmc(nat) (vertical axis) and f w(nat), the fraction of residue–residue contacts recalled in individual sub-
mitted models of the colicin E2 DNase–Im2 complex T47 (horizontal axis). Horizontal dashed lines are used to indicate f wmc(nat) values separating

bad, fair, good, and excellent or outstanding predictions (see text). Vertical dotted lines indicate the f(nat) values that separate high/medium/accepta-
ble quality docking models in the classical CAPRI assessment. Individual data points in the figures are color-coded following final evaluation classi-

fication: high quality: red; medium quality: green; acceptable: blue; and incorrect: yellow. (b) Scatter plot illustrating the relationship of f wmc(nat)
and I_rmsd(Å), the root mean square deviation of backbone atoms of interface residues, in submitted models of T47. All other details are as in

(a). (c) Scatter plot illustrating the relationship of f wmc(nat) and S_rmsd(Å), the root mean square deviation of the side chain atoms of interface

residues measured after optimal superimposition of the backbone of these residues in the submitted and target structures, for T47. All other details
are as in (a).

Figure 4
Relationship between f wmc(nat) the recall of water mediated contacts,
and f w(nat)(r) the recall of observed water positions in the predicted

models for four different values of r, the distance between a predicted
and closests observed water position. Each triangle in the plots corre-

ponds to the f w(nat)/f wmc(nat) pair of a single submitted model. The

correlation coefficient for the data in the four plots is: 0.45 (r 5 0.5
Å), 0.64 (r 5 1.0 Å), 0.77 (r 5 1.5 Å), and 0.81 (r 5 2.0 Å).
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define a clash between two water positions, but it is

much larger than the root mean square displacement

(�0.71 Å) of the water molecule with the largest B-factor

(B � 40 Å2) in the crystal structure of the target. The 2

Å threshold may therefore be regarded as corresponding

to a valid low accuracy prediction. At this lower level of

prediction accuracy, we observed that most models with

excellent water position recall f w(nat) � 0.5 also dis-

played a fraction of false positive predictions—predicted

water positions that were not observed in the target

interface. However, this fraction was on average lower

than for the water-mediated contact predictions and gen-

erally ranged between 0.2 and 0.4. Only two models (by

Grudinin) featured near zero false positive water posi-

tions (see Supporting Information Table S2 for detail).

Performance of individual groups

Table IV lists the performance of individual groups as

measured by the number of models falling into one of the

five categories in terms of the recall of water mediated

contacts. A total of 20 groups submitted models with pre-

dicted water positions. Of these, 15 groups submitted at

least one model out of the allowed 10, with good-quality

water predictions, as judged by their f wmc(nat) value.

The top-performing group (Nakamura) submitted

seven models with “excellent” water predictions and

three models with “good” ones. The other two groups

to submit at least one model with excellent water pre-

dictions are Zacharias (three models) and Zou (one

model). Unsurprisingly, all the docking models sub-

mitted by these groups were of medium quality or

higher (Table IV). But this was also the case for several

other groups such as Vajda, Vakser, Seok, and Weng,

whose water predictions were less successful. It might

be of note, that Zacharias predicted interface water

positions ab initio, combining energy functions that

incorporate well-established force fields (AMBER) with

energy minimization and short molecular dynamics

runs. Both Nakamura and Zou used initial water posi-

tions derived from interfaces of related complexes, fol-

lowed by pruning and by energy minimization, also

using the AMBER force field, to yield the final predic-

tions. All three groups modelled their water positions

into docking solutions derived in absence of explicit

water molecules.

Prediction of buried water molecules

Of the 23 interface waters molecules in the target, 9

are buried (with �10% of their surface accessible to bulk

solvent). These water molecules contribute 17 of the 35

ligand–receptor water mediated contacts all involving

polar main chain or side chain atoms, and are hence

heavily embedded in the interface. The prediction results

for the corresponding water positions were therefore

examined in further detail.

