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Enhancement of Association Rates by Nonspecific Binding to DNA and Cell Membranes
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A comprehensive analytic theory is developed for the kinetics of reversible association with specific
sites on DNA and receptors on cell membranes in the presence of nonspecific binding to the target
surfaces. Nonspecific binding is treated as a short-range attractive potential, which is more fundamental
and realistic than the surface sliding model. The presence of a surface potential around the target
enhances the rate of specific association and for reversible reactions leads to deviations from single
exponential relaxation.
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Biological processes are under the opposing con-
straints of specificity and speed. A transcription regula-
tory protein needs to find a small specific operator site on
a long stretch of DNA. Similarly, a signaling protein may
need to quickly associate with its cognate receptor on a
cell membrane. Nonspecific binding to the target surface
can significantly enhance the association rate by reducing
the dimensionality of the search space for the specific site
[1]. The seminal ideas of Adam and Delbruck [1] have
been developed over the years, most notably by Berg and
Ehrenberg [2,3], who obtained expressions for the irre-
versible steady-state diffusion-influenced association rate
by generalizing the usual boundary conditions to incor-
porate surface sliding. Work presented here transcends
previous developments in two significant respects:
(i) we consider reversible association using a sophisti-
cated formalism [4], and (ii) we treat nonspecific binding
in a physically transparent way by introducing a short-
range attractive potential for the interaction of the ligand
with the entire target surface.

We consider the kinetics of reversible association of a
ligand with concentration [L] (assumed in excess) with a
specific site on the surface of a macromolecular target:

M� L! ML:

A ligand can associate with the target when their mutual
diffusion brings the ligand into contact with the specific
site. The association reaction at contact is described by an
intrinsic forward rate constant �f. The ligand is attracted
by a short-range potential to the entire target surface. The
ML complex can dissociate to form a contact pair with
rate constant �f. The equilibrium constant Keq � �f=�r
is independent of the diffusion coefficients of the reac-
tants and product and is independent of the attraction the
ligand feels toward the nonspecific sites on the target, and
hence independent of surface diffusion. The kinetics of
the reversible association for any initial concentrations
can be described by a relaxation function defined by
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R�t� �
�M�t�� 	 �M�eq
�M�0�� 	 �M�eq

�
�ML�t�� 	 �ML�eq
�ML�0�� 	 �ML�eq

;

where the equilibrium concentrations are given by

�M�eq
�M�total

�
1

1� Keq�L�

 meq

and �M� � �ML� � �M�total, the total concentration of the
macromolecular target. When diffusion is infinitely fast,
one finds R�t� ! expf	��f�L� � �r�tg.

To obtain R�t� when diffusional effects are significant,
we generalize the self-consistent relaxation time formal-
ism of Gopich and Szabo [4] to treat anisotropic reactivity.
This formalism gives the exact power-law asymptotic
relaxation to equilibrium [5] and is based on a set of
coupled reaction-diffusion equations for the M-L and
ML-L pair distribution functions. For uniformly reacting
spherical ligand and target, the Laplace transform of the
relaxation function is

R̂�s� � �s� ��L� � 1=Keq�sk̂SG�s��
	1; (1a)

where

1

sk̂SG�s�
�

meq
sk̂�s�

�
1	meq

�s� k0�k̂�s� k0�
: (1b)

In the last equation, k̂�s� is the Laplace transform of the
Smoluchowski-Collins-Kimball time-dependent rate co-
efficient for the irreversible association and k0 is to be
determined by requiring that the area under the relaxa-
tion function is k	10 , i.e., k	10 � R̂�0�.

At first sight, the problem of generalizing this formal-
ism to anisotropic reactivity in the presence of a surface
potential seems formidable since one must solve coupled
reaction-diffusion equations subject to mixed boundary
conditions (e.g., radiation on the specific site and reflec-
tion on the rest of the target surface). However, it has been
pointed out [4] that these equations for nonlocal reactiv-
ity can be solved within the framework of the Wilemski-
Fixman approximation. The final result for R̂�s� is the
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FIG. 1. Models of macromolecular targets with a specific
binding site: (a) a planar target, modeling a cell membrane
with a receptor for binding a signaling protein, (b) a cylindri-
cal target, modeling a DNA with an operator site for binding a
regulatory protein, and (c) a spherical target, modeling a
ligand-binding protein.
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same as Eq. (1) when the irreversible association rate
coefficient is obtained within the same approximation.
In addition, we have shown previously [6] that the
Wilemski-Fixman approximation is equivalent to the
constant-flux approximation [7] when reactivity is treated
as a radiation boundary condition.

