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ABSTRACT The number of structures of pro-
tein–protein complexes deposited to the Protein
Data Bank is growing rapidly. These structures
embed important information for predicting struc-
tures of new protein complexes. This motivated us
to develop the PPISP method for predicting inter-
face residues in protein–protein complexes. In
PPISP, sequence profiles and solvent accessibility
of spatially neighboring surface residues were used
as input to a neural network. The network was
trained on native interface residues collected from
the Protein Data Bank. The prediction accuracy at
the time was 70% with 47% coverage of native inter-
face residues. Now we have extensively improved
PPISP. The training set now consisted of 1156 nonho-
mologous protein chains. Test on a set of 100 nonho-
mologous protein chains showed that the prediction
accuracy is now increased to 80% with 51% cover-
age. To solve the problem of over-prediction and
under-prediction associated with individual neural
network models, we developed a consensus method
that combines predictions from multiple models
with different levels of accuracy and coverage. Ap-
plied on a benchmark set of 68 proteins for protein–
protein docking, the consensus approach outper-
formed the best individual models by 3–8 percentage
points in accuracy. To demonstrate the predictive
power of cons-PPISP, eight complex-forming pro-
teins with interfaces characterized by NMR were
tested. These proteins are nonhomologous to the
training set and have a total of 144 interface resi-
dues identified by chemical shift perturbation. cons-
PPISP predicted 174 interface residues with 69%
accuracy and 47% coverage and promises to comple-
ment experimental techniques in characterizing pro-
tein–protein interfaces. Proteins 2005;61:21–35.
© 2005 Wiley-Liss, Inc.
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INTRODUCTION

Many biological processes are carried out, or regulated,
through the interactions between proteins. Genome-wide
two-hybrid analysis1,2 shows that the vast majority of

proteins have interacting partners in the cell, and often
more than one. Therefore residues in protein–protein
interfaces are essential for protein function. Many impor-
tant applications follow directly from the identification of
interface residues, such as drug design, protein mimetics
engineering, elucidation of molecular pathways,3,4 and
understanding of disease mechanisms.5 The proper identi-
fication of interface residues can also guide the docking
process to build the structural model of protein–protein
complexes.6 These considerations motivated us to develop
a method, Protein–Protein Interaction Site Predictor
(PPISP), for predicting interface residues based on un-
bound protein structures and characteristics of interface
residues.7 We have now made significant improvements on
PPISP, to the extent that the method now promises to
complement NMR and other experimental techniques in
characterizing protein-protein interfaces. Here we report
this improved method, cons-PPISP.

The structures of protein–protein complexes in the
Protein Data Bank (PDB) embed important information
for predicting interaction sites of protein–protein com-
plexes. Many studies have investigated the characteristics
of interfaces in different types of complexes, such as
homodimers versus heterodimers, enzyme-inhibitor com-
plexes, antigen–antibody complexes, transient complexes
versus obligatory complexes, large interfaces versus small
interfaces.7–23 Although conclusions were sometimes con-
flicting, some common features can be extracted. For
example, evolutionarily important residues tend to be
spatial clustered,15,17–19,22,23 and nonpolar residues are
favored whereas charged and polar residues (except for
Arg) are disfavored in protein interfaces.7 These character-
istics formed the basis of the PPISP method.

In PPISP, the position-specific sequence profiles pro-
duced by PSI-BLAST24 and solvent accessibility of spa-
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tially neighboring surface residues were used as input to a
neural network. The neural network approach has been
shown to be quite successful in predicting protein second-
ary structure and solvent accessibility.25–27 Sequence pro-
files of residue substitutions in naturally evolved protein
families are highly specific for details of a particular
protein structure. The use of sequence profiles has been
shown to be a key in improving secondary structure
prediction.25 PSI-BLAST sequence profiles are exhaustive,
convenient to use, and can be easily expanded to large-
scale applications. The neural network of PPISP was
trained on native interface residues. The training set was
collected from 678 nonhomologous (sequence identity
� 40%) complex-forming protein chains in the PDB. The
prediction accuracy at the time was 70%, and the predic-
tions covered 47% of native interface residues. A number of
similar methods have since been published.28–33

With the rapid increase of structures of protein–protein
complexes deposited in the PDB, we wondered whether the
PPISP method can be improved by training on a more
exhaustive and less redundant data set. The training set
has now been expanded to 1156 nonhomologous protein
chains with � 30% sequence identity. When this set was
trained using the same protocol as before, prediction
accuracy indeed increased significantly, to 86%. However,
at the same time the coverage of native interface residues
also downgraded significantly, to just 17%. It was appar-
ent that a better compromise between prediction accuracy
and coverage had to be found. Higher accuracy means that
there is only a small number of reliable predictions are
made, thus a large number of potential interface residues
are missed and coverage of native interface residues is
reduced. Neither accuracy nor coverage alone constitutes a
good measure of performance. The results of CAPRI (Criti-
cal Assessment of PRedicted Interactions)34 indicate that
a good prediction requires at least half of native interface
residues to be correctly identified. Therefore our goal was
to increase the coverage to 50% and achieve as high an
accuracy as possible. After a number of refinements of the
PPISP method, we obtained a prediction accuracy of 80%
at 51% coverage.

Close examination of the predictions for individual
proteins in the test set revealed another problem. For some
proteins interface residues were over-predicted, but for
others interface residues were under-predicted or not
predicted at all. For a given protein, neither over-
prediction nor under-prediction is desirable, even if the
collective accuracy and coverage measures on a set of
proteins are good. This problem persisted when we varied
the neural network models. To solve this problem, we
constructed a series of models ranging from high accuracy/
low coverage to low accuracy/high coverage. We developed
a consensus approach based on these models. Predicted
interface residues were ranked by consensus score and
clustered according to their locations on the protein sur-
face. If there was a large number of predictions with high
consensus scores, collection of interface residues was lim-
ited to these (to prevent over-prediction), otherwise the
process was extended to predictions with lower consensus

scores (to avoid under-prediction). Test on a benchmark
set of 68 proteins for protein–protein docking35 showed
that the consensus approach outperformed the best indi-
vidual models by 3–8 percentage points in accuracy. The
predictive power of cons-PPISP was further demonstrated
on eight complex-forming proteins with interfaces charac-
terized by NMR. Of a total of 144 interface residues
identified by chemical shift perturbation, cons-PPISP pre-
dicted 174 interface residues with 69% accuracy and 47%
coverage. This much improved PPISP method promises to
complement NMR and other experimental techniques in
characterizing protein–protein interfaces.

MATERIALS AND METHODS
Generation of the Data Set

The strategy for collecting interface data to train and
test neural networks was essentially the same as in our
previous work.7 We compiled an exhaustive nonhomolo-
gous set of protein complexes by examining all multiple-
chain protein entries in the PDB (Jan 2002 release).
Excluded were chains shorter than 40 residues as well as
pairs of chains with less than 20 residues in interfacial
contact on either side. Interfacial contact was defined as a
pair of heavy atoms from two sides of an interface that are
within 5 Å. For PDB entries with more than two protein
chains, each chain was assigned at most one partner, and
the interface chosen was the one with the most residues
forming interfacial contacts. A pair of protein chains
sharing an interface is called a dimer throughout this
paper. Each of the collected sequences was aligned against
all the other sequences by PSI-BLAST.24 All chains with
high homologies were collected in a cluster and one
representative chain was chosen from each cluster with
the provision that heterodimers had higher priority than
homodimers and longer chains had higher priority than
shorter ones. The cutoff for high homology this time was
set at 30% identity over the aligned region, which had to
cover at least 90% of either of the two sequences. A
homodimer was identified as a pair of protein chains that
shared an interface and satisfied the criteria: (1) over 90%
of both chains were aligned and (2) the sequence identity
over the aligned region was at least 95%.

