
Rate theories for biologists

Huan-Xiang Zhou*
Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA

Abstract. Some of the rate theories that are most useful for modeling biological processes
are reviewed. By delving into some of the details and subtleties in the development of the
theories, the review will hopefully help the reader gain a more than superficial perspective.
Examples are presented to illustrate how rate theories can be used to generate insight at the
microscopic level into biomolecular behaviors. An attempt is made to clear up a number
of misconceptions in the literature regarding popular rate theories, including the appearance
of Planck’s constant in the transition-state theory and the Smoluchowski result as an upper
limit for protein–protein and protein–DNA association rate constants. Future work in
combining the implementation of rate theories through computer simulations with
experimental probes of rate processes, and in modeling effects of intracellular environments
so that theories can be used for generating rate constants for systems biology studies is
particularly exciting.
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1. Introduction

Rate equations are essential for describing biological processes. Numerous experimental studies,

as exemplified by those on enzyme catalysis and protein folding, involve the measurement

of rate constants by fitting to phenomenological rate equations. However, to interpret such

results on rate constants requires some understanding of how rate constants are related to the

microscopic behaviors of the systems under study. Deriving rate constants from microscopic

descriptions is the goal of rate theories. Among the rate theories that are most widely applied

to biological systems today are those by Eyring (1935), Kramers (1940), and Smoluchowski

(1917). These theories are based on fundamental principles of statistical mechanics, and,

remarkably, were inspired by systems far simpler than biomacromolecules. More modern

theories have extended this early work in many directions (e.g., Agmon & Hopfield, 1983 ;

Grote & Hynes, 1980 ; Melnikov & Meshkov, 1986; Solc & Stockmayer, 1973 ; Szabo et al.

1980 ; Zhou, 1993). Unfortunately, the newer developments are not accessible to many

experimentalists.

It is clear that a basic understanding of rate theories is useful for interpreting measured rate

constants and for gaining molecular insight into biological processes. This paper aims to intro-

duce the central ideas of some of the most important rate theories. It is hoped that, by delving

into some of the details and subtleties in the development of the theories, the paper will help

the reader gain a more than superficial perspective. Several examples are presented to illustrate
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how rate theories can be used to yield microscopic knowledge on biomolecular behaviors.

There is growing interest in how the crowded environments inside cells affect the kinetic

properties of biomolecules (Zhou et al. 2008). We will outline how the effects of macromolecular

crowding can be accounted for in calculating rate constants.

We also attempt to clear up a number of misconceptions in the literature regarding popular

rate theories. For example, it is often stated that the pre-exponential factor of the rate constant

predicted by the transition-state theory is kBT/h, where kB is Boltzmann’s constant, T is

the absolute temperature and h is Planck’s constant. Such a misstatement would suggest

that quantum effects are prevalent in rate processes. In addition, Smoluchowski’s result for

diffusion-controlled non-specific binding of spherical particles is often quoted as providing an

upper bound for the rate constants of stereospecific protein–ligand or protein–protein binding.

In fact, because of the orientational constraints arising from the stereospecificity, the rate con-

stant limited by random diffusion is several orders of magnitude lower than the Smoluchowski

result.

It has been recognized that rate constants, as opposed to equilibrium constants, are of para-

mount importance in many biological processes (Schreiber et al. 2009 ; Zhou, 2005a). A focus

of systems biology nowadays is on rate constants of steps comprising various networks ; it has

been demonstrated, through mutations, that the protein association rate constant in one step can

dictate the overall activity of a signaling network (Kiel & Serrano, 2009). When several ligands

compete for the same protein or when one protein is faced with alternative pathways, kinetic

control, not thermodynamic control, dominates in many cases ; this is especially true when

dissociation is slow (see Fig. 1). In particular, during protein translation, cognate and non-

cognate aminoacyl-tRNAs all compete to bind to the decoding center on the ribosome.

Understanding how rate constants are regulated is crucial for elucidating mechanisms of

biological processes.

This review concentrates on rate theories that can be used to analyze experimental or simu-

lation results, and makes only scant reference to the vast literature of computer simulations

of biomolecules.

2. Rate equations

Rate equations are usually taken for granted. Here we explain their theoretical basis and describe

in broad terms how they are connected to a microscopic-level description of the same system.

This connection lays some groundwork for the rate theories of the coming sections.

ConsiderN molecules in a container with volume V. All the molecules start in state A but can

make a jump to state B. The molecules are independent and the jumps occur stochastically. For

each molecule, the longer the time lapse, the higher the probability that it has made the jump

to state B. The two should be proportional to each other when the time lapse is very short.

Let the probability that a molecule makes the jump in an infinitesimal time interval dt be kdt ;

the probability that it stays in state A is obviously 1xkdt. The quantity of interest is the number

of molecules, out of the total ofN, that jump to state B in dt, which is also the decrement,xdN,

in the number of molecules that stay in state A. This problem is equivalent to finding the number

of heads observed after N coin tosses. The decrement xdN is a random variable that follows

the binomial distribution, with the expectation value given by

xdN=N � kdt � (1xkdt ) � Nkdt : (2:1)
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In the thermodynamic limit whereN and VpO but the concentrationN/VwC remains finite,

the fluctuations in dN are negligible, and the bar over dN in the above equation can be dropped.

Dividing both sides by dt and by V, we have the familiar rate equation

dC

dt
=xkC , (2:2)

in which k appears as the rate constant. This rate equation is equivalent to the irreversible

reaction scheme

A �!k B: (2:3)

In the present case, the reaction rate, dC/dt, is first order in reactant concentration, and hence

the reaction modeled is referred to as first order. Solving the rate equation, one derives the

Fig. 1. Thermodynamic control versus kinetic control. A protein in state A has two reaction pathways,

leading to states B1 and B2, respectively. The forward and reverse rate constants of the two pathways are

k¡1 and k¡2. Three of the constants are fixed: k+1=10 sx1, k+2=0�1 sx1, and kx1=0�01 sx1. The
ratio, k+1/k+2, of the two forward rate constants is thus fixed at 100. The fourth rate constant,
kx2, is varied from10x4 to 10x8 sx1, yielding the five values for the ratio of the two equilibrium
constants shown in the figure. The equilibrium concentration of B1 is [B1]eq=Ctk+1kx2/
(k+1kx2+k+2kx1+kx1kx2), where Ct is the total protein concentration ; [B2]eq is obtained by
reversing the indices 1 and 2. With the protein is initially in state A, the time dependence of the
B1 concentration is given by

[B1]=[B1]eqx([B1]eq(l+xlx+k+1+kx1xk+2xkx2)+2[B2]eqk+1)e
xl+ t=2(l+xlx)

x([B1]eq(l+xlxxk+1xkx1+k+2+kx2)x2[B2]eqk+1)e
xlxt=2(l+xlx),

where l¡=[k+1+kx1+k+2+kx2¡((k+1+kx1xk+2xkx2)2+4k+1k+2)1/2]/2.

Again [B2] is obtained by reversing the indices 1 and 2. Thermodynamic control means [B1]/

[B2]p[B1]eq/[B2]eq, indicated by the arrows on the right, whereas kinetic control means [B1]/

[B2]pk+1/k+2, indicated by the arrow at the top. Note that the two pathways can represent

either unimolecular or bimolecular reactions. An example of the latter case is a protein binding

with two different ligands ; k+1 (or k+2) is then a pseudo-first-order rate constant given by the

product of the ligand-binding rate constant and the ligand concentration. The time interval in

which kinetic control dominates is shaded in purple ; the time interval in which thermodynamic

control dominates is shaded in yellow.
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exponential decay of the concentration as a function of time t :

C

C0
=exkt , (2:4)

where C0 is the concentration at time t=0. We emphasize that the description of the concen-

tration decay by a rate equation rests on the uncorrelatedness of the jumps.

In general, the jumps from one state to another state are reversible. That is, molecules in state

B can just as well jump back to state A again (assuming that each molecule can only exists in

either state A or state B). The reversible reaction scheme is

A�!
k+

 �
kx

B, (2:5)

where the forward and backward jumps are assigned rate constants k+ and kx, respectively. The

latter serve to increase the concentration of molecules in state A. Accounting for jumps in both

directions, we arrive at the rate equation

dCA

dt
=xk+CA+kxCB, (2:6)

where we now introduce subscripts to denote the concentrations of molecules in the two

states. A similar equation can be written for the concentration, CB, of molecules in state B.

Alternatively, CA and CB are related by the fact that the total concentration is conserved :

CA+CB=Ct: (2:7)

Using Eq. (2.7) in Eq. (2.6) and solving for CA, we find

rA(t )xrAeq

rA(0)xrAeq

=ex(k++kx)t : (2:8a)

To simplify notation, we have normalized the concentration by Ct ; rA(t)=CA/Ct is the pro-

portion of molecules in state A. Its value at long times, when equilibrium has reached, is

rAeq=
kx

k++kx
: (2:8b)

Similar results can be written for CB. The ratio of the equilibrium concentrations of the two

states is known as the equilibrium constant, to be denoted as K. We have

K �
rBeq

rAeq

=
k+

kx
: (2:9)

This identity can be viewed as a constraint on the rate constants. A minimum requirement on a

rate theory is that the ratio of the predicted forward and reverse rate constants be the same as the

equilibrium constant.

While in a bulk experiment the proportions of molecules in different states [such as the

results given by Eq. (2.8)] are of interest, in a single-molecule experiment one directly observes

the state of an individual molecule as a function of time. The length of stay in a state, or waiting

time, is random. Equation (2.4), with k replaced by either k+ or kx, gives the probability

that the molecule remains in that state after time t ; this is also the probability that the waiting
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time is longer than t. Correspondingly, the probability distributions of the waiting times, tA
and tB, are

wA(tA)=k+exk+tA , wB(tB)=kxe
xkxtB : (2:10)

Over a long-time course, the fractions of time spent by the molecule in the two states are

proportional to the average waiting times in the two states, which are 1/k+ and 1/kx, respect-

ively. The ratio of the fractions of time in the two states is thus k+/kx, which, according to

Eq. (2.9), is the equilibrium constant.

In microscopic terms, a state of a molecule corresponds to a region of conformational space

around a local energy minimum (or more precisely, a set of minima). One state is separated from

another by energy barriers. We use x to denote a position in conformational space and U(x) as

the potential energy function of the molecule. A rate description is good when jumps between

the states are rare, such that, between jumps, the positions of the molecule in the conformational

space are completely randomized, and consequently successive jumps are uncorrelated. In

classical statistical mechanics, ‘ randomized’ means that the probability that a given position x

is sampled is proportional to the Boltzmann factor exp[xU(x)/kBT ]. The integration of the

Boltzmann factor over the conformational space of state A, bAdxexp[xU(x)/kBT ], gives the

total probability of that state. We refer to such an integral as a state-specific configurational

integral. When the jumps between states A and B reach equilibrium, the probabilities, rAeq and

rBeq, that the molecule is found in the two states are proportional to the respective configur-

ational integrals. We then have

K=

R
B
dx exU (x)=kBTR

A
dx exU (x)=kBT

: (2:11)

Note that the equilibrium constant, as to be expected, is completely determined by the potential

energy function.

According to Eq. (2.10), the rate constant k+ is the inverse of the average waiting time �ttA.

In microscopic terms, �ttA is the time it takes for the molecule, starting from a random position

in state A to first reach a position in state B. (In subsection 3.6, this time will be referred to as

the mean first passage time.) When a molecule first reaches state A, it takes some time, tAeq,

for it to be equilibrated within the state. The condition for the validity of the rate description

can now be expressed as tAeq � �ttA. That this condition can be satisfied rests on the fact that,

to jump from state A to state B, the molecule must cross the energy barriers separating the

two states. According to the Boltzmann distribution, the barrier regions will be sampled much

less frequently than the conformational space of state A. As for the magnitude of the rate

constant, it can be anticipated that the activation energy, i.e., the difference in energy between

the barrier regions and the conformational space of state A, is a major determinant. In ad-

dition, the type of motion that brings the molecule from state A to state B obviously should

also play a role.

To recapitulate, a rate description is valid when the jumps from one state to another are

rare so as to be uncorrelated. Foremost the activation energy but also the type of motion that

brings about the jumps are determinants of the rate constant. Below we present two special

topics. The first is a simple model designed to further contrast tAeq and �ttA. The second

concerns intermolecular transitions, as opposed to the intramolecular transitions discussed

thus far.
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2.1 A simple model with intra-state equilibration and inter-state jump

As noted above, a state consists of a set of local energy minima. Each local minimum corre-

sponds to a microstate. Figure 2a presents a model in which state A consists of three microstates,

to be referred to by index i or j, with i and j=1–3 ; from microstate 3 the molecule can make a

jump to state B. We choose model parameters to illustrate two situations : tAeq � �ttA and

tAeq � �ttA. The results of these two situations are displayed in Fig. 2b and c, respectively.

First, let us study the equilibration among the three microstates of state A, which we model as

rate processes, with rate constants kij. For now jumps to state B are not considered. The rate

constants for the forward and reverse transitions between two microstates, e.g., k12 and k21, are

constrained by the corresponding equilibrium constant, which in turn is given by the ratio of the

configurational integrals of the two microstates [Eq. (2.11)]. Our interest is in how the propor-

tions of molecules in the microstates, hereafter referred to as occupation probabilities, evolve

over time. We denote the occupation probabilities here as si ; the corresponding quantities

when jumps to state B are allowed will be denoted as ri (see below). Starting from any initial

values si0, si will relax to their equilibrium values sieq, which are proportional to the respective

Fig. 2. A simple model with intra-state equilibration and inter-state jump. (a) Illustration of the model. The

two states, A and B, are represented by boxes ; microstates within state A are represented by circles. (b) Time

dependences of s1 and r1/rAeq, representing intra-state equilibration, and of rA, representing inter-state

jump, for the following parameter values : k12=k21=k13=k23=1, k31=k32=2, and ktr=0�1. (c) The cor-
responding results when k31 and k32 are decreased to 0�125 and ktr is increased to 1. The results are obtained
from kinetic simulations of a single molecule. Briefly, the waiting time of the molecule in an initial micro-

state is generated from an exponential distribution function [see Eq. (2.10)], with the average waiting time

equal to the inverse of the sum of the rate constants for all the pathways leaving that microstate. The

probability for taking each of these pathways is proportional to the corresponding rate constant. The results

shown are the average of 106 repeat simulations ; each simulation starts with the molecule in microstate 1.

This simulation procedure is similar in spirit to the stochastic simulation algorithm of Gillespie (1977).

Rate theories for biologists 225



configurational integrals. The time dependence of si can be obtained from a kinetic simulation

(see Fig. 2). In Fig. 2b, we plot s1xs1eq as a function of time when the initial values are s10=1

and s20=s30=0 and the rate constants are k12=k21=k13=k23=1 and k31=k32=2. The cor-

responding equilibrium values are s1eq=s2eq=0�4 and s3eq=0�2. The equilibration time tAeq
can be estimated as the area under the (s1xs1eq)/(s10xs1eq) versus t curve ; we find tAeq=0�31.
Figure 2 c displays the result for s1xs1eq when k31 and k32 are decreased by 16-fold to 0�125
(while all other parameters are unchanged). The equilibrium values become s1eq=s2eq=0�2 and
s3eq=0�8, and tAeq increases to 0�54.