Figure 5 shows the distances of the closest predicted

water position to each of the 23 interface water mole-

cules submitted by individual groups. The water

Table IV
Water Prediction Results for Individual Groups

ID Participant

Docking prediction Water prediction

Models*** ** * 0 41 31 21 1 0

P26 Nakamura 1 9 0 0 0 7 3 0 0 10/10
P08 Zacharias 7 3 0 0 0 3 4 3 0 10/10
P40 Zou 10 0 0 0 0 1 9 0 0 10/10
P23 Grudinin 8 2 0 0 0 0 9 1 0 10/10
P10 Bonvin 4 6 0 0 0 0 6 4 0 10/10
P11 Gray 1 9 0 0 0 0 6 3 1 9/10
P38 Vajda and Kozakov 10 0 0 0 0 0 6 2 2 10/10
P02 Bates 0 10 0 0 0 0 5 5 0 10/10
P37 Eisenstein 6 0 0 0 0 0 5 1 0 6/6
P32 HADDOCK 9 1 0 0 0 0 4 6 0 10/10
P30 Vakser 7 3 0 0 0 0 4 6 0 10/10
P13 Ritchie 1 6 0 3 0 0 3 4 3 10/10
P31 Mitchell 0 9 1 0 0 0 2 8 0 10/10
P29 Seok 10 0 0 0 0 0 1 9 0 10/10
P17 Wang 1 7 2 0 0 0 1 6 3 10/10
P49 Shen 3 4 2 1 0 0 0 7 3 10/10
P15 Weng 10 0 0 0 0 0 0 6 4 10/10
P47 Zhou 0 10 0 0 0 0 0 6 4 10/10
P01 Fernandez-Recio 1 1 3 5 0 0 0 4 6 10/10
P05 Wolfson 0 8 2 0 0 0 0 3 7 10/10

The participant ID number and name appear in columns 1 and 2. Columns 3–6 list the number of docking models submitted by each group, ranked as high quality

(***), medium quality (**), acceptable (*), and incorrect (0), respectively. These ranking was performed on the basis of the classical CAPRI assessment criteria.

Columns 7–11 list for each group the number of models classified in one of five categories on the basis of their water predictions performance assessed using the ranges

of fwmc(nat) values listed in Table I. The right-most column lists the number of models with water predictions over the total number of submitted models by each

group.
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molecules are ordered by solvent accessibility and the

results for the nine buried waters appear at the lower

part of the graph. Only two buried water molecules, 3

and 6 and to a lesser extent Water 4, were relatively well

predicted, with 15 of the 20 groups predicting a water

position within 1.0 Å of Waters 3 and 6 (see also Sup-

porting Information Fig. S2). Otherwise, buried waters

do not seem to be better predicted than more accessible

ones. On the other hand, we find that the three water

molecules, 3, 6, and 16, which are well conserved in

other complexes of this family and are present in the

structure of unbound E9 DNase,58 are clearly among the

best predicted interface water molecules (Fig. 5). Water 3

and 6 are buried, but Water 16 is partially accessible.

There also are relatively good predictions for Water 4.

Both this water and Water 5 interact with one another

and appear to stabilize the loop that is involved in defin-

ing the specificity for this family of complexes, although

Water 5 is much less well predicted. The remaining, non-

buried waters are more widely spaced and do not cluster

together, with the exception of Waters 10, 19, and 21.

We observe again that one of them—Water 10—is con-

sistently well predicted, whereas Waters 19 and 21 are

not. It is at this point not clear why particular water

positions in a cluster or a pair of interacting water mole-

cules are better predicted than others.

Finally, our results also show that groups with a better

water prediction performance overall are also more suc-

cessful in predicting buried water molecules (Supporting

Information Table S2 and Fig. S3): both Nakamura and

Zacharias predict five of the nine buried waters to within

1.0 Å, a number that, for Nakamura, increases to eight

of the nine when relaxing the distance threshold to 1.5

Å. As already mentioned, both predictors use a similar

procedure, applying energy minimization after a short

molecular dynamics run with standard force-fields, con-

firming that the procedure is quite successful. However,

whereas Zacharias places initial water molecules at ran-

dom positions, Nakamura extracts them from crystal

waters found in the related template structure (PDB

code 2WPT), indicating that the performance of the pro-

cedure depends little on the starting water positions, as

will be demonstrated below.

Modelling interface water positions in the
target complex

Having observed a clear relationship between the qual-

ity of the predicted docking model and those of the

water mediated contacts predictions, it seemed of interest

to find out how well interface water molecules could be

predicted starting from a perfect model of the complex.