The resulting nonhomologous set consisted of 1256
chains. Within the data set, 798 were chains from ho-
modimers and 458 were chains from heterodimers. From
these a total of 225,237 surface residues were collected
using the criterion of at least 10% surface exposure to
solvent. Surface area was calculated using the DSSP
program.36 Of the surface residues, 52,623 (or 23%) were
classified as interface residues, with at least one interfa-
cial contact. This is called the “thrd � 1” criterion. In our
previous study we used the “thrd � 3” criterion in training
neural networks. We chose 100 chains as the test set, of
which 58 chains were from heterodimers and 42 from
homodimers. The remaining 1156 chains were used as the
training set. These statistics are listed in Table I.

In our treatment, each protein formed only one inter-
face. This was the one involving the most interfacial
residues, denoted as the major interface. In PDB entries
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with more than two protein chains, a chain can potentially
form more than one interface. Residues in these other
interfaces were either classified as noninterface residues
(leading to the interface statistics in Table I) or eliminated
from the training set altogether. The latter treatment is
denoted as “intfM.” In our data set of 1256 protein chains,
727 had a single partner and thus actually formed dimers.
The number of chains in contact with 2, 3, 4, 6, 7, or more
other chains was 235, 182, 49, 43, 9, 7, and 4, respectively.
Note that these calculations were done using the original
PDB entries, thus crystal contacts were included and no
specific consideration was given to the biologically signifi-
cant oligomeric state. There were a total of 10,972 residues
in “minor” interfaces.

Neural Network Architecture

Two feed-forward, back-propagation neural networks
were used consecutively as before. In the previous study,
the first network had 21 � 20 input nodes, in which the
first quantity was the number (i.e., 20) of entries in a
sequence profile plus one for solvent accessibility, and the
second quantity was the window size, i.e., one for the
residue under consideration plus 19 for its spatially near-
est neighbors. In this study it was found decreasing the
window size from 20 to 15 improved performance of the
network. In the final version the first network had an
input layer with 21 � 15 nodes, a hidden layer with 150
nodes, and an output layer with 2 nodes. The input layer of
the second network had 3 � 15 nodes, in which the first
quantity is two for the output values of the first network
plus one for solvent accessibility. The second network was
completed with 30 hidden nodes and two output nodes.
The predictor was trained at different learning rate and a
value of 0.001 that gave optimal performance was selected.

Assessment of Predictions

To assess the predictions, two quantities were calcu-
lated. Accuracy was defined as the percentage of correctly
predicted interface residues among all predictions. A pre-
diction was considered as correct if it was either a native
interface residue or among the four nearest spatial neigh-
bors of a native interface residue. If the neighbors were not
counted, the percentage of correct predictions was referred
to as “strict” accuracy. Coverage was defined as the
fraction of native interface residues predicted among all
native interface residues.

Consensus Approach Based on Different Neural-
Network Models

The consensus approach consisted of two steps: (1)
clustering of all predictions from different neural network
models, and (2) selecting a cluster or clusters as the final
predictions. In the first step, each predicted residue was
assigned a consensus score, defined as the number of
models making such a prediction. The predictions were
then sorted according to consensus score. Starting with the
batch of predictions with the highest consensus score,
residues were clustered if they were among the four
nearest neighbors of each other. At the end if all the cluster

sizes were less than 20, then the next batch of predictions
with the second highest consensus score was used to grow
the clusters and add new clusters. The process was contin-
ued until one cluster size went beyond 20 or all the
predictions have been clustered.

In the second step, clusters were selected according to
the following considerations. First, clusters with a single
residue were eliminated. Second, if the highest consensus
score of a cluster was higher than that of another cluster
by six or more, then the cluster with the low score was
eliminated. If the highest consensus scores of two clusters
differed by less than six, then they were not differentiated
by consensus score, but were compared in size. Third,
among all the retained clusters with comparable consen-
sus scores, the largest cluster was automatically selected,
and other clusters were also selected if their sizes were
smaller by less than five.

RESULTS AND DISCUSSION
Characteristics of Interface Residues

In our previous study,7 analysis of interface characteris-
tics showed that overall nonpolar residues were favored in
the interface over charged and polar residues, and inter-
face residues were more conserved than noninterface
surface residues. Here these characteristics were further
analyzed, both to gain better understanding of protein
interfaces and to help improve the prediction method. In
addition to hydrophobicity and conservation, we also sought
to detect subtle differences in solvent accessibility between
interface and noninterface residues on the updated data
set.

The analysis on the updated data set reinforced previous
findings on interface hydrophobicity and conservation.
Figure 1(a) clearly shows that nonpolar residues (Leu, Ile,
Phe, Tyr, Val, and Met) had higher populations in the
interface collection than in the noninterface collection,
while charged residues, except for Arg, had lower popula-
tions in the interface collection. The diagonal element of a
sequence profile produced by PSI-BLAST signifies the
mutability of each residue along the sequence. The higher
the element, the less frequent its mutation (i.e., the more
conserved the residue). The average values of the diagonal
elements in the interface and noninterface collections for
each type of residues are displayed in Figure 1(b). For all
the residue types, the conservation scores in the interface
collection were higher than in the noninterface collection.

Work of Jones and Thornton10 has suggested that
interface residues are more solvent accessible than nonin-
terface surface residues. The average solvent accessibility
results, calculated over the interface and noninterface
collections separately, demonstrate a significant differ-
ence in solvent accessibility between these two collections.

The results in Figure 1 justify the use of sequence
profiles and solvent accessibility as input data in our
neural network approach for predicting interface residues.
Sequence profiles can capture the differential characteris-
tics of interface and noninterface residues in hydrophobic-
ity and conservation, and the inclusion of solvent accessi-
bility as part of the input adds a putatively independent
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measure of discrimination between the two types of sur-
face residues. These differences between interface and
noninterface residues are also easily rationalized. Since

interface residues will be buried upon the binding of a
partner protein, they are akin to interior residues, which
tend to be more hydrophobic. The portion of the surface of
an interface residue that becomes buried by the partner
protein is counted as exposed. This counting increases the
solvent accessibility and explains the difference with non-
interface residues on the protein surface. Interfaces are
where evolutionarily important residues are most likely
found, and these residues are most likely to be conserved.

Comparison of the Updated and Previous Data Sets

The updated data set contained 1256 nonhomologous
protein chains, of which 798 were from homodimers and
458 (or, 36.5%) were from heterodimers (Table I). Within
the new training set of 1156 chains, 34.6% were from
heterodimers. In comparison, the previous data set con-
sisted of 924 chains, of which 360 (or, 39.0%) were from
heterodimers, but just 18.6% of the 678 chains used for
training were from heterodimers. With the maximal level
of identity lowered from 40% to 30%, the new data set was
also much less redundant, and covered much greater
regions in sequence space. The increased coverage in
sequence space allowed for further analysis of potential
differences within the new data set. Figure 2(a) shows the
distribution of the proteins according to their surface areas
and interface areas. The data set was concentrated in
small proteins and relatively sparse in large proteins, even
though larger proteins were given higher priority in the
collection. There was no apparent difference between
homodimers and heterodimers in the distribution of sur-
face and interface areas. The fraction, fintf, of interface
residues among all surface residues in a protein tended to
decrease with the protein size, as shown by Figure 2(b).
When the number of surface residues, Nsurf, was sorted
and averages in batches of 50 were calculated for Nsurf and
fintf, the following relation was obtained:

f�intf � 6.7N� surf
�0.65 (1)

The decrease of fintf with increasing Nsurf motivated us
to consider dividing the data set into three subsets: small
proteins, those with surface areas less than 10,000 Å2;
medium proteins those with surface areas between 10,000
and 17,000 Å2; and large proteins, those with surface areas
greater than 17,000 Å2. Within these three subsets, the
fractions of interface residues were 35%, 23%, and 19%
respectively. The effect of this division is presented later.