We now include jumps to state B from microstate 3, again modeled as a rate process, with rate

constant ktr. Both the equilibration among the three microstates and the jumps to state B affect

ri, the occupation probabilities. The latter leads to a decrease in the total occupation probability

of state A, rA=r1+r2+r3, over time. The decrease is governed by

drA

dt
=xktrr3: (2:12)

We use the normalized occupation probabilities, ri/rA, to monitor the equilibration among

the three microstates. The situation tAeq � �ttA displayed in Fig. 2b has ktr=0�1, along with the

values of kij specified above. Firstly, it can be seen that the decay of rA can be fitted well to an

exponential function, which is expected if a rate description is valid [Eq. (2.4)]. The fitted rate

constant, k+, has a value of 0�0196 ; correspondingly, the average waiting time �ttA is 51.

Secondly, the time dependence of r1/rA matches that of s1. Thus, the equilibration time of

0�31 based on s1 is also correct for the present case where jumps to state B are allowed.

Compared to �ttA, we find that tAeq is two orders of magnitude shorter in the present situation.

That the initial decays of ri/rA and si match are easy to rationalize, since during this period

very few jumps to state B occur. On the other hand, that ri/rA settle to the same equilibrium

values sieq suggests a scenario that, when the equilibrium within state A is perturbed by a jump

from microstate 3 to state B, it is recovered by re-equilibration among the microstates before

the next jump occurs. This scenario also allows us to find an approximate value for the rate

constant k+. Making use of the result r3/rABs3eq, which holds after a brief initial period,

Eq. (2.12) becomes

drA

dt
� xktrs3eqrA: (2:13a)

The rate constant is thus

k+ � ktrs3eq, (2:13b)

which has a value of 0�02 for the parameters used in Fig. 2b. This predicted value is very close

to the value, 0�0196, obtained above from fitting the time dependence of rA to an exponential

function.

The situation tAeq � �ttA displayed in Fig. 2 c has ktr=1. Compared to the parameters used in

Fig. 2b, ktr is increased by 10-fold, along with the 16-fold decrease in k31 and k32 stated above.

For these parameters, the time dependence of rA no longer fits well to an exponential func-

tion, and hence a rate description is not valid here. At the same time, r1/rA deviates signifi-

cantly from s1, except at short times (when jumps to state B are only few). Notably, r1/rA and

rA decay on a comparable timescale, validating the claim that the case under consideration has

tAeq � �ttA.
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Together, the contrasting situations shown in Fig. 2b, c illustrate the point that a rate

description will hold when the transitions between two states are rare enough to allow for intra-

state equilibration.

2.2 Intermolecular transitions

Up to now, we have discussed transitions between states of the same molecule. Many reactions

of biological interest involve the binding of two different molecules, e.g., a protein and a ligand,

to form a complex. In this case, the protein molecule makes a transition from a state in which it is

freely translating and rotating by itself throughout the container to a state in which its translation

and rotation are coupled to those of the ligand molecule. (The alternative perspective, centered

on the ligand instead of the protein, is equally valid.) Even though the transition is intermolecular

instead of intramolecular, the derivation leading to Eq. (2.2) can still be considered valid, except

that the ‘ rate constant ’ k introduced there is now proportional to the ligand concentration CL,

since the probability that a protein molecule makes the transition from the free state to the

protein–ligand complex in an infinitesimal time interval is proportional to CL. We thus replace

k by kaCL, where ka is the new rate constant for the association of the protein molecule with the

ligand molecule. The reverse process, i.e., the dissociation of the protein–ligand complex into

separate protein and ligand molecules, is an example of the intramolecular transitions discussed

above, since the reactant, i.e., the protein–ligand complex, is effectively one molecule. We denote

the dissociation rate constant as kd. The association and dissociation can be represented by the

reaction scheme

P+L �!
ka

 �
kd

PL : (2:14)

The rate equation for the protein concentration, CP, is

dCP

dt
=xkaCLCP+kdCPL: (2:15)

Here the forward reaction rate is second order in reactant concentration and hence that reaction

is referred to as second order. When CL is a constant, which, e.g., is practically realized when the

ligand is in large excess over the protein, the product kaCL can be treated as an effective rate

constant. For such a pseudo-first-order situation, the solution of the rate equation can be ob-

tained by identifying k¡ in Eq. (2.8a) with kaCL and kd, respectively, leading to

Y (t ) �
CP(t )xCPeq

CP(0)xCPeq

=exka(CL+Kd)t , (2:16)

where we have introduced the equilibrium constant for dissociation, or dissociation constant

Kd �
kd

ka
� 1

Ka

: (2:17)

Its inverse is called the association constant, denoted as Ka. The equilibrium protein concen-

tration is given by

CPeq

CPt

=
1

KaCL+1
� rbeq, (2:18)
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where CPt is the total protein concentration, either in the free state or in the bound state :

CP+CPL=CPt, (2:19a)

and rbeq gives the bound fraction (the unbound fraction rueq is 1xrbeq).

When CL cannot be treated as a constant, it is still constrained by the fact that the total ligand

concentration, either free or in the complex, is fixed :

CL+CPL=CLt: (2:19b)

Using Eqs. (2.19) in Eq. (2.15), we find the solution for CP to be given by

CPxCPx

CP+CP+
=

CP0xCPx

CP0+CP+
exkagt , (2:20)

where

g=[(CPt+CLt+Kd)
2x4CPtCLt]

1=2, (2:21a)

CPt=[t(xCPt+CLt+Kd)+g]=2: (2:21b)

It can be verified that when CPt@CLt, Eq. (2.20) reduces to Eq. (2.16).

At long times, the equilibrium value that the protein concentration settles into is CPx.

Unlike the unimolecular case [Eq. (2.8)], where the equilibrium concentration as a proportion

of the total concentration is an intrinsic property of the molecule, in the bimolecular case the

equilibrium protein concentration as a proportion of the total protein concentration is not

an intrinsic constant ; it depends on the total protein concentration and the total ligand concen-

tration. Similar to Eq. (2.11) for the unimolecular case, we may express the association constant

in terms of the configurational integrals of the protein, the ligand, and their complex. Let the

potential energy functions of the three systems be UP(xP), UL(xL), and UPL(xPL). Then we have

(Zhou & Gilson, 2009)

Ka=
V x1

R
dxPL e

xUPL(xPL)=kBT

V x1
R
dxP exUP(xP)=kBT �V x1

R
dxL exUL(xL)=kBT

: (2:22)

In some reactions, product formation involves more than two reactant molecules. For example,

many enzymatic reactions require the binding of two or more substrates to one enzyme.

Compared to the binding of two molecules to form a binary complex, the chance of three

molecules binding simultaneously to form a ternary complex is negligibly small. Surely the

ternary complex must form in two steps : in the first step, two of the molecules bind to form an

intermediate binary complex ; in the second step, the third molecule binds to the pre-formed

binary complex to yield the ternary complex. It can thus be concluded that all elementary

reactions are either unimolecular or bimolecular.

3. Unimolecular reactions

Intramolecular processes, such as protein folding or dissociation of a protein–ligand complex,

are often modeled as unimolecular reactions. A simple microscopic picture of unimolecular

reactions, shown in Fig. 3a, consists of a one-dimensional energy function with two wells
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separated by an energy barrier. The independent variable of this function is referred to as the

reaction coordinate. As alluded to in section 2, both the energy function and the type of motion

of the reaction coordinate are determinants of the rate constant for the transition from one well

to another. Below we review some of the milestones in the development of rate theories for

unimolecular reactions. We use the one-dimensional model to present the basic ideas of the rate

theories and to introduce different types of motion. Several results for multi-dimensional energy

surfaces and for conformations represented as discrete microstates are also noted. The interested

reader may consult a related review (Hanggi et al. 1990) for further reading in developments

before 1990.

It should be noted that what we refer to as energy functions are actually potentials of mean

force. Biological processes occur in aqueous environments, but in applications of rate theories

solvent degrees of freedom are almost never explicitly modeled. Rather, they are accounted for

through their effects on the energy functions and on the dynamics of the reactant molecules. In

addition, often only a reaction coordinate and perhaps a small number of additional coordinates

closely coupled to it are explicitly modeled, and the remaining degrees of freedom of even the

reactant molecules are implicitly treated as a part of the solvent environment.

Fig. 3. A one-dimensional model for unimolecular reaction. (a) The potential energy function. (b) Results

for the rate constant obtained from computer simulations (filled circles) and predicted by Melnikov and

Meshkov [Eqs. (3.69) and (3.71) ; curve], for the potential energy function U(x)=(x2x1)2, with kBT=1/4

and m=1. The simulation results are from Zhou (1989), by fitting the number correlation function [Eq.

(3.20)] to an exponential function.
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Of historical importance to the present rate theories is the work of Van’t Hoff (1884) and

Arrhenius (1889) regarding the temperature dependence of rate constants. Van’t Hoff’s starting

point was the now well-known equation, bearing his name, for the equilibrium constant :

d lnK

dT
=

DH

kBT
2
, (3:1)

where DH is the change in enthalpy when one reactant molecule is converted to one product

molecule, which in turn is essentially identical to the change in internal energy if the reaction

occurs in a dilution solution under constant pressure (Zhou & Gilson, 2009). Replacing the

equilibrium constant by the ratio of the rate constants [Eq. (2.9)] leads to

d ln k+

dT
x

d ln kx

dT
=

DH

kBT
2
: (3:2)

Van’t Hoff reasoned that both the terms on the left-hand side of the above equation must have

the form

d ln k

dT
=

e

kBT
2
+a: (3:3)

Arrhenius had an important additional insight. He reasoned that the reactant molecules

that successfully convert into product molecules must be in some ‘active ’ form; these active

molecules are in equilibrium with all the other normal reactant molecules. The rate constant is

proportional to the normal-to-active equilibrium constant, and applying Van’t Hoff’s equation

[Eq. (3.1)] to that equilibrium constant leads to

d ln k

dT
=

DE$

kBT
2
: (3:4)

Here DE$ denotes the change in energy between an active molecule and a normal reactant

molecule, i.e., the activation energy. (Mathematically Arrhenius’ result is a specialization of Van’t

Hoff’s result, with a=0 and e=DE$.) Integrating over temperature, we arrive at the more

familiar form of the rate constant :

k=AexDE$=kBT , (3:5)

where the pre-exponential factor A is a constant of the integration. The expressions for rate

constants presented below conform to Eq. (3.5), with the pre-exponential factor affected by the

type of motion of the reaction coordinate.

3.1 Eyring’s transition-state theory

The most influential rate theory is the transition-state theory of Eyring (1935), also worked out

by Evans & Polanyi (1935). It is based on three assumptions :

(i) The motion of molecules obeys Newton’s equation. The potential energy function for our

illustrative model is shown in Fig. 3a.

(ii) As soon as a molecule crosses the energy barrier at x=x$, or transition state, it is considered

to form the product.
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(iii) Molecules in the barrier region are in thermal equilibrium with those in the energy well of the

reactant state.

In the barrier region, the potential energy function is flat ; hence, there the force is zero and

molecules undergo free translation. If dN molecules, all with velocity v>0, are found in the

region with length dl just to the left of x=x$, then within the time interval dt each molecule

moves a distance of vdt to the right and the number of molecules that cross the barrier is

dN.(vdt/dl ). Consequently, the rate constant is

k+=
dN

N
� v
dl

, (3:6)

where N is the number of molecules found in the reactant energy well.

Under thermal equilibrium, dN/N is the same as the ratio of the partition functions in the

barrier region and in the reactant energy well :

dN

N
=

q$

qA
: (3:7)

The partition function in the barrier region is that appropriate for free translation in one

dimension:

q$=hx1dl

Z O

xO
dp exp2=2mkBT exDU $=kBT , (3:8)

where p=mv is the momentum of a molecule along the x-direction, m is the mass, and DU$ is

the activation energy (Fig. 3a). Following convention we have inserted Planck’s constant h to

make the partition function unitless. As indicated by Eq. (3.8), the molecules in the barrier

region have a continuous distribution of velocities ; therefore, the velocity v appearing in Eq.

(3.6) should be replaced by its average :

�vv=

RO
xO dp vh(v)exp2=2mkBTRO

xO dp exp2=2mkBT
=(kBT =2pm)

1=2, (3:9)

where h(v), a Heaviside function with value 1 if v>0 and 0 otherwise, is used to select only

positive velocities. Combining the above results, we find

k+=
kBT

hqA
exDU $=kBT : (3:10)

We now discuss the calculation of qA. If the problem is treated according to classical statistical

mechanics, we have

qA=hx1

Z x$

xO
dx exU (x)=kBT

Z O

xO
dp exp2=2mkBT=hx1(2pmkBT )

1=2

Z x$

xO
dx exU (x)=kBT : (3:11)

Equation (3.10) becomes

k+=
(kBT =2pm)

1=2R x$

xO dx exU (x)=kBT
exDU $=kBT : (3:12a)

Rate theories for biologists 231



Note that Planck’s constant drops out of the final result for k+, as to be expected from a

classical treatment. For later use, we rewrite it in the form

k+=
hd(xxx$)h(v)i

rAeq

, (3:12b)

where n���m denotes an average with the canonical-ensemble equilibrium probability density

req(x, v)=
ex[mv2=2+U (x)]=kBTRO

xO

RO
xO dx dv ex[mv2=2+U (x)]=kBT

, (3:13)

d(x) is a delta function, and

rAeq=hh(xxx$)i=
RO
xO dx h(xxx$)exU (x)=kBTRO

xO dx exU (x)=kBT
=

R x$

xO dx exU (x)=kBTRO
xO dx exU (x)=kBT

(3:14)

is the equilibrium occupation probability in state A. The corresponding result for kx is ob-

tained by replacing rAeq with rBeq in Eq. (3.12b). It can then be easily seen that the ratio k+/

kx is the same as the equilibrium constant rBeq/rAeq, as demanded by Eq. (2.9). We may

further make a harmonic approximation of the potential energy function around the minimum

xA of the reactant well :

U (x) � 1
2
mfA(xxxA)

2: (3:15)

Using this approximation and evaluating the configurational integral in Eq. (3.12a), the rate

constant is now given by

k+=
vA

2p
exDU $=kBT , (3:16)

where vA=fA
1/2 is the angular frequency of the harmonic oscillation around x=xA.

With the harmonic approximation of the potential energy function, a quantum treatment

for calculating qA is possible. Essentially qA is the partition function of a harmonic oscillator,

given by

qA=(1xex�hvA=kBT )x1ex�hvA=2kBT , (3:17)

where �h=h/2p. Equation (3.10) is now

k+=
kBT

h
(1xex�hvA=kBT )e�hvA=2kBT exDU $=kBT : (3:18)

This result was first derived by Herzfeld (1919) for the dissociation of a diatomic molecule. In

the high-temperature limit, qApkBT/�hvA, and we recover the classical result of Eq. (3.16). This

is to be expected, since quantum statistical mechanics approaches the classical limit at high

temperatures.