To this end, we performed short (100 ps; 1 ps 5 10212

s) molecular dynamics simulations of the target colicin

E2 DNase–Im2 complex in a box of explicit water mole-

cules. The simulations were carried with the Gromacs

package,59 using the SPC water model60 standard peri-

odic boundary conditions, and the Particle Mesh Ewald

Figure 5
Closest distance at which a predicted water molecule was found in the ensemble of predicted models, for each of the 23 water molecules in the

interface, including the 9 buried ones. Individual data points are coloured according to their water prediction quality (see legend in figure) and
placed on the four (dotted) lines, following the prediction quality of the underlying docking model, from top to bottom line: high, medium,

acceptable and incorrect. The nine buried water molecules make (<3.5 Å) contacts with the following ligand and receptor residues and atoms:

W1—Tyr-A54O, Lys-B72N, Asn-B75Nd2; W2—Tyr-A54O, Lys-B72O, Ser-B74N, Asn-B75N; W3—Ile-A53O, Asp-A62Od1, Gly-B73N, Ser-B74N;
W4—Ile-A22O, Tyr-A54Oh, Asn-B78Nd2; W5—Asp-A33Od2, Asn-B78Od1, Arg-B98Nh2; W6—Ser-A50Og, Asp-A51Od1, Ala-B87O, Gln-B92NE2;

W7—Glu-A41Oe2, Ser-A50Og, Gln-B92OE1; W8—Asp-A62Od1, Ser-B74Og; and W9—Arg-A38Cg, Glu-B97OE2.
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Method.61 Trajectories were produced at room tempera-

ture and at 100 K. The protein coordinates were held

fixed allowing only the water molecules to move. Inter-

face water positions, and the water-mediated contacts in

which they participate, were then analyzed in individual

conformations from the simulated ensemble, as if they

were models submitted in the current exercise.

Figure 6(a) shows the distribution of the f wmc(nat)

and f wmc(non-nat) values in the simulated ensemble after

random initial placement of the water molecules. The

initial randomly placed water molecules give rise to

f wmc(nat) values between 0.2 and 0.4 (data not shown),

but they quickly adapt to the environment of the cor-

rectly placed protein side chains, to produce a distribu-

tion of values in the “excellent” category [0.5 <
f wmc(nat) � 0.7]. These values are centered roughly

around that of the best predictor group [f wmc(nat) 5 0.6

for Nakamura]. A quenching experiment (dropping the

simulation temperature during 100 ps from 310 K to 100

K) improves the f wmc(nat) values, and decreases some-

what the fraction of false positives predictions

[f wmc(non-nat); Fig. 6(b)].

Figure 6(c) shows the distribution of f wmc(nat) and

f wmc(non-nat) values of simulated ensembles, where the

initial placement of water molecules was taken from the

(target) x-ray structure. Among the 101 frames analyzed,

69 (68%) have f wmc(nat) values exceeding 0.8, corre-

sponding to the “outstanding” classification. All other

frames fall into the “excellent” category. The distribution

of the fraction of false positive predictions f wmc(non-nat)

shows that this fraction remains consistently low, as

about half of the models have f wmc(non-nat) values of

0.2 or lower, and none of the models exhibit values

above 0.4. Decreasing the simulation temperature is

expected to lower this fraction even further, analogous to

the results in Figure 6(b).

These results taken together indicate that, given a per-

fect docking model, a situation rarely if ever encountered

in blind predictions, water positions can be modelled a

posteriori quite successfully using standard molecular

mechanics force fields and sampling procedures. Further-

more, in this combined approach the prediction per-

formance, as gauged here, is not crucially dependent on

the initial positions of the water molecules. Similar find-

ings have been reported in a number of previous studies

using molecular simulations to model protein hydration

and its influence on binding.36,53,62–64

DISCUSSION

In this article, we report the result of the first interface

water prediction CAPRI challenge. In this challenge,

groups using docking methods to predict the structure of

CAPRI target T47, a complex between the DNase

domain of colicin E2 and the cognate immunity protein

Im2, were invited to submit predictions for the positions

of water molecules in the interface of the complex. The

predictions were assessed by measuring the fraction of

water-mediated contacts in the target that was recalled in

the docking model. T47 was an easy target for the pro-

tein docking challenge because it was very similar to

other known complexes of related proteins, including a

target (T41) previously used in CAPRI. Not surprisingly

therefore, many high or medium-quality docking models

were submitted (Tables III and IV). However, the main

goal of this experiment was to predict the position of

interface waters, and that proved much more difficult: of

the 176 high- or medium-quality docking models, only

78 (44%) had a water-mediated contacts recall fraction

f wmc(nat) above 0.3, and a mere 11 (6%) had a recall

fraction above 0.5. The fraction of models increases to

90% (159 models) when lower recall fractions [0.1 �
f wmc(nat) � 0.3] for water predictions are considered.