To conclude, we can use Eq. (1) to calculate R̂�s� for
anisotropic reactivity when we use the constant-flux ap-
proximation to obtain the irreversible association rate
coefficient. In this approximation, the radiation boundary
condition over the specific site is replaced by a uniform
diffusive flux. The approximation has been shown to be
quite accurate. For example, for a circular disk (with
radius a) on a planar target in the absence of a poten-
tial, it predicts the irreversible steady-state diffusion-
controlled association rate constant as 3�2Da=8 

3:7Da [7], compared to the exact result of 4Da [8].
With this approximation, the Laplace transform of the
time-dependent rate coefficient for irreversible associa-
tion has the form [6]

1

sk̂�s�
�
1

�f
�

1

sk̂D�s�
; (2)

where kD�t� is the irreversible rate coefficient in the
diffusion-controlled limit. With Eq. (2), the self-
consistent condition for determining k0 becomes

1

meqKeqk0
�
1

�f
�

meq
kD�1�

�
1	meq
k0k̂D�k0�

;

which can be iterated to convergence starting from the
steady-state relaxation rate

kss0 �
��f�L� � �r�kD�1�

�f � kD�1�
:

Our model for a receptor on a cell membrane is a
reactive circular disk with radius a on an infinite plane
[Fig. 1(a)]. The ligand is modeled as a uniformly reactive
sphere and the relative diffusion constant is D. In the
absence of a potential, k̂�s� has been obtained previously
with the constant-flux approximation [9]. To treat non-
specific binding to the cell membrane, we introduce a
potential, U�z�, that depends on the coordinate perpen-
dicular to the plane. Cell membranes [10] and DNA have
surface charges that may provide the surface potential for
the ligand. For example, the interaction potential of a test
charge near an infinite plane with a smeared charge
distribution is U�z� � 	U0 exp�	z=��, where � is the
Debye-Huckel ion screening length. Short-range inter-
actions can also be modeled by a square-well potential,
U�z� � 	U0 for 0< z< " and zero elsewhere. With the
constant-flux approximation, it can be shown that

1

sk̂D�s�
�
2e�U�0�

�Da

Z 1
0
d�

J21���
�

f�0�
	af0�0�

; (3)

where J1��� is the Bessel function and f�z� satisfies
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e�U�z�
d
dz
e	�U�z�

df
dz
	
�2

a2
f � 0;

with � � ��2 � sa2=D�1=2. Here and later a prime signi-
fies derivative. For U�z� � 	U0 exp�	z=��, by making
the variable changes 	�U�z� � x and f�z� �
exp�	x=2�x	1=2g�x�, we find

f�0�
	af0�0�

�
1

�

M	1=2;��=a��U0�

M1=2;��=a��U0�
; (4a)

where M�;��x� are Whittaker functions. For the square-
well potential we find

f�0�
	af0�0�

�
1

�
e�U0 � tanh��"=a�

1� e�U0 tanh��"=a�
: (4b)

If the ligand is considered nonspecifically bound when-
ever it comes inside the potential well, we may define the
nonspecific binding constant per unit surface area as

Kns �
Z 1
0
dz�e	�U�z� 	 1�: (5)

For the square-well potential Eq. (5) becomes Kns �
"�e�U0 	 1�. When the potential is short ranged and
strongly attractive around the target surface, both
Eqs. (4a) and (4b) lead to the same general result,

1

sk̂D�s�
�

2

�Da

Z 1
0
d�

J21���
���1��Kns=a�

: (6)

This expression also reduces correctly when U0 � 0,
leading to the steady-state �s! 0� value 3�2Da=8 cited
earlier. For strong nonspecific binding (i.e., Kns=a� 1),
the steady-state rate constant is well approximated by

kD�1� � 2�DKns= ln�Knse2�=2a�; (7)

where � � 0:5772 . . . is Euler’s constant. Remarkably this
asymptotic result is nearly identical to that obtained by
Berg [3] using a phenomenological surface sliding model,
in which Kns appears as an empirical parameter.