Below we further comment on the approximation of the transition-state theory and a com-

mon misunderstanding of the theory.

3.1.1 Approximation of the transition-state theory

The nature of the approximation of the transition-state theory can be elucidated in the context

of a more exact microscopic formulation of the rate constant. Equation (2.8a), the solution of the
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rate equation, states that the relaxation of rA, the occupation probability in the reactant state,

toward its equilibrium value is an exponential, with the relaxation time trxn=(k++kx)x1.

Microscopically rA is the average of a variable that has value 1 if the molecule occupies the

reactant well and 0 otherwise :

rA(t )=hh(x$xx(t ))i: (3:19)

Now Onsager’s regression hypothesis states that the regression of microscopic thermal

fluctuations at equilibrium follows the macroscopic law of relaxation of small non-equilibrium

disturbances (Onsager, 1931). Accordingly,

c(t )

c(0)
=

rA(t )xrAeq

rA(0)xrAeq

, (3:20)

where

c(t )=h[h(x$xx(0))xrAeq][x
$xh(x(t ))xrAeq]i (3:21)

is the correlation function of the instantaneous fluctuation h(x$xx(t))xrAeq, and is referred to

as the number correlation function. Noting that h2(x)=h(x) and 1xrAeq=rBeq, it can be easily

shown that c(0)=rAeqrBeq. Now Eq. (2.8a) becomes

c(t )

c(0)
=

c(t )

rAeqrBeq

=ex(k++kx)t : (3:22)

To make connection with the transition-state theory, we take the time derivative of Eq. (3.22) :

_cc(t )

rAeqrBeq

=x(k++kx)e
xt=trxn , (3:23)

where a dot represents a derivative. The time derivative of the number correlation function is

given by

x _cc(t )=hd(x(0)xx$)v(0)h(x$xx(t ))i, (3:24)

which can be interpreted as the reactive flux, i.e., the flux across the dividing surface given that

the reactant molecule starts there and is found in the product well time t later (Chandler, 1978).

As discussed in section 2, a rate description is valid only when there is a significant separation

in timescales between intra-state equilibration (teq) and inter-state transitions (trxn). In that case,

the number correlation function is exponential at times longer than teq. Because of the separ-

ation in timescales, there exist intermediate times, denoted as Dt, such that teq@Dt@trxn. At

these intermediate times, exp(xDt/trxn) is very close to 1 ; therefore Eq. (3.23) becomes

(Chandler, 1978 ; Yamamoto, 1960)

k++kx=
hd(x(0)xx$)v(0)h(x(Dt )xx$)i

rAeqrBeq

: (3:25a)

Correspondingly,

k+=
hd(x(0)xx$)v(0)h(x(Dt )xx$)i

rAeq

: (3:25b)
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The transition-state theory amounts to setting Dt in the last equation to 0+, which denotes a time

that is greater than 0 by an infinitesimal amount :

k+TST=
hd(x(0)xx$)v(0)h(x(0+)xx$)i

rAeq

: (3:26)

The equivalence of Eqs. (3.26) and (3.12b) is seen when one realizes that x(0+)>x$ if and only

if v(0)>0. A related approach for formulating the rate constant is presented in subsection 3.2.

To recapitulate, the transition-state theory predicts the rate constant from the initial reactive

flux, when the exponential relaxation of the number correlation function has not been estab-

lished. The correct formulation is to use the reactive flux at the intermediate times Dt. Since the

number correlation function decays with time, it can be expected that the transition-state theory

always overestimates the rate constant. Although Eyring recognized the overestimation and

introduced a transmission coefficient, it was not possible to calculate the transmission coefficient

within the transition-state theory itself. That the transition-state theory provides an upper bound

for the rate constant is the basis of variational transition-state theory, which seeks a dividing

surface that minimizes the rate constant calculated by the transition-state theory (Keck, 1960 ;

Wigner, 1937).

We end this subsubsection with some results that are related to the preceding formulation and

will become useful below. When the motion of the reaction coordinate is governed by the

Langevin equation, Onsager’s regression hypothesis [Eq. (3.20)] has been proven explicitly

(Zhou, 1989). It is assumed the initial probability density is an equilibrium distribution confined

to the reactant state. Then

rA(t )=

RR
dx dv

RR
dx0 dv0 h(x

$xx)rN(x, v, t jx0, v0)h(x
$xx0)e

x[mv20=2+U (x0)]=kBTRR
dx0 dv0 h(x$xx0)e

x[mv20=2+U (x0)]=kBT
(3:27a)

=
RR

dx dx0 h(x
$xx)rN(x, t jx0)h(x

$xx0)e
xU (x0)=kBTR

dx0 h(x$xx0)exU (x0)=kBT
, (3:27b)

where rN(x,v,t|x0,v0) is the conditional probability density for finding the molecule at x with

velocity v at time t given that it was at x0 with velocity v0 at t=0 ; rN(x,t|x0) is the reduced

conditional probability density in x for an equilibrium distribution in v0. The subscript ‘N’ has

a special meaning : it signifies that the probability density satisfies natural boundary conditions,

i.e., the decay to zero at x=¡O because of the infinite potential energies there. These boundary

conditions are to be distinguished from, e.g., absorbing boundary conditions that are introduced

below for various purposes. By design rA(0)=1. Instead of finding k++kx from the time

derivative of the number correlation function, its inverse, i.e., the relaxation time, is given by the

time integral [see Eq. (3.22)] (Skinner & Wolynes, 1978) :

trxn=(k++kx)
x1=[c(0)]x1

Z O

0
dt c(t ): (3:28)

Now expressing c(t) in terms of rA(t) [Eq. (3.20)], we find

(k++kx)
x1=rx1

Beq

Z O

0
dt [rA(t )xrAeq]: (3:29)
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Correspondingly (Zhou, 2005a),

1

k+
=rx2

Beq

Z O

0
dt [rA(t )xrAeq],

=rx2
Beq

Z O

0
dt

RR
dx dx0 h(x

$xx)rN(x, t jx0)h(x
$xx0)e

xU (x0)=kBTR
dx0 h(x$xx0)exU (x0)=kBT

xrAeq

� �
:

(3:30)

3.1.2 Multi-dimensional transition-state theory and a common misunderstanding

Although we have so far presented the transition-state theory for a one-dimensional potential

energy surface, the theory was originally derived for molecules described by a multi-dimensional

energy function, to be denoted as U(x). It is assumed that a suitable reaction coordinate, x, is

found; a surface, x=x$, is appropriate as a dividing surface between the reactant and the

product states, and x, at least around the minimum of U(x) on the dividing surface, is un-

coupled to the remaining degrees of freedom. Now the whole dividing surface x=x$ is the

transition state. Let the partition function in the reactant well, with its minimum chosen as the

reference of potential energy, still be denoted as qA and the partition function for all coordinates

other than x, with x fixed at x$ and the minimum of U(x) on the dividing surface chosen as the

reference of potential energy, be denoted as qk$. Then Eq. (3.10) for the rate constant is

generalized to

k+=
kBT

h

qk$

qA
exDU $=kBT , (3:31)

where the activation energy DU$ is the difference between the minima of U(x) on the dividing

surface and in the reactant well. The prime in the partition function qk$ is very important ; again,

it signifies that the reaction coordinate is left out of the calculation of this partition. In the

one-dimensional model discussed above, there are no coordinates other than the reaction

coordinate, and qk$ would be 1.

Often qk$ is mistakenly thought as the partition function of the transition state. Following

this mistaken notion, one would be misled to think that (qk$=qA)exDU $=kBT defines the free-

energy difference, to be denoted as DG$, between the transition state and the reactant state :

qk$

qA
exDU $=kBT=exDG $=kBT ,

which in turn transforms Eq. (3.31) into

k+=
kBT

h
exDG $=kBT :

While mathematically the last expression cannot be faulted, it nevertheless results in the mis-

leading interpretation that DG$ is the activation energy and kBT/h is the pre-exponential factor.

The presence of Planck’s constant in such a pre-exponential factor would suggest that quantum

effects persist at all temperatures. In reality, qA involves one additional coordinate than qk$ ;
at high temperatures this additional coordinate would contribute a factor that cancels the h in

kBT/h, as illustrated above on the one-dimensional model.
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We again stress that in calculating qk$ the reaction coordinate is left out, and qk$ is not

the partition function of the transition state. In fact, for the one-dimensional model, we have

defined a partition function of the transition state [Eq. (3.8)], with the reaction coordinate not

fixed at a single value (as would be required in calculating qk$) but extending over a range dl.

A rigorous implementation of the multi-dimensional transition-state theory will be illustrated

below in subsection 3.3.

3.2 Kramers’ turnover problem

In a sense, assumptions (i) and (iii) that lead to the transition-state theory are contradictory

to each other. If the motion of molecules, each with a single degree of freedom along the

reaction coordinate, is governed by Newton’s equation, then the energy of each molecule

would be conserved. Low-energy molecules would stay in the reactant well, and higher-

energy molecules would stay in the barrier region ; these two types of molecules would not

be able to mix and equilibrate. In reality, the reaction coordinate is coupled to other degrees

of freedom of a reactant molecule and to solvent molecules, which effectively serve as a

thermal bath that allows for energy dissipation and thermal equilibration. In Kramers’ theory

(Kramers, 1940), the motion along the reaction coordinate is governed by the Langevin

equation:

m _vv=x
dU (x)

dx
xmcv+R, (3:32)

which augments Newton’s equation by two additional forces : a frictional force, xmcv,

which serves to dissipate the energy of the molecule, ; and a random force, R, which serves

to agitate the molecule, leading to thermal equilibration. The random force has a Gaussian

distribution, with zero mean and correlation given by

hR(0)R(t )i=2kBTmcd(t ), (3:33)

which is a form of the fluctuation–dissipation theorem.

Because of the random force, the trajectory of the molecule is not deterministic but stochastic.

Complementary to stochastic trajectory, we may describe the microscopic behavior of the

molecule by the probability density, r(x,v,t), in position and velocity as a function of time. This

probability density satisfies the Fokker–Planck equation

@r(x, v, t )

@t
=

@

@x
[xvr(x, v, t )]+

@

@v

1

m

dU (x)

dx
+cv+

ckBT

m

@

@v

� �
r(x, v, t ): (3:34)

It can be checked that the canonical-ensemble equilibrium distribution given by Eq. (3.13) is a

stationary solution of the Fokker–Planck equation.

Let us first discuss the limits of high and low frictions. When cpO, the change in x is slow

and the relaxation in v is fast. Then the inertial term on the left-hand side of the Langevin

equation can be neglected, leading to

mc _xx=x
dU (x)

dx
+R, (3:35)

which is the governing equation for Brownian (or diffusive) motion of x.
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Correspondingly, the probability density in x, r(x,t), satisfies the Smoluchowski equation

@r(x, t )

@t
=

@

@x
D

1

kBT

dU (x)

dx
+

@

@x

� �
r(x, t )=

@

@x
DexU (x)=kBT

@

@x
eU (x)=kBT r(x, t ), (3:36)

where D=kBT/mc is the positional diffusion constant. The equilibrium distribution is

req(x)=
exU (x)=kBTRO

xO dx exU (x)=kBT
: (3:37)

In the high-friction limit, positional diffusion from the reactant well to the product well becomes

rate limiting. It can thus be expected that in this limit k+/D/ 1/c.

In the low-friction limit, the total energy, E=mv2/2+U(x), is nearly conserved, and the

motion of the molecule can be described as diffusion among different energy levels. The prob-

ability density in E, r(E,t), satisfies the equation (Zwanzig, 2001)

@r(E, t )

@t
=

@

@E
kBT cI (E)

1

kBT
+

@

@E

� �
(2p)x1v(E)r(E, t ), (3:38)

where

I (E)=
I

dx [2m(ExU (x))]1=2 (3:39a)

is the action for the periodic orbit with total energy E and

v(E)=2pm

I
dx [2m(ExU (x))]x1=2=2p[dI (E)=dE]x1 (3:39b)

is the angular frequency of the orbit. Note that I(E ) is also the area inside the orbit in phase

(i.e., x and p) space, and dI(E )/dE=2p/v(E ) is the density of states. Here the equilibrium

distribution req(E )/ [2p/v(E )]exp(xE/kBT ). Comparing Eqs. (3.38) and (3.36), it can be

seen that the energy diffusion constant, DE, is proportional to c. Therefore, in the low-friction

limit one expects k+/DE/ c.

Putting the results in the two limits together, one sees that the rate constant increases with

increasing c when c is small and decreases with increasing c when c is large (Fig. 3b). It can thus

be expected that the value of k+ reaches a maximum at an intermediate c and decreases to zero

when c approaches either zero or infinity. This dependence of the rate constant on friction is

known as Kramers’ turnover.

Kramers derived expressions for the rate constant for different ranges of the friction

coefficient. His approach can be explained from the perspective of a hypothetical bulk

experiment (Farkas, 1927 ; Zhou, 2005a). In this experiment, molecules are prepared at the

reactant state with a concentration C. Whenever a transition is made to the product state,

the molecule is immediately removed, as if there is an absorbing trap, and the reactant pool

is replenished so that the reactant concentration is always maintained at C. After a brief

transient period (lasting yteq), a steady state will set in. The steady-state flux will be [see

Eq. (2.2)]

J=kC : (3:40a)
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Rearranging, we find

k=
J

C
: (3:40b)

The rate constant is thus given by the ratio of the steady-state flux and the reactant popu-

lation. Note that the reactive-flux formulation, Eq. (3.25b), of the rate constant can be

viewed as a special case of the flux-over-population formulation. As observed already, the

transition-state theory [Eq. (3.26)] makes the approximation of replacing the ‘steady-state ’

reactive flux by its initial value.