A direct comparison between the previous and the
updated data sets were made by applying the same neural
network architecture and the same protocol as in our
previous study on the new training set of 1156 chains. In
particular, within the training set, a surface residue
previously was counted as in the interface only if it had at
least three, not one, interfacial contacts. The choice of a
threshold of three was made in the previous study to make
a less number of more reliable predictions. The new test
set of 100 chains had a total of 14,678 surface residues, of
which 3685 (or, 25%) had at least one interfacial contact
(Table I). When the previous predictor was applied on the
new test set, 2877 predictions of interface residues were

Fig. 1. Characteristics of interface residues compared to noninterface
surface residues. (a) Percentages of the 20 types of amino acids in the
interface and noninterface collections. The abscissa is in descending
order of the difference between the two collections. (b) Average conserva-
tion scores in the interface and non-interface collections for the 20 types
of amino acids, in descending order of the difference. (c) Average relative
solvent accessibilities in the interface and noninterface collections for the
20 types of amino acids, in descending order of the difference. Results
were obtained from analysis of surface residues in the training set.
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made, with 73.7% accuracy and 42% coverage of native
interface residues. These results were likely inflated be-
cause 55 of the 100 test proteins had higher than 30%
sequence identities to the old training set. In comparison,
the newly trained predictor made 915 predictions, with an
accuracy of 85.7% but coverage of just 17% (Table II).

Refinement of PPISP

Despite the significantly increased accuracy, the low
coverage obtained with the old protocol is not desirable. A
better compromise between accuracy and coverage had to
be found. Our goal was to increase the coverage to �50%
and achieve as high an accuracy as possible. The first
obvious thing to do was to lower the threshold for designat-
ing interface residues in the training set, to a minimum of
just one interfacial contact. This raised the population of
interface residues from 19% to 23% and had the desired
effect. The test results showed an 81.6% accuracy with
28% coverage. Therefore we kept the threshold of one for
interface residues in later developments, which are now
presented in turn. The resulting changes in performance
are summarized in Table II.

To examine the importance of including solvent accessi-
bility in the input, we trained the neural network with just
the sequence profile as input. The test results were 75.4%
accurate with coverage of 36%. This was better than
random prediction by 30 percentage points, and the inclu-
sion of solvent accessibility amounted to an increase of six
percentage points in accuracy. Since solvent accessibilities
of different residues may have random fluctuations, we
also tested the use of a smoothed solvent accessibility,
obtained as the average over the residue under consider-
ation and its six spatially nearest neighbors. This further
increased the accuracy from 81.6% to 83.2%, with some
deterioration in coverage (changing from 28% to 23%). The
use of average solvent accessibility was kept.

The window size can affect performance. Too small a
window size means that only a few spatial neighbors are
included, which may not give a strong enough signal for
accurate prediction. On the other hand, with too large a
window size, distant neighbors are included, which may
introduce noise. To optimize performance, window sizes
between 10 and 20 were tested, and a size of 15 gave the
best results, with accuracy at 84.5 and coverage at 22%.
This size was retained.

Since we only focused on a single interface for each
protein in our data set, for proteins that form trimers and
higher oligomers, residues found in interfaces other than
the selected one were classified as noninterface. We won-
dered whether these residues could mislead the neural
network to some extent because they should have the
characteristics of interface. Residues in these other inter-
faces accounted for 5% of the surface residues. When these
residues were eliminated from the training set (reducing

Fig. 2. Interface size relative to total protein surface. (a) Scatter plot of
interface area versus total surface area. Areas are in Å2. Homodimeric
and heterodimeric chains are plotted in different colors. The interval in
total surface area, between 10,000 and 17,000 Å2, defining medium
proteins is shaded. (b) Fraction of interface residues versus total number
of surface residues. After sorting the 1256 chains in the data set in
according to the number of surface residues, averages in batches of 50
chains were calculated for this quantity and the fraction of interface
residues.

TABLE I. Statistics of Data Set

Group

Training set Test set

Chains Surface res. Interface res. Chains Surface res. Interface res.

Small protein 387 34046 11936 (35%) 47 3963 1391 (35%)
Medium protein 477 83636 19314 (23%) 35 5789 1356 (23%)
Large protein 292 92877 17688 (19%) 18 4926 938 (19%)
Homodimer 756 141818 30993 (22%) 42 6737 1657 (25%)
Heterdimer 400 68741 17945 (26%) 58 7941 2028 (26%)
All 1156 210559 48938 (23%) 100 14678 3685 (25%)
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the collection of noninterface residues from 161,621 to
150,649), both the accuracy and coverage were increased.
The former went from 84.5% to 86.5%, and the latter went
from 22% to 26%. While the improvement in accuracy may
be attributed to rectification of residue mis-classification,
the improvement in coverage perhaps largely arose from
the mere decrease in the number of noninterface residues,
making the training set more balanced between the inter-
face and noninterface collections.

The issue of imbalance between the interface and nonin-
terface collections in the training set was further investi-
gated in order to extend the improvement on the coverage
of native interface residues. Our suspicion was that the
imbalance caused low predictions of interface residues.
Therefore we randomly removed some of the noninterface
residues to obtain a more balanced training set. The
results of randomly trimming one quarter, one third, and
one half of noninterface residues are shown in Table II. As
suspected, the trimming led to significant improvement in
coverage, with deeper trimming giving higher coverage
but correspondingly lower accuracy. A good compromise
appeared to be obtained with the one-third trimming,
which increased the interface population to 33% in the
training set. The coverage now increased to 51%, with the
accuracy stood at 78.6%.

As already noted, the obvious decrease in the interface
fraction of surface residues with increasing protein surface
area motivated us to divide the data set into three sizes.
Training and testing were done for each size separately. In
comparison to training with the full set, training with the
subset of small proteins led to a modest increase in
accuracy, from 91.7% to 92.2%, for small proteins in the
test set, but a significant decrease in coverage, from 56% to
50%. Training with the subset of medium proteins led to
deteriorations in both accuracy (from 74.5% to 69.7%) and
coverage (from 51% to 50%) for medium proteins in the test
set. However, training with the subset of large proteins
appeared advantageous for large proteins in the test set,
with accuracy increasing from 65.9% to 72.1% and cover-
age increasing from 43% and 45%. With the protocol of
training with the full set for small and medium proteins
but with the subset of large protein for large proteins, a
total of 3,529 interface residues were predicted among the
14,678 surface residues of the test set, with an accuracy of
80.2% and coverage of 51%.

There have been some indications that the interface
characteristics are different between homodimers and
heterodimers.10,19,20,29 For homodimers that are formed
concomitantly with the folding of their subunits, the
interfaces are essentially the same as the interiors of

TABLE II. Performance of Various Training Sets and Protocols

Test Training Protocol
(Strict)

accuracyc (%)
Coverage

(%)