Our model for a specific site on a DNA is a reactive
strip with height 2h on an infinite cylinder with radius R
[Fig. 1(b)]. In the presence of an axially symmetric po-
tential U� �, it can be shown that

1

sk̂D�s�
�

e�U�R�

2�2DR

Z 1
0
d�
sin2�1
�21

f�R�
	Rf0�R�

; (8)
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FIG. 2 (color online). The increase of the irreversible steady-
state diffusion-controlled association rate constant by a surface
potential around planar, cylindrical, and spherical targets. The
width of the square-well potential is at "=a � 0:1 for the
planar target, and "=R � 0:1 for the cylindrical and spherical
targets. The height of the absorbing strip on the cylindrical
target is at h=R � 0:1. The absorbing disk on the spherical
target spans polar angles from 0 to $0 � 5:7

�. Note that the
radius of this disk is given by a=R � �2�1	 cos$0��1=2 � 0:1;
therefore, for it "=a � 1 and the potential well appears tenfold
wider than for the disk present on the planar target.
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where �1 � �h=R and f� � satisfies

e�U� �

 
d
d 

 e	�U� �
df
d 
	
�2

R2
f � 0;

with � � ��2 � sR2=D�1=2. The interaction potential of a
test charge around a cylinder with a smeared surface
charge distribution is U� � � 	U0K0� =��=K0�R=��.
For the square-well potential U� � � 	U0 for R<  <
R� " and zero elsewhere, it can be readily shown that

f�R�
	Rf0�R�

�
1

�
K0��� � AI0���
K1��� 	 AI1���

;

where In��� and Kn��� are modified Bessel functions,
and

A �
�e�U0 	 1�K0����K1����

e�U0K0����I1���� � K1����I0����
;

with �� � ��1� "=R�. For a narrow deep well ["=R!
0 and �U0 ! 1 but "�e�U0 	 1� 
 Kns finite], the result
in Eq. (8) becomes

1

sk̂D�s�
�

1

2�2DR

Z 1
0
d�

sin2�1
�21��K1���=K0�����Kns=R�

:

(9)

This expression is also valid for U0 � 0. For an arbitrary
axially symmetric potential U� � we may define the non-
specific binding constant per unit surface area as

Kns �
Z 1
R
d  �e	�U� � 	 1�=R; (10)

and expect Eq. (9) to provide a good approximation if the
potential is short ranged and strongly attractive. When
h=R is less than or about 1 and Kns=R� 1, the steady-
state rate constant calculated from Eq. (9) is well ap-
proximated by

kD�1� � 2�
2D�RK ns=2

1=2 ln�Knse
4�=R��1=2: (11)

This result has the same functional dependence on Kns as
that previously found by Berg and Ehrenberg [2,3] using a
surface sliding formalism in which Kns entered as a
parameter in the boundary conditions. Interestingly the
above result is independent of the reactive strip height.

The effect of the finite size of a cell can be investigated
on a model with a reactive circular patch (spanning polar
angles up to $0) on the surface of a large spherical target
(with radius R) [Fig. 1(c)].Without any potential, k̂�s�was
obtained previously [9].With a centrosymmetric potential
U�r�, it has been found that [11]

1

sk̂D�s�
�
e�U�R�

4�DR

X1
l�0

�Pl	1�cos$0� 	 Pl�1�cos$0��2

�2l� 1��1	 cos$0�2

�
fl�R�
	Rf0l�R�

; (12)

where Pl�x� are Legendre polynomials and fl�r� satisfies
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e�U�r�

r2
d
dr
r2e	�U�r�

dfl
dr
	

�
l�l� 1�

r2
�
�2

R2

�
fl � 0

with � � �s=D�1=2R. For the square-well potential
U�r� � 	U0 for R< r < R� " 
 R� and zero else-
where, it has been shown that [12]

fl�R�
Rf0l�R�

�
1

�

kl�1=2��� � Alil�1=2���

k0l�1=2��� � Ali0l�1=2���
;

where il�1=2��� and kl�1=2��� are modified spherical
Bessel functions, and

Al �
	�e�U0 	 1�kl�1=2����k0l�1=2����

e�U0kl�1=2����i0l�1=2���� 	 k0l�1=2����il�1=2����
;

with�� � ��1� "=R�. It can be checked that the values
of kD from Eq. (3) for a disk with radius a and from
Eq. (12) for a patch with the same radius are nearly
identical when a=R� 1. The spherical target may also
be used to model ligand-binding proteins (e.g., in dealing
with substrate channeling).