To implement the flux-over-population formulation, one would find a steady-state probability

density that maintains the equilibrium distribution in the reactant well and satisfies the absorbing

boundary condition in the product well. The implementation is straightforward in the high-

friction regime, where the motion of the molecule is modeled as positional diffusion. A steady-

state probability density corresponds to a constant flux :

J=xD
1

kBT

dU (x)

dx
+

@

@x

� �
rss(x)=xDexU (x)=kBT

@

@x
eU (x)=kBT rss(x): (3:41)

The appropriate boundary conditions are

rss(xA)=req(xA), (3:42a)

rss(xB)=0: (3:42b)

Solving Eq. (3.41) for rss(x) subject to the condition of Eq. (3.42a), we find

rss(x)e
U (x)=kBT=req(xA)e

U (xA)=kBTxJ

Z x

xA

dx Dx1eU (x)=kBT : (3:43a)

Using Eq. (3.42b), we find the flux

J=
req(xA)e

U (xA)=kBTR xB

xA
dx Dx1eU (x)=kBT

: (3:43b)

Now with the condition in Eq. (3.42a), the population in the reactant well is

Z x$

xO
dx rss(x) �

Z x$

xO
dx req(x)=rA:

The rate constant is finally

k+=
J

rA

=
req(xA)e

U (xA)=kBTR xB

xA
dx Dx1eU (x)=kBT

R x$

xO dx req(x)
=

1R xB

xA
dx Dx1eU (x)=kBT

R x$

xO dx exU (x)=kBT
:

(3:44)

Making the harmonic approximation of Eq. (3.15) for the potential around xA and a similar

approximation

U (x) � DU $x
1

2
mf $(xxx$)2 (3:45)
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for the potential around the top of the barrier, we find

k+=
vAv

$

2pc
exDU $=kBT , (3:46)

where v$=(f $)1/2. Equation (3.44) is still valid when D is a position-dependent diffusion

coefficient, i.e., D(x). The first integral in the denominator is then dominated by the region

around the maximum of an effective potential, U(x)xkBTlnD(x). The location of the maximum,

which was referred to as the kinetic transition state (Chahine et al. 2007), and the effective

activation energy can be quite different from those of the original potential.

As shown below in subsubsection 3.6.2, the ratio rss(x)/req(x) is the splitting probability,

denoted as fA(x), which is the probability that a molecule, started at x, will first reach the reactant

well bottom instead of the product well bottom. When x is in the reactant well, fA(x) is very

close to 1. Around x=x$, fA(x) undergoes a rapid transition, toy1/2 at x=x$, and to 0 a small

distance thereafter.

By a similar procedure, we find the rate constant in the low-friction limit :

k+=
1R DU $

0 dE [kBT cI (E)]x1eE=kBT �
R DU $

0 dE [2p=v(E)]exE=kBT
(3:47a)

� 1

(kBT cI
$
A)

x1kBT eDU
$=kBT � (2p=vA)kBT

=
cI $A
kBT
� vA

2p
exDU $=kBT , (3:47b)

where

I
$
A=2

Z x$

xtA

dx [2m(DU $xU (x))]1=2 , (3:48)

with xtA being the left-hand-side turning point, i.e., the solution of U(x)=DU$ to the left of

x=xA. A comment on the upper limit of the second integral in Eq. (3.47a) is in order. Orbits

with energies higher than DU$ will traverse both the reactant and the product wells. Setting the

upper limit of the integration toDU$ amounts to assuming that all molecules moving along those

orbits would be trapped in the product well. However, it should be recalled that, in the flux-over-

population formulation, the absorbing boundary is set around x=xB, i.e., inside the product

well. For molecules with E>DU$, this absorbing boundary traps only those moving to the left

(i.e., v<0) but not those moving to the right (i.e., v>0). This ‘ split ’ boundary condition is treated

properly later by Melnikov & Meshkov (1986) ; see subsection 3.4.

For moderate to high frictions, we again seek a steady-state probability density rss(x,v), which

takes the equilibrium distribution around the bottom of the reactant well and becomes zero at

the bottom of the product well.1 The flux from the reactant well to the product well is

J=
Z O

xO
dv vrss(x

$, v): (3:49)

1 Rigorously, the absorbing boundary condition of rss(x,v) at the bottom of the product well is given

by rss(xB,v)=0 for v<0 only, not for all v. Specifying the absorbing boundary condition as rss(xB,v)=0 for

all v may be suggested to be a reason for why the validity of the resulting expression for the rate constant is

limited to moderate-to-high frictions. Below we continue to neglect the restriction on v when stating the

absorbing condition, keeping in mind that the validity of doing so is limited to moderate to high frictions.
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We write rss(x,v) as

rss(x, v)=f(x, v)req(x, v): (3:50)

The splitting probability fA(x,v)=f(x,–v) (the appearance of the negative sign will be explained

in subsubsection 3.6.2). f(x,v) satisfies the equation

xv
@f(x, v)

@x
+

1

m

dU (x)

dx

@f(x, v)

@v
xcv

@f(x, v)

@v
+

ckBT

m

@2f(x, v)

@v2
=0 (3:51a)

with the boundary conditions

f(xA, v)=1; f(xB, v)=0:

We now solve for f(x,v) around x=x$. Applying the harmonic approximation of Eq. (3.45),

Eq. (3.51a) becomes

xv
@f(x, v)

@x
x(v$)2(xxx$)

@f(x, v)

@v
xcv

@f(x, v)

@v
+

ckBT

m

@2f(x, v)

@v2
=0: (3:51b)

The trick is to seek a set of parallel lines in phase space, over each of which f(x,v) is a constant ;

the value of this constant changes as the line moves from the reactant well to the product

well. Let each line be represented by the equation l(xxx$)xv=u, where u dictates the location

of the line. The desired condition is satisfied by choosing

l=c=2+[(c=2)2+v$2]1=2: (3:52)

Correspondingly, the solution of Eq. (3.51b) is

f(x, v)=A0+A1

Z O

l(xxx$)xv

du ex(lxc)mu2=2ckBT , (3:53)

which has a transition in value around u=0, i.e., the line that goes through the point (x, v)=
(x$, 0). If this transition is essentially complete within the range where the harmonic ap-

proximation of the potential around x=x$ holds, then the boundary conditions are satisfied

by setting

A0=0; A1=[(lxc)m=2pckBT ]
1=2:

The rate constant can finally be calculated as

k+=
J

rA

=

RO
xO dv vf(x$, v)req(x

$, v)R x$

xO dx
RO
xO dv req(x, v)

=
[kBT (1xc=l)=2pm]1=2R x$

xO dx exU (x)=kBT
exDU $=kBT

� [kBT (1xc=l)=2pm]1=2

[2pkBT =mfA]
1=2

exDU $=kBT

=
[(c=2)2+v$2]1=2xc=2

v$
� vA

2p
exDU $=kBT :

(3:54)
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It can be easily checked that Eq. (3.54) reduces to the high-friction limit given by Eq. (3.46)

when cpO. However, when cp0, Eq. (3.54) does not reduce to the low-friction limit

given by Eq. (3.47b). Instead, in this limit it reduces to the transition-state theory result

given by Eq. (3.16). The validity of Eq. (3.54) requires that the transition of fA(x,v) occurs in

a range where the harmonic approximation of the potential around x=x$ holds. As noted

by Melnikov & Meshkov (1986), this range is proportional to cx1/2, which extends to infinity

as cp0. That explains why Eq. (3.54) is only valid for moderate to high frictions (see also

footnote 1).

In summary, Kramers has shown that the rate constant is proportional to c when c is low

and proportional to cx1 when c is high. The rate constant exhibits a maximum at an intermediate

friction. However, Kramers did not find an expression for the rate constant that works for the full

range of friction.

3.3 Friction with memory : Grote–Hynes theory

The Langevin equation (3.32) is a special case of a more general class of equation of motion

m _vv=x
dU (x)

dx
xm

Z t

0
dt1 j(txt1)v(t1)+R , (3:55)

known as the generalized Langevin equation. The friction coefficient here has the form of a

memory kernel. Correspondingly, the correlation function of the Gaussian random force is

hR(0)R(t )i=kBTmj(t ): (3:56)

Grote & Hynes (1980) used the generalized Langevin equation to model the motion along

the reaction coordinate and derived the counterpart to Kramers’ result [Eq. (3.54)] for the rate

constant at moderate to high frictions.

The Grote–Hynes theory is based on a formulation of the rate constant derived from the

so-called stable states picture (Northrup & Hynes, 1980). As explained in the preceding sub-

section, the steady-state probability density appropriate for calculating the rate constant is nearly

identical to the equilibrium distribution in the reactant well but deviates significantly from it

in the barrier region. Northrup & Hynes (1980) thus introduced an intermediate state, I, in

addition to the ‘stable ’ states A and B. The dividing line between A and I is located at a position

where the steady-state probability density starts to deviate from the equilibrium distribution ;

a similar dividing line can be defined between B and I. These two positions will be denoted as

xAxI and xIxB, respectively. The rate constant is given by

k+=
Z O

0
dthJApI(0)JIpB(t )iA, (3:57a)

where the first flux is across the A–I dividing line at time 0 and the second flux is across the I–B

dividing line at time t. The initial probability density is an equilibrium distribution in A; an

absorbing boundary is set in B. Equation (3.57a) is closely related to the reactive-flux formulation

[Eq. (3.25b)] of the rate constant.

Similar to Kramers, Grote and Hynes assumed that the harmonic approximation of Eq. (3.45)

applies to the entire region of I. They then extended this downward parabola indefinitely beyond

x=xA-I and x=xI-B. Let the conditional probability density in this extended parabola be
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rN(x,v,t|x0,v0). Note that rN(x,v,t|x0,v0) naturally satisfies the desired absorbing boundary con-

dition. The rate constant can now be expressed as

k+=
Z O

0
dt

Z O

xO
dv0

Z O

xO
dv v0req(xA�I, v0) � vrN(xI�B, v, t jxA�I, v0): (3:57b)

The conditional probability density in a parabolic potential is Gaussian. Evaluating all the

integrals involved, the final result is

k+=
vGH

v$
� vA

2p
exDU $=kBT , (3:57c)

where the Grote–Hynes ‘ reactive ’ frequency vGH is the positive root of the equation

v2
GH+vGHĵj(vGH)x(v$)2=0, (3:58)

with ĵj(s) denoting the Laplace transform of the memory kernel. For the memory-free friction,

j(t)=2cd(t), Eq. (3.58) gives vGH=[(c=2)2+v$2]1=2xc=2, and one recovers Kramers’ result,

Eq. (3.54).

As alluded to in the preceding subsection, friction arises from coupling of the reaction coor-

dinate to other degrees of freedom of the reactant molecule and to solvent molecules, serving as

a thermal bath. A simple model for a thermal bath consists of a set of n harmonic oscillators, with

the potential energy (Zwanzig, 2001)

Ubath(y)=
Xn
i=1

1

2
v2

i yix
ci

v2
i

x

� �2

: (3:59)

The whole system, reaction coordinate plus thermal bath, satisfies Newton’s equation. By

eliminating the bath coordinates, yj, one arrives at the generalized Langevin equation (3.55). The

memory kernel is given by

j(t )=
Xn
i=1

c2
i

mv2
i

cos vi t (3:60)

and the ‘ random’ force is given by

R(t )=
Xn
i=1

ci

vi

vi0 sin vi t+
Xn
i=1

ci yi0x
ci

v2
i

x0

� �
cos vi t , (3:61)

where x0 is the initial value of x, yi0 are the initial values of the bath coordinates, and vi0 are the

corresponding initial velocities. Equation (3.60) shows that memory kernels, such as that of an

exponential form, typically used to model unimolecular reactions correspond to an infinite set of

bath oscillators that spans a continuous spectrum of frequencies. For later reference, we note

that the Laplace transform of the memory kernel in Eq. (3.60) is given by

ĵj(s)=
Xn
i=1

c2
i s

mv2
i (v

2
i+s2)

: (3:62)

With a small set (ny30) of oscillators, computer simulations (Zhou & Zwanzig, 2002) show

that the Grote–Hynes theory provides a reasonable estimate for the rate constant at moderate
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frictions. However, at high frictions, the number correlation function becomes non-exponential,

and the decay is much slower than that expected from the Grote–Hynes theory.

Interestingly, Pollak (1986) found that, when the multi-dimensional transition-state

theory [Eq. (3.31)] is applied to the whole system of reaction coordinate plus thermal bath, the

Grote–Hynes result, Eq. (3.57c), is derived. We outline this derivation here, mainly to illustrate

the use of the multi-dimensional transition-state theory. The implementation of Eq. (3.31) entails

evaluating two partition functions, qA and qk$. To evaluate qA, we again use the harmonic

approximation of Eq. (3.15). Then the system is equivalent to a set of n+1 harmonic oscillators.

The eigenvalues, lAi, i=0 to n, of the [mass-scaled ; cf. Eq. (3.81)] force-constant matrix,

fA, give the angular frequencies as lAi
1/2. In the classical limit, each oscillator contributes a factor

kBT/�hAi
1/2 to the partition function. Therefore,

qA=
Yn
i=0

kBT

�hl1=2
Ai

=(kBT =�h)
n+1

Yn
i=0

lAi

 !x1=2

=(kBT =�h)
n+1 det fAð Þx1=2

=(kBT =�h)
n+1 v2

A

Yn
i=1

v2
i

 !x1=2

=(kBT =�h)
n+1 vA

Yn
i=1

vi

 !x1

,

(3:63)

where det denotes determinant. To calculate qk$, we apply the harmonic approximation of

Eq. (3.45) and carry out a similar normal mode analysis around the saddle point of the multi-

dimensional energy function U(x)+Ubath(y). The force-constant matrix f$ in the barrier region

has one negative eigenvalue, xl0
$, and n positive eigenvalues, li

$, i=1 to n. The value of l0
$ is

determined by

det (l$0I+f$)=0, (3:64)

where I denotes the identity matrix. The last equation is satisfied when

l$0+l$0
Xn
i=1

c2
i

mv2
i (v

2
i+l$0 )

xv$2=l$0+l$1=20 ĵj(l$1=20 )xv$2=0: (3:65)

Comparison with Eq. (3.58) shows that l$1=20 =vGH. We define the mode corresponding to the

negative eigenvalue as the modified reaction coordinate. This mode, with coordinate denoted as

xk, does not coincide with the original reaction coordinate x and instead is a linear combination

of x and the bath coordinates. For later use we denote the value of xk at the saddle point as xk$.
With xk as the new reaction coordinate, we have

qk$=
Yn
i=1

kBT

�hl$i 1=2
=(kBT =�h)

n
Yn
i=1

l$i

 !x1=2

=(kBT =�h)
n xl$x1

0 det f $
� �x1=2

=(kBT =�h)
n l$x1

0 v$2
Yn
i=1

v2
i

 !x1=2

=(kBT =�h)
nvGH v$

Yn
i=1

vi

 !x1

:

(3:66)

Inserting Eqs. (3.63) and (3.66) into Eq. (3.31), we indeed arrive at the Grote–Hynes result, Eq.

(3.57c). Note that this rate constant can be written in the form

k+=
vGH

2p

det fA

x det f$

� �1=2
exDU $=kBT : (3:67)
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The above derivation amounts to choosing xk=xk$ as the dividing surface of the multi-dimen-

sional system of reaction coordinate plus thermal bath. Had we chosen x=x$, based on the

original reaction coordinate, as the dividing surface, we would have derived the standard tran-

sition-state theory result, Eq. (3.16). Pollak’s use of a dividing surface based on the modified

reaction coordinate can thus be seen as a form of variational transition-state theory.

Berezhkovskii et al. (1992) have, in fact, carried out variational transition-state theory calculations

using a planar dividing surface. They found that, when the harmonic approximation of Eq. (3.45)

is invoked for the potential function, the optimized planar dividing surface is xk=xk$. However,

when anharmonicity is accounted for, the optimized planar dividing surface differs from xk=xk$

in direction and no longer goes through the saddle point if U(x) is asymmetric with respect

to x=x$.