All All Random (26.1) 45.1 21
All All thrd � 3, w � 20, SAa (69.4) 85.7 17
All All thrd � 1, w � 20, SA (61.8) 81.6 28
All All thrd � 1, w � 20, no SA (55.4) 75.4 36
All All thrd � 1, w � 20, avgSA (64.2) 83.2 23
All All thrd � 1, w � 15, avgSA (64.6) 84.5 22
All All thrd � 1, w � 15, avgSA, intfMb (62.8) 86.5 26
All All thrd � 1, w � 15, avgSA, intfM, trim1/4 (56.6) 82.3 38
All All thrd � 1, w � 15, avgSA, intfM, trim1/3b (52.8) 78.6 51
All All thrd � 1, w � 15, avgSA, intfM, trim1/2 (48.3) 74.6 61
Small All thrd � 1, w � 15, avgSA, intfM, trim1/3 (60.8) 91.7 56
Small Small thrd � 1, w � 15, avgSA, intfM, trim1/3 (61.7) 92.2 50
Medium All thrd � 1, w � 15, avgSA, intfM, trim1/3 (47.8) 74.5 51
Medium Medium thrd � 1, w � 15, avgSA, intfM, trim1/3 (43.2) 69.7 50
Large All thrd � 1, w � 15, avgSA, intfM, trim1/3 (49.1) 65.9 43
Large Large thrd � 1, w � 15, avgSA, intfM, trim1/3 (52.6) 72.1 45
Homodimer All thrd � 1, w � 15, avgSA, intfM, trim1/3 (57.2) 82.0 54
Homodimer Homodimer thrd � 1, w � 15, avgSA, intfM, trim1/3 (57.6) 82.2 54
Heterodimer All thrd � 1, w � 15, avgSA, intfM, trim1/3 (49.2) 75.9 48
Heterodimer Heterodimer thrd � 1, w � 15, avgSA, intfM, trim1/3b (48.4) 77.2 49
Heterodimer All thrd � 1, w � 15, avgSA, intfM (55.1) 81.6 32
Heterodimer Heterodimer thrd � 1, w � 15, avgSA, intfMb (55.0) 81.8 36
Small heter. Small heterodimer thrd � 1, w � 15, avgSA, intfMb (61.1) 88.2 52
Small heter. Small heterodimer thrd � 1, w � 15, avgSAb (63.0) 85.2 48
aThe original PPISP protocol. “SA” means inclusion of solvent accessibilities of individual residues as input, “no SA” means that
solvent accessibilities were not included, and “avgSA” means that solvent accessibilities were included as averages over the
residue under consideration and its six spatially nearest neighbors.
bThese six entries are neural network models used to build cons-PPISP. “intfM” means that, for chains forming trimers or
higher oligomers, residues in interfaces other than the largest one were eliminated from the training set. “trim1/3” means that
one third of noninterface surface residues were randomly trimmed from the training set.
cStrict accuracy, given in parentheses, was the percentage of native interface residues among all predictions. In comparison,
accuracy was calculated by counting the four nearest spatial neighbors of a native interface residue also as correct predictions.
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individually folded proteins, and thus should be enriched
in nonpolar residues and deficient in charged residues. On
the other hand, for a protein that is a functioning entity
both before and after forming a complex with a different
protein, the interface residues are expected to have charac-
teristics intermediate between protein interiors and nonin-
terface portions of protein surfaces. In our data set, we did
find some qualitative difference in amino acid composition
between homodimeric and heterodimeric interfaces (Fig.
3). Charged residues indeed showed higher propensities in
heterodimeric interfaces, but nonpolar residues exhibited
mixed behavior. We separately trained and tested ho-
modimers and heterodimers in our data set. In comparison
to training with the full set, training with only ho-
modimers did not show any improvement for homodimers
in the test set, but training with only heterodimers gave
slightly better results for heterodimers in the test set. The
indifference for homodimers perhaps can be attributed to
the overpopulation of homodimers in the full training set.
Improvement for heterodimers was seen regardless of
whether random trimming of noninterface residues was
introduced in the training set. The potential of improving
predictions of heterodimeric interfaces by separately train-
ing with heterodimers will become increasingly important
as the population of heterodimers grows in the PDB.

For each of the neural network models, the result
presented in Table II was typically from the round of
training giving the highest accuracy.

Comparison with other methods is difficult because of
the variety of data sets used and the difference in defini-
tions of interface and surface residues. In particular, Koike
and Takagi31 used a support vector machine to predict
interaction sites using definitions of interface and surface
similar to ours. The strict accuracy and coverage of their
interface prediction were 54–56% and 50%, respectively,
with all interfaces in multimers counted. When all inter-
faces were included, the strict accuracy and coverage of our
predictions were 61% and 48%, respectively. Fariselli et
al.29 used neural network to predict interaction sites and

reported strict accuracy and coverage of 72% and 56%,
respectively, for a selected data set of 226 heterodimers.
However, their interface residues were defined with a C�

cutoff distance of 12 Å. This definition includes far more
surface residues as interface sites (40% relative to the 23%
in the present study), and significantly decreases the
difficulty of interface prediction. For example, random
predictions would have expected strict accuracy at 40%
according to their interface–residue definition but only
23% in our study.

Consensus Approach

With the division of the data set into three subsets
according to surface size, overall accuracy of 80.2% and
coverage of 51% in the test set were achieved. However,
prediction accuracy and coverage were very uneven, as
Figure 4 shows. Of the 100 proteins in the test set, 43 were

Fig. 3. Difference in residue percentage between the interface and
noninterface collections in the training set. Results for homodimeric and
heterodimeric chains are shown in different bars to show potential
differences between the two kinds of chains.

Fig. 4. Prediction accuracy and coverage for the test set of 100
chains, with small and medium proteins predicted from the full training set
and large proteins predicted from the group of large protein in the training
set. The overall prediction accuracy was 80.2% with 51% coverage. (a)
Scatter plot of interface area versus total surface area, grouped according
to prediction accuracy. Areas are in Å2. (b) Scatter plot of accuracy versus
coverage.
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quite successful with accuracy � 70% and coverage � 50%,
and 12 were reasonably successful with accuracy � 80%
and coverage � 30%. Among the remaining 45 proteins,
five had coverage � 50% but accuracy � 60%, indicating
over-prediction, and 17 had accuracy � 80% but coverage
�30%, indicating under-prediction, seven had no predic-
tions at all, and 16 had sufficient predictions, but these
were not accurate.

The problem of over-prediction and under-prediction
was universal with all the neural network models, though
the balance between the two trends varied. A model with
higher accuracy tended to have more severe under-
prediction, whereas a model with higher coverage tended
to have more severe over-prediction. Another problem with
an individual neural network is the decision on how many
rounds of training to carry out. In general, prediction
accuracy improves in the beginning rounds and then
deteriorates in later rounds, while coverage decreases
monotonically. Thus under-training may bring benefit to
coverage at the expense of accuracy.

We sought to tackle the problem of over-prediction and
under-prediction by combining results from models that
covered a range of accuracy and coverage. Predictions from
the different models were clustered according to spatial
relations, and the cluster or clusters of residues predicted
with the highest consensus were taken as the final predic-
tions of interface residues. Specifically, for each surface
residue a consensus score was defined as the number of
models predicting that residue as in the interface. All
surface residues were then ranked by their consensus
scores. Clusters were grown from the highest ranked
residues. If a large number of predictions were made with
high consensus scores, collection of interface residues was
limited to these predictions, otherwise the process was
extended to predictions with lower consensus scores. Fur-
ther details of the clustering and collection procedure are
given in Materials and Methods. This consensus approach
was able to bring satisfactory solutions to the 22 proteins
that had over-prediction or under-prediction problems.

In the end we settled on a suite of six types of neural
network models (Table II) to include in the consensus
approach: (1) “intfM” trained up to nine rounds on the full
test set; (2) “intfM” trained up to 10 rounds on the subset of
heterodimers; (3) “intfM” trained up to 10 rounds on the
subset of small heterodimers; (4) “intfM, trim1/3” trained
up to nine rounds on the full test set; (5) “intfM, trim1/3”
trained up to 10 rounds on the subset of heterodimers; and
(6) “all intf” trained from rounds 2 to 21 on the subset of

small heterodimers. The different rounds of training on
the six types of neural networks made up a total of 68
predictors. For easy reference, the consensus approach
was named cons-PPISP.

The six types of predictors were selected according to
their accuracy and coverage for different types of test
proteins (homodimer versus heterodimer; small, medium,
or large size). Different considerations led to the elimina-
tion of a number of predictors. For example, the predictor
trained with the subset of homodimers was not included
because such training did not show improvement for
homodimers over training with the full set. Though sepa-
rate training with the subset of large proteins modestly
improved prediction, that predictor was not included be-
cause of the sparsity of large proteins in the data set and
the possibility that many large proteins can be divided into
domains of smaller sizes. We did include predictors trained
with the subset of small heterodimers because such train-
ing led to a moderate increase in accuracy, though with a
corresponding decrease in coverage, for small proteins. In
this way the selection for predictors was narrowed to those
trained with the full set, the subset of all heterodimers,
and the subset of small heterodimers. For each training
set, two predictors were selected: one with the highest
accuracy (with corresponding low coverage) and one with
the highest accuracy at 50% coverage. The resulting six
types of predictors, coupled with the freedom of successive
rounds of training with varying accuracy and coverage,
afforded a uniform span of a wide range of coverage (from
20% to 70%), which in turn allowed for the gradual growth
of clusters from the most confident to the least confident
predictions.