In Fig. 2 we show the effect of a short-range square-
well potential on the irreversible steady-state diffusion-
controlled association rate constant for planar, cylindri-
cal, and spherical targets. The increase of kD�1�=
kU0�0D �1� with the magnitude of U0 is the steepest for a
planar target. For a spherical target, kD�1� reaches the
limiting value 4�DR� as �U0 ! 1. The approximate
formulas, Eqs. (6) and (9), involving the equilibrium
constant for nonspecific binding are found to be very
accurate. For a planar target with "=a � 0:1, the maximal
difference between Eq. (3) and its approximation by
Eq. (6) is just 4% (at �U0 � 1:6). The maximal differ-
ence between Eq. (8) for a cylindrical target, with "=R �
0:1 and h=R � 0:1, and its approximation by Eq. (9) is 5%
(also occurring around �U0 � 1:6). The asymptotic for-
178101-3
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FIG. 3 (color online). Time dependence of the relaxation
function. Symbols represent the results of Eq. (1a), with the
inverse Laplace transform calculated by the algorithm of
Stehfest [14] using eight terms. Solid and dashed curves rep-
resent the single exponential functions exp�	k0t� and
exp�	kss0 t�, respectively. Model parameters are exp��U0� �
103, Keq � 10

9 M	1, and D � 10	6 cm2=s. (a) Association
with a circular disk (radius a � 20 �A) on a planar target in
the presence of a surface potential (width " � 2 �A). The
relevant rate constants are kD�1� � 15� 109 M	1 s	1, �f �
2:5� 1012 M	1 s	1, and �f � 2:5� 103 s	1. (b) Association
with a strip (half height h � 2 �A) on a cylindrical target
(radius R � 20 �A) in the presence of a surface potential (width
" � 2 �A). The rate constants are kD�1� � 7:7� 109 M	1 s	1,
�f � 1012 M	1 s	1, and �f � 103 s	1.
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mulas given by Eqs. (7) and (10) are also very accurate for
�U0 > 4, with differences from the full integral results
less than 3% and 6%, respectively. These conclusions are
validated by results for a planar target with the potential
U�z� � 	U0 exp�	z=�� at small �=a.

What happens when the range of the potential is
large relative to the size of the reactive patch on the
target? In this case it has been shown that kD�1� !
kU0�0D �1� exp��U0� [11,12]. This result is confirmed for
the potentials considered here. For example, for a planar
target with the potential U�z� � 	U0 exp�	z=�� at
exp��U0� � 100, kD�1�=k

U0�0
D �1� exp��U0� increases

from 0.08 to 0.35, 0.49, and 0.63, respectively, when
�=a is extended from 0.5 to 5, 10, and 20. Clearly a
surface potential enhances the rate much less than a
long-ranged one with the same contact value. Thus the
intrinsic rate constant �f is more likely to exceed kD�1�
when the potential is confined to the surface, making
ligand association diffusion controlled.
178101-4
The relaxation function for association with sites on
planar and cylindrical targets is shown in Fig. 3. At low
ligand concentrations, the difference between k0 and kss0 is
small and the relaxation function agrees well with the
single exponential function exp�	k0t�. At higher ligand
concentrations, k0 becomes much greater than kss0 and the
relaxation function deviates significantly from exp�	k0t�.
As noted earlier, a surface potential tends to make ligand
association diffusion controlled and therefore hasten the
deviation of the relaxation function from exp�	k0t�.

A surface potential does not confine the ligand to the
surface of the target; rather it increases the probability of
the ligand around the target. A ligand may make many
excursions into and out of the surface region before
association with the specific site. Therefore it is not just
diffusion along the target surface that accounts for rate
enhancement, as the surface sliding model would suggest.
The contribution of diffusion in the space outside the sur-
face can be illustrated by the cylinder model [Fig. 1(b)]
with anisotropic diffusion in the potential well, with
components D perpendicular to the surface but Dk par-
allel to the surface. When Dk � D, kD�1�=k

U0�0
D �1� �

12 at exp��U0� � 103 (see Fig. 2). However, even when
Dk=D is reduced by tenfold, it can be shown that
kD�1�=k

U0�0
D �1� � 5 for the same surface potential.

The implicated importance of diffusion in the space out-
side the surface is corroborated by recent experiments
comparing the roles of nonspecific DNA either collinear
with or linked by catenation to a specific site [13].
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