3.4 Solution to the turnover problem

As noted in subsection 3.2, a proper calculation of the rate constant at low frictions should

account for a split boundary condition arising from the absorbing boundary around the bottom

of the product well, which traps molecules moving to the left but not those moving to the right.

Melnikov & Meshkov (1986) dealt with this split boundary condition by the Wiener–Hopf

method. When the rate constant is written in the form

k+=K k+TST, (3:68)

where k+TST is given by Eq. (3.16), their result for the transmission coefficient is

K= z(cI $A=kBT )z(cI
$
B=kBT )

z[c(I $A+I
$
B )=kBT ]

: (3:69)

In the last expression IA
$ is given by Eq. (3.48), IB

$ is the counterpart for the product well, and the

function z(x) is given by

z(x)=e
(2=p)
R p=2

0
da ln [1xexx=4 cos2 a]

, (3:70)

which goes to x when xp0 and to 1 when xpO.

In the low-friction limit, Eq. (3.69) gives K=cIA
$IB

$/(IA
$+IB

$)kBT. This differs from the cor-

responding result of Kramers, cIA
$/kBT [see Eq. (3.47b)] by a factor IB

$/(IA
$+IB

$), which arises

from accounting for the fact that the orbit with total energy DU $ traverses both the reactant and

the product wells. In the high-friction limit, Eq. (3.69) predicts K=1, i.e., the transition-state

theory result. The validity of Eq. (3.69) is thus restricted to low to moderate frictions. Melnikov

and Meshkov recognized that, when the transmission coefficient of Eq. (3.69) is multiplied to

Eq. (3.54), which is Kramers’ result for the rate constant at moderate to high frictions, the

resulting expression

k+=K 1+ c=2v$
� �2h i1=2

xc=2v$

	 

� vA

2p
exDU $=kBT (3:71)

is numerically accurate for both the low to moderate and the moderate to high ranges of friction.

This expression can thus be used for the full range of friction. Computer simulations have shown

that Eq. (3.71) is indeed highly accurate for all frictions (Zhou, 1989) (see Fig. 3b).
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Pollak et al. (1989) subsequently developed an improved solution to the turnover problem.

Following the work of Pollak (1986) outlined above, they modeled the thermal bath as a set of

harmonic oscillators. The rate constant at low frictions was derived by studying the sampling

of energy levels associated with the modified reaction coordinate xk, not those associated

with x as done by Kramers and by Melnikov and Meshkov. When the friction is taken to the high

range, this rate constant becomes identical to the result of Pollak (1986), which was specifically

derived for that range of friction. Therefore, the theory of Pollak et al. works for the full range

of a friction with memory. Its predictions are found to agree well with results from computer

simulations of Straub et al. (1986).

3.5 Multi-dimensional potential energy functions

A description restricted to a single reaction coordinate has limitations. Often it makes sense to

explicitly consider other closely coupled coordinates. Below we present two perspectives on how

to deal with motions on multi-dimensional energy surfaces in modeling rate processes.

3.5.1 Langer’s generalization of Kramers’ result and further developments

Following Kramers’ work on a one-dimensional system, Langer (1969) studied the rate of escape

from a multi-dimensional energy well through a saddle point. Consider first the case where

motions along the coordinates, xi, collectively denoted as x, are diffusive. Then the probability

density r(x, t) satisfies the multi-dimensional Smoluchowski equation

@r(x, t )

@t
=
X
ij

@

@xi
Dij

1

kBT

@U (x)

@xj
+

@

@xj

� �
r(x, t )

=rx �D � req(x)rx[r(x, t )=req(x)],

(3:72)

where req(x)/ exp[xU(x)/kBT], and the diffusion matrix D is assumed to be position inde-

pendent. [It should be noted that, for a polyatomic reactant molecule, the diffusion matrix can be

very different in different parts of the conformational space (see, e.g., McCammon & Harvey,

1987). This positional dependence of D can significantly affect the reaction paths and rate

constant, as already emphasized for diffusion along a one-dimensional reaction coordinate

(subsection 3.2). In higher dimensions, the minimum-resistance path from the reactant well to

the product well has been calculated for a position-dependent diffusion matrix by a variational

approach (Berkowitz et al. 1983).] Around the bottom of the reactant well, located at x=xA,

a harmonic approximation is made :

U (x) � 1

2

X
i , j

eAij (xixxAi )(xjxxAj ): (3:73a)

All the eigenvalues of the force-constant matrix eA are assumed to be positive. Around the saddle

point x=x$, another harmonic approximation is made :

U (x) � DU $+
1

2

X
i , j

e
$
ij (xixx

$
i )(xjxx

$
j ): (3:73b)

One of the eigenvalues of the force-constant matrix e$ is assumed to be negative and all others

are positive.
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Adopting Kramers’ trick, Langer sought for a set of parallel planes near the saddle point,

over each of which the splitting probability fA(x)=rss(x)/req(x) is a constant. This condition is

satisfied when the normal of the planes is the eigenvector, s, corresponding to the negative

eigenvalue, xv+
$ , of the matrix (kBT )x1e$.D. This negative eigenvalue is determined by

det [v$
+I+(kBT )x1e$ �D]=0 (3:74)

and the parallel planes are specified by the equation

s � (xxx$)=u: (3:75)

The splitting probability around the saddle point is given by

fA(x)=(2p)x1=2

Z O

s�(xxx$)

du exu2=2, (3:76)

where the magnitude of s is chosen so that

s �D � s=v$
+: (3:77)

According to Eq. (3.76), the splitting probability has value 1/2 on the plane s.(xxx$)=0. This

plane, which goes through the saddle point, is thus the stochastic separatrix (see subsubsection

3.6.2 below). Note that, when the diffusion matrix is highly anisotropic, the eigenvector s, which

is normal to the stochastic separatrix, may be very different from the eigenvector of the force-

constant matrix e$ corresponding to its negative eigenvalue.

Finally, the flux-over-population formulation gives the rate constant as

k+=

R
dx d s � xxx$

� �� �
s �D � req(x)rxfA(x)R

A
dx req(x)

=
v$
+

2p

det eA

x det e$

� �1=2
exDU $=kBT ,

(3:78)

which has the same structure as Eq. (3.67). Specializing to a one-dimensional model, we recover

Kramers’ result [Eq. (3.46)] for high frictions. Interestingly, Berezhkovskii & Szabo (2005)

showed that, if a one-dimensional reaction coordinate, x, is chosen along the eigenvector s in the

multi-dimensional space, then Langer’s result is identical to Kramers’ one-dimensional result if

the one-dimensional potential is calculated as the potential of mean force in x and the diffusion

constant along x is chosen as s�D�s.
Now consider the case where motions along the coordinates are governed by the Langevin

equation, which here takes the form

mi _vvi=x
@U (x)

@xi
x
X
j

(mimj )
1=2cij vj+Ri , (3:79)

where mi are the masses corresponding to coordinates xi. Let the total number of coordinates

be n. (For a polyatomic reactant molecule, overall translation and rotation correspond to zero

eigenvalues of the force-constant matrix ; such coordinates are assumed to be appropriately

eliminated.) To simply notation, we absorb each mass into the corresponding coordinate

and velocity ; i.e., mi
1/2xi and mi

1/2vi will hereafter be written as xi and vi. The probability density
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r(x, v, t) satisfies the n-dimensional Fokker–Planck equation

@r(x, v, t )

@t
=

X
i

xvi
@

@xi
+

@U (x)

@xi

@

@vi

� �
+
X
ij

@

@vi
cij vj+kBT

@

@vj

� �" #
r(x, v, t )

=xv � rxr(x, v, t )+rxU (x) � rvr(x, v, t )

+rv � kBT c � req(x, v)rv[r(x, v, t )=req(x, v)],

(3:80)

where req(x, v)/ exp[–(U(x)+(1/2)v.v)/kBT].

Again, we seek for a set of parallel planes over which f(x, v)=rss(x, v)/req(x, v) is uniform.

[The splitting probability fA(x, v) is f(x, xv).] The normal of these planes is the eigenvector

corresponding to the negative eigenvalue, xv+
$ , of the 2nr2n matrix

0 xf$

I c

� �
,

where 0 and I are nrn zero and identity matrices, respectively ; f$ is the nrn mass-scaled force-

constant matrix, related to the original force-constant matrix e$ via

f
$
ij =(mimj )

x1=2 e
$
ij ; (3:81)

and c is the nrn matrix with elements cij. The eigenvalue is determined by

det
v$
+I xf$

I c+v$
+I

� �
= det

�
v$2
+I+v$

+c+f$
�
=0: (3:82)

Note that, at high frictions, the v$2
+I term is negligible, and Eq. (3.82) reduces to Eq. (3.74). Let

the first and last n components of the eigenvector be denoted as s and t, respectively. The

equation of the parallel planes is then

s � (xxx$)+t � v=u: (3:83)

Around the saddle point, f(x, v) is given by

f(x, v)=(2p)x1=2

Z O

s�(xxx$)+t�v
du exu2=2, (3:84)

where the magnitudes of s and t are chosen so that

t � kBT c � t=v$
+: (3:85)

Finally, the flux-over-population formulation gives the rate constant as

k+=

R
dx dv d s � xxx$

� �
+t � v

� �
t � kBT c � req(x, v)rvf(x, v)R

A
dx dv req(x, v)

=
v$
+

2p

det fA

x det f$

� �1=2
exDU $=kBT ,

(3:86)

where fA is the nrn mass-scaled force-constant matrix at the bottom of the reactant well.

Specializing to a one-dimensional model, we recover Kramers’ result [Eq. (3.54)] for moderate

to high frictions.
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Berezhkovskii et al. (1992) considered the case where each coordinate of the multi-dimensional

reactant system is coupled to a thermal bath consisting of a set of harmonic oscillators. Motion

along each coordinate is then governed by a generalized Langevin equation [Eq. (3.79) with

friction coefficients replaced by memory kernels]. They carried out variational transition-state

theory calculations on the high-dimensional system of reactant plus thermal baths, using a planar

dividing surface. Within the harmonic approximations of Eqs. (3.73), the rate constant is given

by Eq. (3.86), but with the governing equation for v+
$ generalized to

det v$2
+ I+v$

+ĵj v$
+

� �
+f$

h i
=0, (3:87)

where ĵj(s) is a matrix with elements given by the Laplace transform of the memory kernels.

A more cumbersome way to derive Eqs. (3.86) and (3.87), when motions on the multi-

dimensional energy function are governed by generalized Langevin equations, is to first trans-

form these coupled equations into an equation of motion for a single reaction coordinate, with

a more complicated memory kernel, and then apply the Grote–Hynes theory (subsection 3.3)

(Nitzan, 1987).

As an aside, we note that the expression of the rate constant in terms of a time integral,

Eq. (3.30), can be generalized to the present case of a multi-dimensional energy function.

The result is (Bicout & Szabo, 1997 ; Zhou, 2005a)

1

k+
=r x2

Beq

Z O

0
dt

RR
dx dx0 hA(x)rN(x, t jx0)hA(x0) e

xU (x0)=kBTR
dx0 hA(x0) exU (x0)=kBT

xrAeq

� �
, (3:88)

where hA(x) has value 1 if x is in the reactant well and 0 otherwise, and rN(x, t |x0) is the

conditional probability density satisfying natural boundary conditions. This result will find use in

the next section.

3.5.2 Agmon–Hopfield model

Agmon & Hopfield (1983) considered the situation where an intramolecular reaction, such as

electron transfer or geminate binding, is coupled to conformational fluctuations of the protein

molecule. To model the situation, the approach presented so far would suggest that one treats

explicitly the motion along the reaction coordinate x (e.g., the distance between the germinate

ligand and its binding site) and accounts implicitly for the conformational fluctuations through

their effects on the potential energy and the friction coefficient for x (see, e.g., D’Abramo et al.

2009 ; Schaad et al. 1993). Agmon and Hopfield took the opposite approach. The intramolecular

reaction is implicitly modeled by a rate constant, k+, which depends on the protein con-

formation, here denoted with coordinate y. The conformational fluctuations are modeled

explicitly as diffusion on an effective potential surface, U( y). On account of the reaction, the

probability density r( y, t) satisfies the diffusion-reaction equation

@r( y, t )

@t
=

@

@y
D

1

kBT

dU (y)

dy
+

@

@y

� �
r( y, t )xk+( y)r( y, t ), (3:89)

where D is the effective diffusion constant. For a given normalized initial distribution r( y, 0), the

quantity of interest is the survival probability

S (t )=
Z
dy r( y, t ): (3:90a)
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Integrating both sides of Eq. (3.89) over y, we have

_SS (t )=x

Z
dy k+( y)r( y, t )=x

R
dy k+( y)r( y, t )R

dy r( y, t )
S (t ) � xk(t )S (t ): (3:90b)

In general, the rate coefficient, k(t), defined above is time dependent.

In the limit that diffusion along y is infinitely slow, the reactions at different y values proceed

independently. Hence, as Dp0,

r( y, t ) � r( y, 0) exk+( y)t (3:91a)

and the survival probability is

S (t ) �
Z

dy r( y, 0) exk+( y)t : (3:91b)

In the opposite limit DpO, equilibration among different y values occurs quickly, and r( y, t) is

proportional to the equilibrium distribution, req( y)=exp[xU( y)/kBT]/bdy exp[xU( y)/kBT],

but with a magnitude that decreases with increasing time. Then the rate coefficient k(t ) in

Eq. (3.90b) is simply the equilibrium average of k+( y) :

k(t )=
Z

dy k+( y)req( y) � hk+i, (3:92a)

and

S (t ) � exhk+it (3:92b)

becomes exponential. For intermediate values of D, Eq. (3.89) can only be solved numerically.

The simple model introduced in subsection 2.1 has the flavor of the Agmon–Hopfield

model. Here motion (i.e., jumps) along the y-coordinate (i.e., discrete microstates) models the

equilibration within the reactant state. Like the DpO limit just presented, fast intra-state

equilibration leads to an exponential decay of the reactant population, and the decay constant

is given by the equilibrium average of rate constants among the microstates [see Eq. (2.13b)].