Test on a Benchmark Set for Protein–Protein
Docking

Chen et al.35 collected a set of protein–protein complexes
as a docking benchmark, which included 22 enzyme-
inhibitor pairs, 11 other kinds of pairs, and seven pairs
that were deemed difficult for docking methods. We tested
cons-PPISP on the 68 unique chains of these 40 complexes
(Table III). There were also 19 antibody-antigen pairs in
the benchmark, but in our data set for training and testing
the neural networks antibody–antigen interfaces were
filtered out. As noted by Jones and Thornton,8 “antibody–
protein interactions are relatively ”happenstance“ and are
selected principally by the strength of the binding con-
stant, without being subject to evolutionary optimization
over many years.” Indeed many different parts of a protein

TABLE III. Comparison of Predictions by Best Individual Neural Network Models and the Consensus Approach

Group Complexes
Unique
chains

Real
interface
residues

Best Model cons-PPISP

Pred.
interface
residues

(Strict)
accuracy

(%)
Coverage

(%)

Predicted
interface
residues

(Strict)
accuracy

(%)
Coverage

(%)

Enzyme-inhibitor 22 33 657 619 (47.3) 67.7 45 661 (49.9) 70.8 50
Other 11 21 398 349 (25.2) 40.1 22 358 (31.0) 48.0 28
Difficult 7 14 367 397 (30.2) 49.4 33 276 (37.3) 56.2 28
All 40 68 1422 1365 (36.7) 55.3 35 1295 (42.0) 61.4 38
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surface, as found for lysozyme and other proteins, can be
targets for monoclonal antibodies. Methods like ours that
heavily rely on evolutionary information are not particu-
larly suited for predicting antibody–antigen interfaces.

For the 33 chains forming enzyme-inhibitor complexes,
the “intfM, trim1/3” model trained eight rounds on the
subset of heterodimers in our training set gave the best
performance among all the neural network models, with
accuracy at 67.7% and coverage of 45%. For the 21 chains
forming other complexes, the best performance was ob-
tained with the “intfM, trim1/3” model trained five rounds
on the full training set, with accuracy at 40.1% and
coverage of 22%. For the “difficult” set of 14 chains, the
“intfM, trim1/3” model trained four rounds on the subset of
heterodimers gave the best performance, with accuracy at
49.4% and coverage of 33%. Altogether, these separately
best-performing models had an accuracy of 55.3% and
coverage of 35% for the 68 proteins in the benchmark set.

cons-PPISP outperformed the individual neural net-
work models for all the three subsets of proteins. For the
enzyme-inhibitor subset, cons-PPISP increased prediction
accuracy by three percentage points to 70.8% and coverage
by five percentage points to 50%. For the “other” subset,
cons-PPISP increased prediction accuracy by eight percent-
age points to 48.0% and coverage by six percentage points
to 28%. For the “difficult” subset, cons-PPISP increased
prediction accuracy by 7 percentage points to 56.2%,
though at the expense of decreasing coverage to 28%.
Altogether, the prediction accuracy for the 68 proteins was
increased by cons-PPISP to 61.4% and coverage increased
to 38%. What makes this enhancement in performance all
the more important is that it was obtained without having
to manually choose which neural network model to use
and how many rounds of training to do.

These results were obtained by using the unbound
structures of the complex-forming proteins. The perfor-
mance of cons-PPISP using the unbound structures was
nearly the same as using the bound structures. In the
latter case the overall prediction accuracy for the 68

proteins was 63.6% and coverage was 39%. Such robust-
ness with respect to unbound structures was designed into
PPISP and was already demonstrated in our previous
study.7

Test on a Set of NMR-Characterized Proteins

To further demonstrate the predictive power of cons-
PPISP, we collected from the literature proteins whose
interfaces have been characterized by NMR chemical shift
perturbation. Those with sequence homologies with the
training set were removed, resulting in a total of eight
proteins (Table IV). Three of these, thrombomodulin,
troponin C, and the B domain of protein A, had X-ray
structures for their respective complexes at the time.
These X-ray structures were not selected into our data set
for training neural networks for two different reasons: (1)
less than 20 contact residues for the complexes between
thrombomodulin and thrombin37 and between the B do-
main of protein A and the Fc fragment of immunoglobulin
G (IgG);38 (2) fewer than 40 residues in the partner chain,
troponin I, in the case of troponin C.39 X-ray and NMR
structures of complexes formed by two other proteins, the
adaptor protein p47 with the AAA ATPase protein p9740

and the HP1 chromo domain with histone H3,41,42 have
recently been determined. The remaining three still do not
have X-ray structures for their complexes. According to
chemical shift perturbation, the eight proteins have a total
of 144 interface residues. Cons-PPISP made 174 predic-
tions, with an accuracy of 69% and coverage of 47%.

We now present detailed comparisons of the cons-PPISP
predictions with experiments. The interface formed by
cytochrome b5 with cytochrome c has recently been reexam-
ined by Shao et al.43 Their chemical shift perturbation
results suggest that the following 17 residues of cyto-
chrome b5 made up the interface with cytochrome c: K34,
E37, H39, G41, E44-L46, G52, T55, E56, E59-V61, H63,
S64, A67, and L70 [Fig. 5(a)]. The last eight of these were
among the 21 predicted interface residues. Eight other
predicted residues (N57, F58, G62, D66, R68, E69, S71,

TABLE IV. Prediction Results for the NMR Set

Complexa PDBb
Sequence

length

Real interface
residuesc

Predicted interface
residues

(Strict)
accuracy

(%)
Coverage

(%)CSP X-ray

Cytochrome b5/cytochrome c43 1cyo 88 17 21 (38.1) 76.2 47
Thrombomodulin/thrombin37,44 1dqbA 83 32 14 1dx5I/M 20 (70.0) 95.0 44
p47 C-term./p97 N-term.40,45 1i42A 89 23 19 1s3sG/F 21 (57.1) 95.2 52
Troponin C/troponin I39,46,48,49 1ncx 162 18 22 1a2xA/B 20 (40.0) 85.0 44
HP1 chromo/histone H341,42,66 1ap0 73 10 12 1knaA/P 26 (15.4) 38.5 40
B domain of protein A/IgG38,51 1bdd 60 14 12 1fc2C/D 23 (43.5) 65.2 71
UBC9/SUMO-167,68 1u9aA 159 19 20 (30.0) 75.0 32

1a5r 103 11 23 (21.7) 34.8 46
All 144 174 (38.5) 69.0 47
aThe first of the pair of proteins was the prediction target. For UBC9/SUMO-1, both partners were studied, with the top entries referring to UBC9
and the bottom entries referring to SUMO-1.
bPDB code for unbound protein used in interface prediction.
cIf a residue is identified by chemical shift perturbation (CSP) as in an interface but is buried in the unbound structure, that residue was not
counted as an interface residue. PDB code for a protein complex and chain identities used for obtaining interface residues are listed below the
number of interface residues.
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and T73) were among the nearest neighbors of the inter-
face sites suggested by NMR. The remaining five predic-
tions (K5, D31, and F74-I76) were deemed false. Interest-
ingly, another cluster of 11 residues with high consensus
scores were eliminated by cons-PPISP because of the

relatively smaller cluster size. These residues (F35 and
E37-L46) turned out to cover the first half of the NMR-
deduced interface sites. When these were included, the
prediction accuracy increased from 76.2% to 84.4% while
coverage increased from 47% to 82%.

Fig. 5. Comparison of predicted interface residues with those identified by chemical shift perturbation or found in X-ray structures of protein
complexes. (a-h) show the eight proteins in Table IV, in the order listed there. For each protein, NMR results, predictions, and X-ray results (if available)
are displayed in the first, second, and third panels, respectively. Residues identified by NMR, X-ray, or predicted correctly are in red. Loosely correct
predictions and false positives are in purple and green, respectively. In (a) and (d), a cluster of residues that was eliminated by cons-PPISP and appears
to be within the interface is displayed in cyan.
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Figure 5. (Continued.)
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Wood et al.44 used chemical shift perturbation to charac-
terized the interface formed by two epidermal growth
factor-like domains (TMEGF45) of thrombomodulin with
thrombin and identified the following 32 interface resi-
dues: F376, A377, Q387-Q392, A394, A397-D400, N402,
Q404-C409, E411-I420, D423, D4256, and E426 [Fig. 5(b)].
Of these, 14 were among the 20 predicted interface resi-
dues. These correctly predicted residues were: F376, F389,
Q404-S406, E408, C409, E411-Y413, L415, D416, F419,
and I420. Five other predicted residues (A373, G375, T403,
P410, and I414) were among the nearest neighbors of the
NMR-deduced interface sites. Only a single prediction,
E374, was deemed false by our criteria, though it was very
close to the interface site F376.