These results suggest that further work is needed to

reach an interface water prediction performance that is

of practical use in applications such as drug and protein

design. It is currently difficult to indicate with some con-

fidence the direction that such further work must take,

as the blind benchmarking carried out here was limited

to a single interface. Moreover, the methods used by

Figure 6
Distributions of water prediction quality measures in conformational

ensembles derived from molecular dynamics simulations of the target
complex in presence of explicit water molecules. (a) Distributions

derived from 100 ps 310 K simulation ensembles, starting from water
molecules placed randomly in the simulation box. (b) Distributions

derived from ensembles obtained after further 100 ps simulations start-

ing from those in (a) and dropping the temperature from 310 K to 100
K. (c) Distributions derived from 100 ps 310 K simulation ensembles,

starting from water positions taken from the target X-ray structure.
Plotted are the frequencies of models (vertical axis) as a function of the

fwmc(nat) and fwmc(non-nat) values (horizontal axis). The total number
of models in each panel was 101, corresponding to the number of

recorded conformations in the molecular dynamics simulations. All

other details are provided in the text.
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different participants are often complex and span a wide

range.

As already mentioned, the colicin E2 DNase–Im2

interface is part of a high-resolution structure (1.72 Å)

determined at cryogenic temperatures (100 K).50 There

is compelling evidence that using a cryogenic structure

to benchmark the performance of interface water predic-

tions is highly relevant.53 In a cryogenic structure of a

protein–protein complex, hydration sites, which include

but are not limited to those identified in a protein–pro-

tein interface, are more clearly defined than those in

structures solved at room temperature. This follows from

the fact that at cryogenic temperatures the mobility of

some of the more dynamic water molecules is sufficiently

reduced to be able to identify and refine their positions

in the electron density map, especially if this map is

based on high-resolution data, as is the case here.

Analysis of the performance of individual groups indi-

cates that some groups perform better than others. The

methods description (Table I and Supporting Informa-

tion) together with Table IV, which ranks participants

according to their interface water prediction perform-

ance, clearly indicate that a high- to medium-quality

model for the protein complex is a prerequisite for suc-

cessful interface water predictions. Beyond that, it

appears that methods, which combine the use of more

sophisticated force-fields (e.g., classical empirical force

fields or the equivalent) with some sampling, followed

by energy minimization, were more successful than

much simpler water placement methods used for exam-

ple by the groups of Weng and Zhou. The disadvantage

of the simpler methods is surmised from fact that they

yielded some of the poorest interface water predictions

in high- and medium-quality docking models for the

protein complex (Table I).

Our own quite successful water modelling exercise on

the target structure supports the conclusion on the

advantage conferred by the use of classical molecular

mechanics force-fields coupled with standard sampling

and refinement procedures, provided the model of the

protein portion is accurate enough. Taken together with

the prediction results of the CAPRI community our test

also indicates that predicting water positions a posteriori,

by modelling them onto a docked complex, is a promis-

ing approach when the docking calculations themselves

produce accurate models for the intermolecular interface.

But this approach clearly needs further fine tuning since

even the best performing groups still produced a signifi-

cant fraction of predicted false positive water mediated

contacts. Reducing this fraction may require more elabo-

rate approaches for modelling both the protein and

water portions of the system. For the water portion this

may involve estimating protein–water relative free ener-

gies or accounting for polarization effects to further

prune candidate water positions derived on the basis of

energy estimates alone. On the other hand one may

argue that some of the false positive predictions may

represent water molecules engaged in more dynamic

interactions with the protein, which the crystallographic

study considers as disordered (e.g., water positions with

B-factors > �70 Å2, Kleanthous, personal communica-

tions). A detailed comparison of the predicted water

positions and contacts to those of the more mobile water

positions may shed light on this interpretation.

Nonetheless it was reassuring to see that the three

highly conserved water molecule (Waters 3, 6, and 16),

which are believed to be part of the protein–protein

interface hotspot are among the best predicted interface

water positions. Another important water position

(Water 4), which is involved in defining the specificity

for this particular family of complexes, is also relatively

well predicted. Overall however, the prediction perform-

ance was not better for buried waters than for more

accessible ones. Although we did note that well-predicted

buried waters often represented one member of a small

cluster of water molecules, whereas other members of the

cluster were usually less well predicted, possibly due to

the fact that predictor groups tended to avoid crowding

several water positions in close proximity.

Finally, it should be mentioned that for some sys-

tems—those that give rise to highly hydrated interfaces—

deriving accurate prediction of the complex may require

modelling protein–water interactions as part of the dock-

ing procedure. At present, examples of docking methods,

which incorporate protein–water interactions remain the

exception.35,65 But as more hydrated target interfaces

are submitted as targets to CAPRI, docking methods will

evolve to more fully integrate protein–water interactions

into the prediction process. We therefore expect that the

assessment of predicted interface water positions will

become an integral part of the CAPRI evaluation proce-

dure going forward.
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