3.6 Two useful quantities

3.6.1 Mean first passage time

As alluded to in section 2, the rate constant k+ is essentially the inverse of the mean first

passage time from the reactant well to the product well. Formally, the mean first passage time,

tFP, is the average time for a molecule to reach a boundary for the first time. That boundary is

absorbing since the molecule never returns from it. tFP can be calculated from the survival

probability, S(t), i.e., the probability that the molecule has not reached the absorbing boundary

after a waiting time t. It is easy to see that the probability density, w(t), of the first passage time

t is x _SS (t ). Hence,

tFP=
Z O

0
dt tw(t )=x

Z O

0
dt t _SS (t )=

Z O

0
dt S (t ): (3:93)

Let the molecule be specified by coordinates collectively denoted as w (which could be just

spatial coordinates x or both x and the corresponding velocities v). Suppose that the probability
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density r(w, t) is governed by

@r(w, t )

@t
=L(w)r(w, t ), (3:94)

where L(w) is an operator like those in Eqs. (3.72) and (3.80). The equilibrium distribution,

req(w), is a stationary solution. The survival probability S(t |w0) starting from the initial position

w0 satisfies (Pontryagin et al. 1933)

@S (t jw0)

@t
=L#(w0)S (t jw0): (3:95)

The adjoint operator is given by (Risken, 1989)

L#(w0)=[req(w0)]
x1L(Ew0)req(w0), (3:96)

where Ew0 means that the sign of each velocity component in w0 is negated. Integrating both

sides of Eq. (3.95) over time leads to

x1=L#(w0)tFP(w0): (3:97)

For the problem of diffusive motion on the one-dimensional energy surface of Fig. 3a, with an

absorbing boundary at x=xB, the solution of Eq. (3.97) is (Szabo et al. 1980)

tFP(x0)=
Z xB

x0

dx Dx1eU (x)=kBT

Z x

xO
dy exU ( y)=kBT : (3:98)

Compared with Eq. (3.44), tFP(xA) is almost identical to the inverse of Kramers’ result for the

rate constant, except that the upper limit of the second integral here is x, not x$. Numerically, this

difference hardly matters since the first integral is dominated by a region around x=x$.

An elegant application of mean first passage time is in modeling diffusive motion on a rough

potential surface (Zwanzig, 1988). Consider a potential function given by

U (x)=U0(x)+U1(x),

where U0(x) is smooth and U1(x) is a rapidly oscillating perturbation. Over the range, Dx, in

which U1(x) oscillates, U0(x) can be considered as a constant ; hence,

Z x+Dx

x

dy exU ( y)=kBT � exU0(x)=kBT

Z x+Dx

x

dy exU1( y)=kBT=Dx � exU0(x)=kBT �
R x+Dx

x
dy exU1( y)=kBT

Dx

�Dx � exU0(x)=kBT � exU1(x)=kBT � Dx � exU0(x)=kBT � eyx(x)=kBT :

Over a range much longer than Dx, the above integral can then be evaluated as the integral of

exU0(x)=kBT � eyx(x). Hence,Z x

xO
dy exU ( y)=kBT �

Z x

xO
dy ex[U0( y)xyx( y)]=kBT :

Similarly,Z xB

x0

dx eU (x)=kBT �
Z xB

x0

dx e[U0(x)+y+(x)]=kBT ,
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with y+(x) defined analogous to yx(x). The mean first passage time of Eq. (3.98) now becomes

tFP(x0)=
Z xB

x0

dx Dx1 e[U0(x)+y+(x)]=kBT

Z x

xO
dy ex[U0( y)xyx( y)]=kBT

=
Z xB

x0

dx[D ex[y+(x)+yx(x)]=kBT ]x1e[U0(x)xyx(x)]=kBT

Z x

xO
dy ex[U0( y)xyx( y)]=kBT ,

which is the same as if the molecule moves on an effective potential energyU0(x)+y–(x) with an

effective diffusion constant

Deff=D ex[y+(x)+yx(x)]=kBT : (3:99)

Because eU1(x)=kBT � exU1(x)=kBT=e[y
+(x)+yx(x)]=kBTo1, roughness in the potential always leads

to a reduction in diffusion constant. This provides a simple explanation for the decrease in

diffusion constant when a protein moves from three-dimensional diffusion in the bulk solution to

one-dimensional diffusion along a DNA, as speculated previously (Berg et al. 1981; Schranner &

Richter, 1978) [see subsubsection 4.3.7 ; an alternative, or additional proposed mechanism is that,

while sliding along a groove of the DNA, the protein also rotates around the DNA axis, and this

coupled rotation encounters significant solvent friction (Schurr, 1979)].

When U1 is random, and follows a Gaussian distribution with zero mean and variance e,

one finds y+(x)=yx(x)=e2/2kBT. Then the effective potential is changed by a trivial constant

e2/2kBT, but the effective diffusion constant is reduced to Dexp[x(e/kBT)
2], with the exponent

having a quadratic dependence on temperature. Such a T 2 dependence of the effective diffusion

constant has been found for a random energy model of protein folding (Bryngelson & Wolynes,

1989).

3.6.2 Splitting probability

In subsection 3.2 and subsubsection 3.5.1, we introduced the splitting probability via its relation

to a steady-state probability density. This relation can be generally written as

fA(w)=
rss(Ew)
req(w)

: (3:100)

The steady-state probability density satisfies

L(w)rss(w)=0 (3:101)

with the boundary conditions

rss(w)=req(w) when x=xA, (3:102a)

rss(w)=0 when x=xB, (3:102b)

where xA and xB represent the bottoms of the reactant and product wells, respectively. It appears

that the relation between fA(w) and rss(w) has not been recognized previously. We now outline

its proof.

The splitting probability fA(w) satisfies the equation (Gardiner, 1985)

L#(w)fA(w)=0 (3:103)
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with the boundary conditions

fA(w)=1 when x=xA, (3:104a)

fA(w)=0 when x=xB: (3:104b)

[If the roles of states A and B were reversed, Eqs. (3.103) and (3.104) would define the splitting

probability, fB(w), for the molecule to first reach the product state instead of the reactant state.

It is clear that fB(w)=1xfA(w).] Combining Eqs. (3.96) and (3.101), it can be seen that

rss(Ew)/req(w) satisfies Eq. (3.103). In addition, from Eqs. (3.102), it can be seen that rss(Ew)/
req(w) satisfies the boundary conditions of Eqs. (3.104). Therefore, rss(Ew)/req(w) and fA(w)

must be identical.

For the problem of diffusive motion on the one-dimensional energy surface of Fig. 3a, the

splitting probability is

fA(x0)=

R xB

x0
dx Dx1 eU (x)=kBTR xB

xA
dx Dx1 eU (x)=kBT

: (3:105)

The integrals are dominated by a small region around x=x$. Hence, fA(x) is close to 1 from

x=xA up to a small distance to the left of x=x$ ; it then undergoes a rapid transition toy1/2 at

x=x$ and to 0 a small distance thereafter. Correspondingly, rss(x) undergoes a transition from

req(x) in the reactant well to 0 in the product well.

When the motion along x is governed by the Langevin equation, rss(x, v) undergoes a similar

transition, along the new coordinate u=l(xxx$)xv. The value of rss(x, v) isy1/2 at u=0, i.e.,

on the line v=l(xxx$). However, the splitting probability is y1/2 on the line v=xl(xxx$).

The sign switch on v is necessary because a molecule starting on the right of x=x$ must have

a leftward velocity for it to have the same splitting probability as a molecule starting at x=x$

with a zero velocity.

In higher dimensions, the plane on which the splitting probability is 1/2 is known as the

stochastic separatrix. Langer’s solution to the rate problem shows that the stochastic separatrix is

a plane that goes through the saddle point of the energy function; the orientation of the plane

is determined by the force-constant matrix at the saddle point and the diffusion or friction

matrix. In protein-folding kinetics, the splitting probability is given the name pfold, and the

stochastic separatrix is assumed to define the transition-state ensemble (Du et al. 1998).

3.7 Jump dynamics among discrete microstates

We now further consider the case where motion in the conformational space of a reactant

molecule is represented by jumps among a set of discrete microstates. The occupational prob-

abilities, ri(t), are governed by a master equation:

_rri (t )=x
X
j

kjiri (t )+
X
j–i

kijrj (t ), (3:106)

where kji is the jump rate from microstate i to microstate j. The equilibrium distribution, rieq, is

determined by the configurational integrals of the microstates. The jump rates satisfy the detailed

balance condition:

kijrjeq=kjirieq: (3:107)
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In particular, master equations have been used to model protein-folding kinetics. In earlier

work, the jump rates were made up, only constrained by the detailed balance condition (Alm

et al. 2002 ; Cieplak et al. 1998 ; Merlo et al. 2005 ; Muñoz et al. 1998 ; Schonbrun & Dill, 2003 ;

Weikl et al. 2004 ; Zwanzig, 1995) ; in more recent work (Buchete & Hummer, 2008 ; Hummer &

Kevrekidis, 2003), the jump rates are calculated from relatively short simulations of transitions

between neighboring microstates [a similar idea is behind the so-called Markov state models

(Chodera et al. 2006, 2007 ; Noe & Fischer, 2008)]. In matrix–vector form, Eq. (3.106) is

_rr(t )=xk � r(t ): (3:108)

The jump matrix k has one zero eigenvalue, with req as the corresponding eigenvector. The

other eigenvalues, ll, l=1, 2, _, are positive ; let ll be ordered from small to large.

Now suppose that the microstates are grouped into two states, A and B. When l1@ll for all

l>1, the transitions between the two states can be modeled well as rate processes, and the rate

constants, k¡, are given by

k+=rBeql1; kx=rAeql1: (3:109)

The equilibrium occupational probabilities of the two states are

rAeq=
X
i2A

rieq; rBeq=
X
i2B

rieq: (3:110)

Instead of solving the eigenvalue problem, one can make a transition-state theory-type estimate

for k¡ ; the presentation below follows the work of Zhou (2008). As indicated by the derivation

in subsubsection 3.1.1, a transition-state theory estimates k+ by the normalized total reaction

flux from state A to state B, assuming that the occupation of the microstates in state A is

according to the equilibrium distribution. That is,

k+TST=

P
i2A; j2B kjirieq

rAeq

�
Jeq

rAeq

: (3:111)

Equation (2.13b) presented in subsection 2.1 can be viewed as a special case of Eq. (3.111).

As the discussion of subsubsection 3.5.2 makes it clear, Eq. (3.111) becomes exact in the limit

that intra-state equilibration is much faster than inter-state transition.

Like in the continuous case, k+TST provides an upper bound for the rate constant, as has

been shown explicitly. In the spirit of variational transition-state theory, one may therefore try to

find the best k+TST by varying the dividing surface between the reactant and product states.

Here the dividing surface consists of all the allowed jumps (those with non-zero jump rates)

between the reactant and product microstates. The optimal dividing surface is the one that

minimizes the normalized reaction flux [Eq. (3.111)] and is hence referred to as the minimum-

reaction-flux surface. [Note that, as recognized by Krivov & Karplus (2002), locating this surface

is isomorphic to the minimum-cut problem in graph theory (Stoer & Wagner, 1997).] Test

against numerical solutions of master-equation models of protein folding shows that that the

minimum-reaction-flux results work well. The minimum-reaction-flux surface separates micro-

states with large differences in pfold and can be considered as constituting the transition-state

ensemble in the discrete case. Among the forward jumps contributing to the minimum reaction

flux, one can further identify the one(s) making the largest contribution as the ‘saddle point. ’

However, the minimum-reaction-flux approach differs from traditional transition-state theory

in one important respect : the dividing surface minimizing the normalized reaction flux is
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determined not only by the free energies of the microstates (as reflected by rieq) but also by the

jump rates kji. In principle, dynamic information incorporated by the jump rates can lead to a

dominant transition route (or minimum-resistance path) very different from that produced by the

free-energy landscape alone. This situation is reminiscent of the continuous case with a position-

dependent diffusion coefficient (subsubsection 3.5.1).

4. Bimolecular reactions

Compared to the developments in unimolecular reactions, theories of bimolecular reactions

have received much less attention. Often, results for unimolecular reactions are blindly used

for bimolecular reactions. A fundamental difference between these two types of reactions is that,

in the latter, two reactant molecules have to come into contact with appropriate relative

orientations before the reaction can proceed. This intermediate, with near-native separations

and relative orientations but without all the short-range native interactions between the reactant

molecules, has been referred to as the transient complex (Alsallaq & Zhou, 2008 ; Qin & Zhou,

2008 ; Zhou et al. 1997). For bimolecular reactions between biomolecules, the overall translation

and overall rotation that result in the formation of the transient complex are well modeled

as diffusive. From the transient complex, formation of the native complex is essentially a

unimolecular process, which proceeds through conformational rearrangement and, along the

way, passes through a high-energy transition state. It is important to recognize that both the

diffusional process that leads to the transient complex and the conformational rearrangement

that finally leads to the native complex can be rate limiting. These are referred to as diffusion

controlled and activation controlled, respectively.

To be concrete, we use the binding of a protein and a ligand as our model bimolecular

reaction. The reaction path outlined above is captured by the following scheme:

P+LÐ
kD

kxD

P � LÐ
k+

kx
PL; (4:1)

where P * L denotes the transient complex. Assuming that the transient complex is in steady

state, the overall association rate constant is

ka=
kDk+

kxD+k+
: (4:2a)

For the sake of completeness, the dissociation rate constant is

kd=
kxDkx

kxD+k+
: (4:2b)

When k+AkxD, Eq. (4.2a) becomes

ka � kD, (4:3a)

resulting in the diffusion-controlled regime. Conversely, when k+@kxD, Eq. (4.2a) becomes

ka �
kD

kxD

k+ � K *
a k+ � kA, (4:3b)

resulting in the activation-controlled regime. The last expression, in which K *
a is the association

constant for the transient complex, indicates that, in the activation-controlled regime, calculating
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the association rate constant mostly entails dealing with a unimolecular reaction (i.e., k+). The

theories of the last section would indicate that, to calculate k+, one has to treat short-range

interactions between the protein and the ligand as well as their conformational rearrangements.

Given the considerable difficulty and uncertainty, such treatment will be avoided as much as

possible, and the focus of this section will be on the diffusion-controlled regime. In terms of the

diffusion-controlled rate constant kD and the activation-controlled rate constant kA, the overall

association rate constant of Eq. (4.2a) can be expressed as

1

ka
=

1

kA
+

1

kD
: (4:4)

A simple model for the protein–ligand binding has a centrosymmetric interaction-energy

function illustrated in Fig. 4a. Throughout this section, the interaction energy is chosen to be

zero when the reactant molecules are far apart. As the two reactant molecules approach each

other, they experience electrostatic attraction at long range. At an intermediate distance r=R,

the transient complex is formed. Further compaction of the protein–ligand pair encounters an

energy barrier (at r=r$). Crossing this energy barrier leads to a deep energy well, around r=a,

which defines the native complex. In particular, in protein–protein association, the energy barrier

may come about because side chains in the unbound proteins adopt rotamers different from

those in the native complex. Different rotamers are separated by energy barriers ; these are

amplified by steric hindrance that interfacial side chains experience while the transient complex is

transformed into the native complex. If the reactant molecules are assumed to adopt their

‘native ’ conformations, i.e., those in the native complex, then the energy barrier would largely

disappear, leading to a smoothed energy surface (Alsallaq & Zhou, 2007a) (Fig. 4a). As we

emphasize below, the centrosymmetric model, although useful for illustrating the binding

process, suffers from a major limitation. The native complex in this model is constrained only

by the distance between the reactant molecules and not by their relative orientations. In contrast,

complexes of biological interest are almost always stereospecific. A smoothed interaction-energy

function that depends on the separation (represented by r) and relative orientation (represented

by V) is illustrated in Fig. 4b.