Yuan et al.45 identified the interaction surface of the
C-terminal domain of the adaptor protein p47 with the
AAA ATPase protein p97 by chemical shift perturbation,
and obtained the following 23 interface residues: N9, A11,
T14, Q18, R20, A22-G24, R26, L27, R41, V57, L58, K65-

A68, Q72, N78, A82, V83, V85, and R87 [Fig. 5(c)]. Of
these, 12 (Q18, R26, L27, R41, V57, L58, K65-L67, A82,
V83, and V85) were among the 21 predicted interface
residues. Eight other predicted residues (N16, I40, F43,
M59, T61, P63, N64, and N81) were among the nearest
neighbors of the NMR-deduced interface sites. The remain-
ing predicted residue, F62, was near the NMR-deduced
interaction sites but was nonetheless deemed false.

As shown in the recent structure of the ternary complex,
troponin C forms four binding sites with three regions of
troponin I as well as a coiled-coil formed by troponin I and
troponin T.46 We had no way of knowing which binding
sites would be predicted. When the predicted residues
were examined, they were found to form the binding
surface for the N-terminal region of troponin I [Fig. 5(d)].
Interestingly, the binding affinity of the N-terminal pep-
tide of troponin I has been found to be orders of magnitude
higher than those of the inhibitory and C-terminal pep-
tides.47 The binding surface on troponin C for the N-

Figure 5. (Continued.)
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terminal region of troponin I has been mapped by chemical
shift perturbation,48,49 and the following 18 interface
residues were identified: K93, L98, N100, C101, R103,
I104, E120-L122, E127-V129, K139, and M157-V161. Of
these, eight (C101, I104, E120-L122, and E127-V129) were
among the 20 predicted interface residues. Nine other
predicted residues (K107, E116, R123-G126, T130, D136,
and L137) were among the nearest neighbors of the
NMR-deduced interface sites. The remaining three predic-
tions, N108, I115, and E132, though in the vicinities of the
NMR-deduced interface sites, were deemed false by our
criteria. A second cluster of ten predicted residues with
high consensus scores turned out to cover the remaining
part of the binding surface for the N-terminal region of
troponin I. When these residues (F151, D152, and L155-
Q162) were included, the coverage of NMR-deduced inter-
face sites increased from 44% to 72% while prediction
accuracy remained high (changing from 85.0% to 83.3%).

Jacobs et al.50 identified the histone H3-binding surface
on the HP1 chromo domain by chemical shift perturbation
and found the following ten interface residues: Y24-V26,
K46, G47, E56, E58, D62, C63, and D65 [Fig. 5(e)]. Of
these, four (Y24, V26, E56, and D62) were among the 26
predicted interface residues. Six other predicted residues
(E21, E23, W55, N60, L61, and L66) were among the
nearest neighbors of the NMR-deduced interface sites. Of
the 16 predictions that were deemed false, 11 were from
the N-terminal (H11-E20 and E22), and the other five were
L30, D31, L42, T54, and F70.

Takahashi et al.51 mapped the interaction surface of the
B domain of protein A with the Fc fragment of IgG by
chemical shift perturbation, and identified the following
14 interface residues: F6, K8, E9, Q11, N12, Y15, E16, L18,
H19, N29, G30, L35, K36, and S40 [Fig. 5(f)]. Ten of these
coincided with the predicted interface residues. These
were: F6, Q11, N12, Y15, E16, L18, H19, L35, K36, and
S40. Five other predicted residues (F14, F31, P39, Q41,
and A43) were among the nearest neighbors of the NMR-
deduced interface sites. The remaining eight of the 23
predicted residues, T1-N4 and N44-A47, were deemed
false-positives. Though our method was not designed for
antigen–antibody complexes, the interface predictions over-
all were actually satisfactory. Perhaps the implicated
surface is an “easy” target for antibody.

Chen and coworkers52,53 identified the interaction sur-
faces of the ubiquitin conjugation enzyme Ubc9 and small
ubiquitin modifier 1 (SUMO-1) by chemical shift perturba-
tion. On the Ubc9 side, the following 19 residues were
obtained: S7, A10, K14, A15, R17-H20, F22, G23, V27,
T35-N37, K49, L57, K59, L63, and K65 [Fig. 5(g)]. Six of
these (S7, A10, T35-N37, and K65) were among the 20
predicted interface residues. Nine other predicted residues
(G3, L6, P28, D33, G34, L38, M39, D66, and D67) were
among the nearest neighbors of the NMR-deduced inter-
face sites. The remaining five predicted residues, located
at the N-terminal, were deemed false-positives. On the
SUMO-1 side, the following 11 residues were identified by
NMR as interaction sites: I27, S31, V38, L65, E67, G68,
I71, G81, M82, E85, and V87 [Fig. 5(h)]. Five of these (I27,

L65, E67, G68, and V87) were among the 23 predicted
interface residues. Three other predicted residues (Q29,
E89, and Y91) were among the nearest neighbors of the
NMR-deduced interface sites. The remaining 15 predicted
residues, V57, M59-S61, R63, Q92-V101, were located in
the periphery of the NMR-deduced interaction sites, but
were deemed false-positives.

For the five proteins with known structures for their
complexes, comparison of the predicted interface residues
with the native interfaces was also very encouraging. The
high accuracy and coverage against NMR data were
maintained for thrombomodulin, adaptor protein p47,
troponin C, and protein A. For the HP1 chromo domain
[Fig. 5(e)], when compared against the X-ray structure for
the complex with the K9-methylated histone H3 tail,41

prediction accuracy increased from 38.5% to 53.8% and
coverage increased from 40% to 75%. These results suggest
that cons-PPISP has the potential of complementing NMR
and other experimental techniques in characterizing pro-
tein–protein interfaces.

From Dimer to Trimer

This work has been focused on protein dimers. However,
a higher oligomer can almost always be constructed sequen-
tially one dimeric interface at a time. Often the biological
process actually follows such sequential steps. Such is the
case for the activation of protein C. This process is
initiated by the binding of thrombomodulin to thrombin,
and the resulting complex then presents a suitable binding
surface for protein C.37 It appears possible to extend our
method to predict a binding surface that is located on a
protein complex instead of a single protein. The two
protein chains in the complex can be treated as a single
protein for the purpose of calculating solvent accessibility
and neighbor lists. However, for the purpose of generating
sequence profiles by PSI-BLAST, more robust results may
be obtained by searching for sequence alignments sepa-
rately for the two chains and then concatenating the two
alignments.

Given the basic architecture of protein functioning ma-
chineries in the form of high oligomers, binding surfaces
located on protein complexes certainly warrant systematic
studies. Here we give preliminary results of cons-PPISP
predictions for the protein C-binding surface on the throm-
bin–thrombomodulin complex. A cluster of 18 residues on
the fourth epidermal growth factor-like domain of thrombo-
modulin was identified by cons-PPISP, though no residues
from thrombin were predicted with high confidence.
TMEGF4 has indeed been established as the site for
binding protein C by mutational studies,54–57 and indeed
Fuentes-Prior et al.37 constructed a structural model for
the ternary complex with protein C contacting thrombin
and TMEGF4. The 18 predicted residues were V345-A354
and C360-S367. These predictions appear consistent with
residues that have been implicated being important for
binding protein C, which include D349, E357, Y358, and
F376.54–57
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Test on CAPRI Targets

Although the first attempt to computationally reconsti-
tute a complex by docking two proteins together dates back
to the late 1970s,58 up to now, protein–protein docking has
remained largely an academic exercise. Progress in this
direction is hampered by two major problems: the confor-
mational changes that usually accompany complex forma-
tion and the lack of scoring functions that can discriminate
efficiently between the correct docking solution and many
false positives.34 Identification of interface residues by a
method like cons-PPISP holds great potential to simplify
the docking problem by either restricting the search in the
six-dimensional translational-rotational space or eliminat-
ing false positives after the search. This potential was
realized in a recent collaborative participation with the
Bonvin group in the latest rounds (4 and 5) of CAPRI. In
this collaboration, interface residues predicted by cons-
PPISP as well as experimental mutagenesis and other
types of data were used as ambiguous interaction re-
straints to drive the docking process, through the HAD-
DOCK program developed by the Bonvin group.6

The results of our CAPRI participation will be reported
elsewhere.59 Here we give a short summary of the cons-
PPISP predictions on the CAPRI 4 and 5 targets. For a
total of 11 protein targets (no prediction was necessary for
two antibodies), three (cohesin of T11/T12,60 MYPT1 of
T14,61 and colicin D of T1562) had higher than 80%
prediction accuracy, and four (TBE monomer of T10,63

dockerin of T11/T12, immunity protein of T15, and the
xylanase of T1864) had accuracy between 50% and 80%.
Interface predictions were poor for two antigens [in T13
(still unpublished) and T1965] and two large proteins (PP-1
of T14 and TAXI of T18). These blind test results on the
CAPRI targets are consistent with the results presented
earlier on the other test sets.