Below we use the centrosymmetric model to introduce basic concepts and then present results

for more realistic binding models. The general strategy is to explicitly model the overall trans-

lation and overall rotation of the reactant molecules as diffusion, and treat the barrier crossing

into the native-complex energy well implicitly, as a unimolecular rate process (in the spirit of the

Agmon–Hopfield model). We proceed by first assuming that the reactant molecules are frozen in

their native conformations during the diffusional process and then examining the influence of

conformational fluctuations.

Throughout this section, we highlight and exploit connections between bimolecular and

unimolecular rate constants. The connection is especially direct when protein–ligand binding

occurs intramolecularly. For the most part, this section is presented as though the binding is

irreversible, but at the end of the section we discuss the kinetics of reversible diffusion-influenced

binding.

4.1 Formulation based on dissociation

One approach to calculate the association rate constant ka is to first obtain the rate constant kd
for dissociation, which, as noted in subsection 2.2, is a unimolecular reaction, and then find
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ka as the product of kd and the association constant Ka [Eq. (2.17)] (Zhou, 2005a). This requires

modeling the motion of the reactant pair in the native-complex energy well. To support results

later in this section, here we model motion in the inner well and over the energy barrier as

diffusive. We arrive at four useful results. The first is a clarification of the absorbing boundary

condition usually used in modeling the diffusion-controlled regime. The second is a demon-

stration that, in a complete theory, the choice for the location of the transient complex does not

affect the overall association rate constant. The third is a clarification of the reactivity that

appears in the radiation boundary condition to account for a finite rate constant (i.e., k+) for

barrier crossing into the native-complex energy well. The last is an expression for ka based on a

time integral.

Fig. 4. Interaction energy functions. (a) Centrosymmetric model. The solid curve shows the energy

function, with locations of the unbound state (i.e., P+L), transient complex (i.e., P*L), transition state,

and native complex (i.e., PL) identified. The dashed curve is after smoothing out the transition state.

(b) A smoothed energy function in relative translational (r) and rotational (V) space. The native com-

plex is located in the deep well ; the transient complex is located at the outer boundary of the energy

well.
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The probability density in r, r(r, t), is assumed to satisfy the three-dimensional Smoluchowski

equation

@r(r, t )

@t
=rx2 @

@r
D exU (r )=kBT r 2

@

@r
eU (r )=kBT r(r, t ) � LT(r)r(r, t ) (4:5)

for the full range of the intermolecular distance r ; here D is the diffusion constant for relative

translation. Because of the centrosymmetry, the problem is effectively one dimensional, i.e.,

along r ; the effect of the other two degrees of freedom is captured by the geometric factor 4pr2.

We apply Kramers’ result, Eq. (3.44), to obtain the dissociation rate constant. Setting the limits

of the two integrals requires some care. One integral is over the range of the reactant state,

which in the present case is the bound state ; the lower limit is obviously r=0, and we choose the

upper limit to be the top of the energy barrier, i.e., r=r$. The other integral is from the bottom

of the reactant well to the bottom of the product well ; the lower limit is obviously r=a, and

we choose the upper limit to be at infinite distance, since only then the reactant molecules are

fully dissociated. The dissociation rate constant is thus

kd=
1RO

a
dr (4pr 2D)x1 eU (r )=kBT

R r $

0 dr 4pr 2 exU (r )=kBT
, (4:6)

where we have appropriately inserted the geometric factor 4pr2.

The association constant for the present model is (Shoup & Szabo, 1982 ; Zhou & Gilson,

2009)

Ka=
Z r $

0
dr 4pr 2exU (r )=kBT : (4:7)

Therefore, the association rate constant is

ka=Kakd=
1RO

a
dr (4pr 2D)x1eU (r )=kBT

: (4:8)

This result is identical to what Debye (1942) found by imposing an absorbing boundary con-

dition at r=a (see subsubsection 4.3.1). In the above derivation, there is no absorbing boundary

condition at r=a ; rather, a deep well is there. Therefore, the absorbing boundary condition used

in modeling the diffusion-controlled regime corresponds to a deep and narrow energy well in

front of a reflecting wall. This is the first main result of this subsection.

Note that the location of the transient complex does not appear in the expression for ka.

To make connection with the overall association rate constant given by Eq. (4.4), we write

Eq. (4.8) as

1

ka
=
Z R

a

dr (4pr 2D)x1 eU (r )=kBT+
Z O

R

dr (4pr 2D)x1 eU (r )=kBT

=

R R

a
dr (4pr 2D)x1 eU (r )=kBT

R r $+D

r$
dr 4pr 2 exU (r )=kBT

4pR2 exU (R)=kBTD
+
Z O

R

dr (4pr 2D)x1 eU (r )=kBT :

The numerator of the first term can be identified with the inverse of the rate constant k+
of unimolecular transition to the native complex from the transient complex. The transient

complex here is confined to the narrow region between r$ and r$+D (>R), with the latter
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serving as a reflecting boundary for the transient complex. The denominator of the first term

can be identified with the association constant, K *
a , for the transient complex [cf. Eq. (4.7)].

The second term can be recognized as the diffusion-controlled rate constant, obtained by

imposing an absorbing boundary condition at r=R :

kD=
1RO

R
dr (4pr 2D)x1 eU (r )=kBT

: (4:9)

Thus,

1

ka
=

1

K *
a k+

+
1

kD
: (4:10a)

This shows that ka given by Eq. (4.8) can be written in the form of Eq. (4.4). Had we started with

Eq. (4.4) and calculated the diffusion-controlled rate constant kD and the activation-controlled

rate constant kA, we would have ended up with Eq. (4.8) as the final result for ka, which, as noted

above, is independent of the location of the transient complex. This demonstrates that, in a

complete theory, the choice for the location of the transient complex does not affect the overall

association rate constant.

Equation (4.10a) for ka can be further written in a form obtained by imposing the radiation

boundary condition of Collins & Kimball (1949) at r=R (Shoup & Szabo, 1982) :

1

ka
=

1

4pR2 exU (R)=kBT � k+D
+

1

kD
: (4:10b)

Compared with the Collins–Kimball result [Eq. (4.18)], we find that the reactivity k in the

radiation boundary condition [Eq. (4.15a)] can be identified with k+D. Hence, k is a way

to implicitly model the transition from the transient complex to the native complex. This is the

third main result of this subsection.

Finally, we apply the time-integral expression, Eq. (3.30), to find an alternative formula for

the dissociation rate constant. In the present case, the ratio of the equilibrium occupation

probabilities is

rBeq

rAeq

=

RO
r$

dr 4pr 2 exU (r )=kBTR r$

0 dr 4pr 2 exU (r )=kBT
:

Note that the integral in the numerator essentially is the volume V of the container and

is effectively infinite relative to the integral of the denominator. Hence rAeqp0 and rBeqp1.

Equation (3.30) specialized to the present case is thus

1

kd
=

RO
0 dt

RR
dr dr0 4pr

2h(r $xr )rN(r, t jr0) � 4pr 20h(r $xr0) e
xU (r0)=kBTR

dr0 4pr 2
0 h(r

$xr0) exU (r0)=kBT
, (4:11)

where rN(r, t | r0) is the conditional probability density satisfying natural boundary conditions.

Combined with the equilibrium constant of Eq. (4.7), we arrive at the following expression

for the association rate constant :

1

ka
=

RO
0 dt

RR
dr dr0 4pr

2h(r $xr )rN(r, t jr0) � 4pr 2
0 h(r

$xr0) e
xU (r0)=kBTR

dr0 4pr 2
0 h(r

$xr0) exU (r0)=kBT
� �2 : (4:12)
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Using the conditional probability density to evaluate the above expression, we derive Eq. (4.8) as

a good approximation for ka when the inner well features a deep minimum. This expression of

the rate constant is the last main result of this subsection, which will be further analyzed and

extended below.

4.2 Activation-controlled regime : transition-state theory

While our focus is on the diffusion-controlled regime, for the sake of completeness, we mention

the association rate constant predicted by the transition-state theory of Eyring (1935).

Corresponding to Eq. (3.31) for the rate constant of a unimolecular reaction, the rate constant

for a bimolecular reaction is

kA=
kBT

h

qk$PL=V
(qP=V )(qL=V )

exU $=kBT , (4:13)

where qP and qL are the partition functions of the protein and the ligand, respectively ; qk$PL is a

partition function calculated for a protein–ligand pair without including the reaction coordinate

(as signified by the prime), which is fixed at the value defining the transition state ; U$ is the

protein–ligand interaction energy in the transition state ; and V is the volume of the container.

To illustrate, consider the centrosymmetric model. We calculate the partition functions

according to classical statistical mechanics. The protein molecule has only three degrees of

freedom, for overall translation. Hence, qP=hx3V(2pkBTmP)
3/2, where mP is the mass of the

protein. Similarly, qL=hx3V(2pkBTmL)
3/2. qk$PL involves five degrees of freedom: three for

overall translation and two for relative translation orthogonal to r ; the masses corresponding to

these two types of motions are the total mass, mP+mL, and reduced mass, mPmL/(mP+mL),

respectively. Hence,

qk$PL=hx5V [2pkBT (mP+mL)]
3=2 � 4pr $2[2pkBTmPmL=(mP+mL)]:

The activation-controlled rate constant is finally given by

kA=[kBT (mP+mL)=2pmPmL]
1=2 � 4pr $2 exU $=kBT : (4:14)

As to be expected from a classical treatment, Planck’s constant disappears from the final result.

4.3 Diffusion-controlled regime

We now explicitly model the overall translational and rotation diffusion of the reactant molecules

and implicitly model the barrier crossing into the inner energy well. We show that the overall

association rate constant can be written in the form of Eq. (4.4) ; thereafter, we focus on the

diffusion-controlled rate constant kD.

4.3.1 Centrosymmetric model

In the Smoluchowski (1917) approach to modeling diffusion-influenced bimolecular reactions,

one works with the pair distribution function, P(r, t). It satisfies the Smoluchowski equation,

Eq. (4.5), with a radiation boundary condition (Collins & Kimball, 1949)

DexU (r )=kBT
@

@r
eU (r )=kBT P(r, t )=kP(r, t ) at r=R (4:15a)
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and a value

P(r, t )=1 at r=O: (4:15b)

The initial value of P(r, t) is

P(r, 0)= exU (r )=kBT , (4:15c)

corresponding to an equilibrium distribution. A time-dependent rate coefficient is defined as the

total inward flux at r=R :

ka(t )=4pr 2DexU (r )=kBT
@

@r
eU (r )=kBT P(r, t )






r=R

: (4:16)

It can be shown that, if a protein binds irreversibly [as modeled by the radiation boundary

condition of Eq. (4.15a)] with a ligand that is in excess, the decay of the protein concentration is

governed by (Solc & Stockmayer, 1971 ; Szabo, 1989)

dCP(t )

dt
=xka(t )CLCP(t ) (4:17a)

or

CP(t )

CP(0)
=e

xCL

R t

0
dt ka(t ): (4:17b)

Note that Cp(t)/Cp(0) is equivalent to the survival probability of a single protein molecule

surrounded by ligand molecules at concentration CL.

The long-time limit, ka(O), of the rate coefficient introduced here corresponds to the as-

sociation rate constant of subsection 4.1. We will continue to denote ka(O) simply as ka. Solving

for P(r,O), one obtains

1

ka
=

1

4pR2 exU (R)=kBT � k+
1

kD
, (4:18)

where kD is the Debye result given by Eq. (4.9). This result for the overall association rate

constant, as well as similar results later in this subsection, conforms to Eq. (4.4). As we explained

above, the reactivity k models the transition from the transient complex to the native complex.

(When k=0, the boundary becomes reflecting.) The limit kpO corresponds to the situation

where a reactant pair once reaching the transient complex is instantaneously transformed into the

native complex. The rate of association is then limited by the relative translational diffusion

to reach the transient complex ; that is why the rate constant in this limit, kD, is referred to as

diffusion controlled. In this limit, the radiation boundary condition reduces to the absorbing

boundary condition :

P(r, t )=0 at r=R: (4:19)

In short, the diffusion-controlled rate constant kD is obtained by setting an absorbing

condition at the transient complex. In the opposite limit kp0, diffusion is able to replenish the

reactant pairs lost by forming the native complex, so the initial equilibrium distribution

is maintained. Then the steady-state value, ka(O), is the same as the initial value, ka(0) ; i.e., the
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rate constant approaches

kA � ka(0)=4pR2 exU (R)=kBT � k, (4:20)

which is the activation-controlled limit.

When the interaction potential U(r) is absent, the Debye result [Eq. (4.9)] reduces to the well-

known Smoluchowski formula

k0
D=4pDR: (4:21)

Throughout this section, we use a superscript ‘0 ’ to signify a rate constant calculated in the

absence of an interaction potential ; kD
0 is the limit of the rate constant set by random diffusion

and is referred to as the basal rate constant. An attractive potential is expected to increase kD.

To illustrate, consider a Coulomb interaction potential, U(r)=xQ/r. Evaluating the Debye

formula, we find

kD

k0
D

=
U (R)=kBT

1xexU (R)=kBT
: (4:22)

When the value of the potential at contact, U(R), is 9kBT, the electrostatic attraction results in

a modest increase of 9-fold in the association rate constant. This result will be contrasted below

with much more significant electrostatic rate enhancement predicted from a more realistic model

of protein–protein association.

The probability, S(t |r0), that a protein–ligand pair, started at an initial separation r0, has not

formed the native complex at time t is known as the survival probability. It is related to the pair

distribution function via

S (t jr0)=eU (r0)=kBT P(r0, t ) (4:23)

and hence satisfies the equation

@S (t jr0)
@t

=L#T (r0)S (t jr0), (4:24)

with the boundary conditions

D
@S (t jr0)

@r
=kS (t jr0) at r0=R, (4:25a)

S (t jr0)=1 at r0=O: (4:25b)

At t=O, the left-hand side of Eq. (4.24) becomes 0, and the survival probability is called the

escape probability. When the boundary at r=R is absorbing, the escape probability is very similar

in form to the splitting probability of subsubsection 3.6.2. For the present model one has

S (Ojr0)=
R r0

R
dr (4pr 2D)x1 eU (r )=kBTRO

R
dr (4pr 2D)x1 eU (r )=kBT

, (4:26)

which can be compared with the splitting probability given by Eq. (3.105). However, the beha-

viors of the splitting probability there and the escape probability here are very different. The

energy function modeling the unimolecular transition between two states features a barrier,

where the splitting probability undergoes a rapid transition from 0 to 1. In contrast, the energy

Rate theories for biologists 261



function modeling intermolecular interaction has a longer range and is relatively monotonic ;

hence, the transition of the escape probability from 0 to 1 is more gradual. When no interaction

potential is present, the escape probability is 1xR/r0.