CONCLUSIONS

We have developed a robust program, cons-PPISP, for
predicting interface residues in protein–protein complexes.
Taking advantage of the significant expansion of protein
complexes in the Protein Data Bank, we carefully analyzed
characteristics of proteins, provided rationalizations for these
characteristics, and refined the neural network models to
capture these characteristics. These ideas for model design
may be useful for future developments as the PDB further
expands. At the present state, cons-PPISP promises to
complement NMR and other experimental techniques in
characterizing protein–protein interfaces.

Ultimately three-dimensional structures of protein com-
plexes may be indispensable for a full understanding of the
mechanisms of protein–protein interactions and protein
functions. So far only a small fraction of the hundreds and
thousands of putative protein complexes have their struc-
tures determined. Many protein complexes are formed by
weak interactions and may not be amenable to structure
determination by X-ray or NMR. Thus computational
methods that can build structural models for protein
complexes will become more and more important as the
number of individual protein structures rapidly grows.

Incorporation of cons-PPISP predictions in a docking
program in the latest CAPRI rounds has demonstrated its
ability in guiding the docking process.

ACKNOWLEDGMENTS

This work was supported in part by NIH grant GM58187.

REFERENCES

1. Ito T, Chiba T, Osawa R, Yoshida M, Hattori M, Sasaki Y. A
comprehensive two-hybrid analysis to explore the yeast protein
interactome. Proc Natl Acad Sci USA 2000;98:4569–4574.

2. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR,
Lockshon D, Narayan V, Srinivasan M, Pochart P, et al. A
comprehensive analysis of protein-protein interactions in Saccha-
romyces cerevisiae. Nature 2000;403:623–627.

3. Lichtarge O, Sowa ME, Philippi A. Evolutionary traces of func-
tional surfaces along the G protein signaling pathway. Methods
Enzymol 2001;344:536–556.

4. Sowa ME, He W, Slep KC, Kercher MA, Lichtarge O, Wensel TG.
Prediction and confirmation of a site critical for effector regulation
of RGS domain activity. Nat Struct Biol 2001;8:234–237.

5. Zhou H-X. Improving the understanding of human genetic disease
through predictions of protein structures and protein-protein
interaction sites. Curr Med Chem 2004;11:539–549.

6. Dominguez C, Boelens R, Bonvin AMJJ. HADDOCK: A protein-
protein docking approach based on biochemical or biophysical
information. J Am Chem Soc 2003;125: 1731–1737.

7. Zhou H-X, Shan Y. Prediction of protein interaction sites from
sequence profile and residue neighbor list. Proteins 2001;44:336–
343.

8. Jones S, Thornton JM. Principles of protein-protein interactions.
Proc Natl Acad Sci USA 1996;93:13–20.

9. Jones S, Thornton JM. Analysis of protein-protein interaction
sites using surface patches. J Mol Biol 1997;272:121–132.

10. Jones S, Thornton JM. Prediction of protein-protein interaction
sites using patch analysis. J Mol Biol 1997;272:133–143.

11. Conte LL, Chothia C, Janin J. The atomic structure of protein-
protein recognition sites. J Mol Biol 1999;285:2177–2198.

12. Hu Z, Ma B, Wolfson H, Nussinov R. Conservation of polar
residues as hot spots at protein interfaces. Proteins 2000;39:331–
342.

13. Valdar WSJ, Thornton JM. Protein-protein interfaces: analysis of
amino acid conservation in homodimers. Proteins 2001;42:108–124.

14. Glaser F, Steinberg DM, Vakser IA, Ben-Tal N. Residue frequen-
cies and pairing preferences at protein-protein interfaces. Pro-
teins 2001;43:89–102.

15. Armon A, Graur D, Ben-Tal N. Consurf: an algorithmic tool for the
identification of functional regions in proteins by surface mapping
of phylogenetic information. J Mol Biol 2001;307:447–463.

16. Landgraf R, Xenarios L, Eisenberg D. Three-dimensional cluster
analysis identifies interfaces and functional residue clusters in
proteins. J Mol Biol 2001;307:1487–1502.

17. Pupko T, Bell RE, Mayrose I, Glaser F, Ben-Tal N. Rate4Site: an
algorithmic tool for the identification of functional regions in
proteins by surface mapping of evolutionary determinants within
their homologues. Bioinformatics 2002;18:S71–S77.

18. Madabushi S, Yao H, Marsh M, Kristensen DM, Philippi A, Sowa
ME, Lichtarge O. 2002. Structural clusters of evolutionary trace
residues are statistically significant and common in proteins. J
Mol Biol 316:139–154.

19. Lichtarge O, Sowa ME. Evolutionary predictions of binding sur-
faces and interactions. Curr Opin Struct Biol 2002;12:21–27.

20. Ofran Y, Rost B. Analysing six types of protein-protein interfaces.
J Mol Biol 2003;325:377–387.

21. Nooren IMA, Thornton JM. Structural characterization and func-
tional significance of transient protein-protein interactions. J Mol
Biol 2003;325:991–1018.

22. Yao H, Kristensen DM, Mihalek I, Sowa ME, Shaw C, Kimmel M,
Kavraki L, et al. An accurate, sensitive, and scalable method to
identify functional sites in protein structures. J Mol Biol 2003;326:
255–261.

23. Ma B, Elkayam T, Wolfson H, Nussinov R. Protein-protein
interactions: structurally conserved residues distinguish between
binding sites and exposed protein surfaces. Proc Natl Acad Sci
USA 2003;100:5772–5777.

34 H. CHEN AND H.-X. ZHOU



24. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller
W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 1997;25:
3389–3402.

25. Rost B, Sander C. Progress of 1D protein structure prediction at
last. Proteins 1995;23:295–300.

26. Jones D. Protein secondary structure prediction based on position-
specific scoring matrices. J Mol Biol 1999;292:195–202.

27. Shan Y, Wang G, Zhou H-X. Fold recognition and accurate
query-template alignment by a combination of PSI-BLAST and
threading. Proteins 2001;42:23–37.

28. Minakuchi Y, Satou K, Konagaya A, Ito T. Prediction of protein-
protein interaction sites using support vector machines. Genome
Informatics 2002;13:322–323.

29. Fariselli P, Pazos F, Valencia A, Casadio R. Prediction of protein-
protein interaction sites in heterocomplexes with neural net-
works. Eur J Biochem 2002;269:1356–1361.

30. Ofran Y, Rost B. Predicted protein-protein interaction sites from
local sequence information. FEBS Lett 2003;544:236–239.

31. Koike A, Takagi T. Prediction of protein–protein interaction sites
using support vector machines. Protein Eng Des Sel 2004;17:165–
173.

32. Neuvirth H, Raz R, Schreiber G. ProMate: a structure based
prediction program to identify the location of protein-protein
binding sites. J Mol Biol 2004;338:181–199.

33. Yan CH, Honavar V, Dobbs D. Identification of interface residues
in protease-inhibitor and antigen-antibody complexes: a support
vector machine approach. Neural Comput Appl 2004;13:123–129.

34. Janin J, Henrick K, Moult J, Eyck LT, Sternberg M, Vajda S,
Vakser I, et al. CAPRI: a critical assessment of predicted interac-
tions. Proteins 2003;52:2–9.

35. Chen R, Mintseris J, Janin J, Weng Z. A protein-protein docking
benchmark. Proteins 2003;52:88–91.

36. Kabsch W, Sander C. Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers 1983;22:2577–2637.

37. Fuentes-Prior P, Iwanaga Y, Huber R, Pagila R, Rumennik G,
Seto M, Morser J, Light DR, Bode W. Structural basis for the
anticoagulant activity of the thrombin-thrombomodulin complex.
Nature 2000;404:518–525.

38. Deisenhofer J. Crystallographic refinement and atomic models of
a human Fc fragment and its complex with fragment B of protein
A from Staphylococcus aureus at 2.9- and 2.8-A resolution.
Biochemistry 1981;20:2361–2370.

39. Vassylyev DG, Takeda S, Wakatsuki S, Maeda K, Maeda Y.
Crystal structure of troponin C in complex with troponin I
fragment at 2.3-Å resolution. Proc Natl Acad Sci USA 1998;95:
4847-4852.

40. Dreveny I, Kondo H, Uchiyama K, Shaw A, Zhang X, Freemont
PS. Structural basis of the interaction between the AAA ATPase
p97/VCP and its adaptor protein p47. EMBO J 2004;23:1030-
1039.

41. Jacobs SA, Khorasanizadeh S. Structure of HP1 chromodomain
bound to a lysine 9-methylated histone H3 tail. Science 2002;295:
2080-2083.

42. Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A,
Kouzarides T, Murzin AG, Murzina NV, Laue ED. Structure of the
HP1 chromodomain bound to histone H3 methylated at lysine 9.
Nature 2002;416:103-107.

43. Shao W, Im SC, Zuiderweg ER, Waskell L. Mapping the binding
interface of the cytochrome b5-cytochrome c complex by nuclear
magnetic resonance. Biochemistry 2003;42:14774–14784.

44. Wood MJ, Benitez BAS, Komives EA. Solution structure of the
smallest cofactor-active fragment of thrombomodulin. Nat Struct
Biol 2000;7:200–204.

45. Yuan X, Shaw A, Zhang X, Kondo H, Lally J, Freemont PS,
Matthews S. Solution structure and interaction surface of the
C-terminal domain from p47: a major p97-cofactor involved in
SNARE disassembly. J Mol Biol 2001;311:255–263.

46. Takeda S, Yamashita A, Maeda K, Maeda Y. Structure of the core
domain of human cardiac troponin in the Ca(2�)-saturated form.
Nature 2003;424:35–41.

47. Li MX, Saude EJ, Wang X, Pearlstone JR, Smillie LB, Sykes BD.
Kinetic studies of calcium and cardiac troponin I peptide binding
to human cardiac troponin C using NMR spectroscopy. Eur
Biophys J 2002;31:245–256.

48. Gasmi-Seabrook GMC, Howarth JW, Finley N, Abusamhadneh E,

Gaponenko V, Brito RMM, Solaro RJ, Rosevear PR. Solution
structures of the C-terminal domain of cardiac troponin C free and
bound to the N-terminal domain of cardiac troponin I. Biochemis-
try 1999;38:8313–8322.

49. Mercier P, Li MX, Sykes BD. Role of the structural domain of
troponin C in muscle regulation: NMR studies of Ca2� binding
and subsequent interactions with regions 1-40 and 96-115 of
troponin I. Biochemistry 2000;39:2902–2911.

50. Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC,
Allis CD, Khorasanizadeh S. Specificity of the HP1 chromo
domain for the methylated N-terminus of histone H3. EMBO J
2001;20:5232–5241.

51. Takahashi H, Nakanishi T, Kami K, Arata Y, Shimada I. A novel
NMR method for determining the interfaces of large protein–
protein complexes. Nat Struct Biol 2000;7:220–223.

52. Liu Q, Jin C, Liao X, Shen Z, Chen DJ, Chen Y. The binding
interface between an E2 (UBC9) and a ubiquitin homologue
(UBL1). J Biol Chem 1999;274:16979–16987.

53. Tatham MH, Kim S, Yu B, Jaffray E, Song J, Zheng Z, Rodriguez
MS, Hay RT, Chen Y. Role of an N-terminal site of Ubc9 in
SUMO-1, -2, and -3 binding and conjugation. Biochemistry 2003;
42:9959–9969.

54. Zushi M, Gomi K, Honda G, Kondo S, Yamamoto S, Hayashi T,
Suzuki K. Aspartic acid 349 in the fourth epidermal growth
factor-like structure of human thrombomodulin plays a role in its
Ca(2�)-mediated binding to protein C. J Biol Chem 1991;266:
19886–19889.

55. Nagashima M, Lundh E, Leonard JC, Morser J, Parkinson JF.
Alanine-scanning mutagenesis of the epidermal growth factor-
like domains of human thrombomodulin identifies critical resi-
dues for its cofactor activity. J Biol Chem 1993;268:2888–2892.

56. Lentz SR, Chen Y, Sadler JE. Sequences required for thrombo-
modulin cofactor activity within the fourth epidermal growth
factor-like domain of human thrombomodulin. J Biol Chem 1993;
268:15312–15317.

57. Yang L, Rezaie AR. The fourth epidermal growth factor-like
domain of thrombomodulin interacts with the basic exosite of
protein C. J Biol Chem 2003;278: 10484–10490.

58. Wodak SJ, Janin J. Computer analysis of protein-protein interac-
tions. J Mol Biol 1978;124:323–342.

59. van Dijk ADJ, de Vries SJ, Dominguez C, Chen H, Zhou H-X,
Bonvin AMJJ. Data-driven docking: HADDOCK’s adventures in
CAPRI. Proteins 2005;60:232–238.

60. Carvalho AL, Dias FM, Prates JA, Nagy T, Gilbert HJ, Davies GJ,
Ferreira LM, Romao MJ, Fontes CM. Cellulosome assembly
revealed by the crystal structure of the cohesin-dockerin complex.
Proc Natl Acad Sci USA 2003;100:13809–13814.

61. Terrak M, Kerff F, Langsetmo K, Tao T, Dominguez R. Structural
basis of protein phosphatase 1 regulation. Nature 2004;429:780–
784.

62. Graille M, Mora L, Buckingham RH, van Tilbeurgh H, de Zama-
roczy M. Structural inhibition of the colicin D tRNase by the
tRNA-mimicking immunity protein. EMBO J 2004;23:1474–1482.

63. Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S,
Lescar J, Heinz FX, Rey FA. Structure of a flavivirus envelope
glycoprotein in its low-pH-induced membrane fusion conforma-
tion. EMBO J 2004;23:728–738.

64. Sansen S, de Ranter CJ, Gebruers K, Brijs K, Courtin CM, Delcour
JA, Rabijns A. Structural basis for inhibition of Aspergillus niger
xylanase by triticum aestivum xylanase inhibitor-I. J Biol Chem
2004;279:36022–36028.

65. Eghiaian F, Grosclaude J, Lesceu S, Debey P, Doublet B, Treguer
E, Rezaei H, Knossow M. Insight into the PrPC3PrPSc conver-
sion from the structures of antibody-bound ovine prion scrapie-
susceptibility variants. Proc Natl Acad Sci USA 2004;101: 10254–
10259.

66. Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC,
Allis CD, Khorasanizadeh S. Specificity of the HP1 chromo
domain for the methylated N-terminus of histone H3. EMBO J
2001;20:5232–5241.

67. Liu Q, Jin C, Liao X, Shen Z, Chen DJ, Chen Y. The binding
interface between an E2 (UBC9) and a ubiquitin homologue
(UBL1). J Biol Chem 1999;274:16979–16987.

68. Tatham MH, Kim S, Yu B, Jaffray E, Song J, Zheng Z, Rodriguez
MS, Hay RT, Chen Y. Role of an N-terminal site of Ubc9 in
SUMO-1, -2, and -3 binding and conjugation. Biochemistry 2003;
42:9959–9969.

INTERFACE RESIDUES PREDICTION 35