As we clarified in subsection 4.1, an absorbing boundary is equivalent to a narrow deep energy

well in front of a reflecting wall. If the absorbing boundary for calculating kD is replaced by

such an energy well, then the time-integral formula, Eq. (4.12), for the association rate constant

can be used to calculate kD. We thus have

1

kD
=

RO
0 dt

R R+D

R
dr
R R+D

R
dr0 4pr

2rR(r, t jr0) � 4pr 2
0 e

xU (r0)=kBTR R+D

R
dr0 4pr 2

0 exU (r0)=kBT
h i2 , (4:27)

where D, the width of the energy well, approaches zero, and the conditional probability density

rR(r, t |r0) satisfies a reflecting boundary condition at r=R.2 From this formula for kD, one can

also derive the Debye result [Eq. (4.9)].

4.3.2 Anisotropic reactivity on protein molecule

As we emphasized, protein–ligand native complexes are stereospecific. The ligand binds to a

specific site on the protein surface rather than the whole surface ; hence, the reactant pair must

satisfy constraints in both separation and relative orientation before the native complex can be

formed. One then needs to model both relative translational diffusion and rotational diffusion of

the reactant molecules. Here we treat the case where the ligand is point-like so that its orientation

does not come into play ; the case where rotational diffusion of the ligand is also modeled is

deferred to the next subsubsection. For simplicity, we assume that the protein molecule is axially

symmetric ; we denote the axis of symmetric by the unit vector nP. The pair distribution function

now depends both on r and on nP, and is denoted as P(r, nP, t). On account of rotational

diffusion, the governing equation for P(r, nP, t) is

@P(r,nP, t )

@t
=LT(r)P(r, nP, t )+LP(nP)P(r, nP, t ), (4:28a)

where LP(nP) is a rotational diffusion operator given by

LP(nP)=nPr
@

@nP

�DP e
xU=kBT nPr

@

@nP

exU=kBT , (4:28b)

with DP denoting the rotational diffusion constant of the protein molecule. The stereospecific

binding site can be modeled by modifying the radiation boundary condition to one that is of

the radiation type if the ligand falls inside the site and becomes reflecting otherwise (Solc &

Stockmayer, 1971). That is, at r=R,

D exU=kBT
@

@r
eU=kBT P(r, nP, t )=kh* (̂rr, nP)P(r, nP, t ), (4:29)

2 The conditional probability density should be solved with the original energy function U(r) modified

to include a narrow deep energy well at r=R. For example, one may add to U(r) a function with valuexUd

for R<r<R+D and 0 elsewhere. When Dp0 and UdpO, the effect of the narrow deep
energy well is to introduce a factor exp(Ud/kBT ) to the value of the conditional probability
density. The same factor also appears in the Boltzmann factors in Eq. (4.27) ; therefore, removing
this factor does not affect the final result, Eq. (4.27), for the rate constant.
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where r̂ is the unit vector along r, and h* (r̂, nP) has value 1 if the angle between r̂ and nP is

within the angle span, dP, of the ‘ reactive patch ’ and value 0 otherwise.

The boundary condition of Eq. (4.29) is a mixed type (i.e., involving the pair distribution in

one part of the boundary and its flux in another), which poses a mathematical challenge. To get

around this problem, Shoup et al. (1981) introduced an approximation. They assume that the

flux is a constant over the reactive patch, and this constant is determined by requiring that

Eq. (4.29a) is satisfied only on averaging over the reactive patch, not at every point over it. With

this constant-flux approximation, the boundary condition at r=R now becomes

DexU=kBT
@

@r
eU=kBT P(r, nP, t )=J (t )h* (̂rr, nP), (4:30a)

where J (which depends on time for the time-dependent problem) is fixed by requiring

hD exU=kBT
@

@r
eU=kBT P(r, nP, t )i*=k P(r,nP, t )h i*, (4:30b)

with n� � �m* denoting an average over the reactive patch. In the absence of an interaction

potential, the association rate constant is given by

1

k0
a

=
1

k0
a(0)

+
1

k0
D

, (4:31a)

where

k0
a(0)=4pR2FP � k, (4:31b)

k0
D=

4pDRFP
2

PO
l=0

[Plx1( cos dP)xPl+1( cos dP)]
2

4(2l+1)[ml Kl+3=2(ml )=Kl+1=2(ml )xl ]

� 4pDRFP

LP

: (4:31c)

In the last two equations, FP=(1xcosdP)/2 is the surface fraction covered by the reactive

patch, ml=[l(l+1)DP/D]1/2R, Pl(x) are Legendre polynomials, and (p/2x)1/2Kl+1/2(x) are

modified Bessel functions of the third kind. The above result for ka
0 was essentially guessed by

Solc & Stockmayer (1973). Berg (1985) found that LP/FP can be approximated by

LP

FP

� nP+ cot (dP=2)

nP+ sin (dP=2) cos (dP=2)
, (4:31d)

where nP=[(1+DPR
2/D)/2]1/2. When DPp0, Eq. (4.31c) reduces to

k0
D=

4pDRF 2
PPO

l=0

[Plx1( cosdP)xPl+1( cos dP)]
2

4(2l+1)(l+1)

: (4:31e)

The case of small reactive patches, corresponding to stereospecific binding, is of particular

interest. A patch with angle span dPp0 on a spherical surface is equivalent to a disk with

radius a=RdP on an infinite reflecting plane. Applying the constant-flux approximation to the

latter problem, Shoup et al. found that kD
0 =(3p2/8)Da (assuming DP=0). This is to be com-

pared with the exact solution of the problem, kD
0 =4Da (Hill, 1975). These results show that

the constant-flux approximation underestimates the diffusion-controlled rate constant by

y7% when dPp0. Note that, when dPp0, kD
0 / dP, not dP

2, as suggested by the surface
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fraction of the reactive patch. The weaker dp-dependence (and hence higher value) of kD
0 comes

about due to the diffusive nature of the ligand molecule’s motion. When a ligand molecule first

reaches the reflecting part of the protein surface, it can come back and try again to reach the

reactive patch.

Zhou (1993) applied the constant-flux approximation to find the rate constant when a

Coulomb potential U(r)=xQ/r is present. The result is given by

1

ka
=

1

ka(0)
+

1

kD
, (4:32a)

where

ka(0)=4pR2FP e
xU (R)=kBT � k: (4:32b)

When the rotation diffusion constant DP=0, the diffusion-controlled rate constant is

kD=
4pDRF 2

P exU (R)=kBT

PO
l=0

[Plx1( cos dP)xPl+1( cos dP)]
2

4(2l+1)(jQ1jIl+3=2(jQ1j)=Il+1=2(jQ1j)+Q1+l+1)

, (4:32c)

where Q1=U(R)/2kBT and (p/2x)1/2Il+1/2(x) are modified Bessel functions of the first kind.

It was observed that, as dPp0, terms with larger and larger l become dominating in the sum

over l ; for those terms, the Q1-dependent factors become less and less important. Therefore,

the whole denominator becomes nearly independent of Q1, and consequently

kD � k0
D exU (R)=kBT , (4:33)

where kD
0 is the basal rate constant of Eq. (4.31e). The generality of Eq. (4.33) for small reactive

patches (i.e., stereospecific binding) was recognized. In fact, this approximate formula was first

suggested by results obtained by Brownian dynamics simulations, and the above deduction

served to confirm the simulation results. Below we further elaborate on the generality of

Eq. (4.33) and its use in modeling the effect of long-range electrostatic attraction on stereo-

specific protein–ligand binding.

4.3.3 Anisotropic reactivity on both protein and ligand molecules : free diffusion

Before we further consider the effect of the interaction potential, we present the more general

binding model in which the protein molecule and the ligand molecule each bear a reactive patch,

which for now is assumed to be axially symmetric. The pair distribution function, P(r, nP, nL, t),

is now governed by

@P(r,nP, nL, t )

@t
=LT(r)P(r,nP, nL, t )+LP(nP)P(r,nP, nL, t )+LL(nL)P(r, nP,nL, t ), (4:34)

where LL(nL) is the diffusion operator for ligand rotation [see Eq. (4.28b)]. The boundary

condition at r=R becomes (Solc & Stockmayer, 1971)

D exU=kBT
@

@r
eU=kBT P(r, nP,nL, t )=kh*(̂rr, nP, nL)P(r, nP,nL, t ), (4:35)

where h* (r̂, nP, nL) has value 1 if the angles between r̂ and nP and between r̂ and nL are within

the angle spans, dP and dL, of the respective reactive patches, and value 0 otherwise.
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The rate constant for the one-patch model in the absence of an interaction potential is given

by Eqs. (4.31a–c). To derive ka
0 for the present two-patch model, Solc & Stockmayer (1973) first

devised a reaction scheme for the one-patch model. The scheme involves two intermediates,

in which the ligand is in contact with the reflecting part of the protein and with the reactive

patch, respectively. The overall rate constant of this scheme was compared to Eqs. (4.31a–c)

to identify the individual rate constants in the scheme. They then extended this scheme to the

two-patch model, now involving four intermediates. The expression for ka
0 via this ‘quasi-

chemical ’ scheme for the two-patch model can again be written in the form of Eq. (4.31a),

but now

k0
a(0)=4pR2FPFL � k, (4:36a)

k0
D=

4pDRFPFL

LPLL+Y
, (4:36b)

where

Yx1=(1xLP)
x1(1xLL)

x1+(1xLP)
x1(LLxFL)

x1+(1xLL)
x1(LPxFP)

x1, (4:36c)

with LP defined by Eq. (4.31c) and LL defined analogously. For small patches, using

Eq. (4.31d) for LP and a similar approximation for LL and keeping the lowest orders, one finds

(Berg, 1985)

k0
D=4pDR � FPnL tan (dL=2)+FLnP tan (dP=2): (4:36d)

This result shows that, when dP and dLp0, kD
0 / dP

2dLydPdL
2, not dP

2dL
2, as suggested by the

surface fractions of the reactive patches. Again, kD
0 is higher than expected from surface fractions

because the diffusive nature of its motion allows the reactant pair to make repeated attempts to

reach the absorbing boundary.

By applying the constant-flux approximation, Zhou (1993) solved the diffusion equation for

the two-patch model to find the time-dependent rate coefficient ka
0 (t). The result, in Laplace

transform, is given by

1

sk̂k
0

a(s)
=

1

k0
a(0)

+
1

sk̂k
0

D(s)
, (4:37a)

where ka
0 (0) is given by Eq. (4.36a). Note that the long-time limit of ka

0 (t) is given by the sp0

limit of sk̂a
0 (s) and similarly for kD

0 . The basal rate coefficient is

sk̂k0
D(s)=

4pDRF 2
P F

2
LPO

l , l1 , l2=0

[Plx1( cos dP)xPl+1( cos dP)]
2[Plx1( cos dL)xPl+1( cos dL)]

2

4[ml1 l2
(s)Kl+3=2(ml1 l2

(s))=Kl+1=2(ml1 l2
(s))xl ]

Cll1 l2

, (4:37b)

where ml1 l2
(s)=[(l1(l1+1)DP+l2(l2+1)DL+s)=D]1=2R and Cll1 l2 is expressed in terms of

Wigner’s 3-j symbols :

Cll1 l2=
(2l+1)

(2l1+1)(2l2+1)

l1 l2 l

0 0 0

� �2

:

The one-patch model is a special case with dL=p. In that case the only term in the summation

over l2 is l2=0; it can be verified that the sp0 limit of Eq. (4.37b) reduces to Eq. (4.31c) of the
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one-patch model. Numerically, the results for the basal rate constant by the quasi-chemical

scheme and by the constant-flux approximation are very close.

A third solution for the basal rate constant was obtained by Temkin & Yakobson (1984), using

a formula obtained by Doi (1975a, b). Inspired by the closure approximation of Wilemski &

Fixman (1973), Doi derived a variational formula for the basal rate constant. With the simplest

trial function, the basal rate constant for the present case takes the form

1

k0
D

=

RO
0 dt

R
R<r<R+D

dx
R
R<r0<R+D

dx0 h*(̂rr,nP, nL)r
0
R(x, t jx0)h* (̂rr0, nP0,nL0)R

R<r0<R+D
dx0h* (̂rr0, nP0, nL0)

h i2 , (4:38)

where, for notational simplicity, we have written (r, nP, nL) collectively as x, and rR
0 (x, t |x0) is

the conditional probability for free diffusion subject to a reflecting boundary condition at r=R.

It can be recognized that Eq. (4.38) is a generalization of the time-integral formula of Eq. (4.27).

Temkin and Yakobson’s solution entailed finding the conditional probability and evaluating

the integrals. The final result is identical to the sp0 limit of Eq. (4.37b), suggesting that the

time-integral formula and the constant-flux approximation are equivalent. This equivalence was

proven by Zhou & Szabo (1996a) ; see subsubsection 4.3.5.

The two-patch model was taken to its limit when the restriction on axial symmetry of the

reactive patches was removed (Schlosshauer & Baker, 2002). Now, for each reactant molecule,

one additional rotational degree of freedom, i.e., rotation angle xP or xL around the unit vector

nP or nL, needs to be accounted for. Using the constant-flux approximation, Schlosshauer and

Baker were able to obtain the basal rate constant.

4.3.4 Anisotropic reactivity on both protein and ligand molecules : effect of

interaction potential

Zhou (1993) treated the two-patch model when a centrosymmetric interaction potential, U(r),

is present. Applying the constant-flux approximation, he found

1

sk̂ka(s)
=

1

ka(0)
+

1

sk̂kD(s)
: (4:39a)

The initial rate coefficient is

ka(0)=4pR2FPFLe
xU (R)=kBT � k: (4:39b)

The diffusion-controlled rate coefficient is

sk̂kD(s)=
4pDRF 2

P F
2

L e
xU (R)=kBT

PO
l , l1 , l2=0

[Plx1( cos dP)xPl+1( cos dP)]
2[Plx1( cos dL)xPl+1( cos dL)]

2

x4Rf 0l [R; ml1 l2
(s)]=fl [R;ml1 l2

(s)]
Cll1 l2

, (4:39c)

where a prime signifies a derivative with respect to r, and fl(r ; m) is a function that satisfies

eU (r )=kBT

r 2
d

dr
exU (r )=kBT r 2

d

dr
fl (r ; m)x

m2

R2
+

l (l+1)

r 2

� �
fl (r ;m)=0 (4:39d)

and decays to zero as rpO. When U(r)=0, Eq. (4.39c) reduces to Eq. (4.37b).
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While no solution of Eq. (4.39d) could be found for an arbitrary U(r), Zhou (1997) was

able to solve Eq. (4.39d) for two potential functions : a square-well potential and U(r)=
x2kBT ln[1+(exp(xU(R)/2kBT)x1)R/r]. A main aim for finding explicit results of kD for

these potentials is to demonstrate the accuracy of the simple formula given by Eq. (4.33) for

small patches. For example, at dP=dL=5x, the prediction of Eq. (4.33) overestimates the

result given by Eq. (4.39c) for the logarithmic potential by merely 5% when U(R)=x9kBT.

The rate enhancement, kD=k
0
D, by this potential is y8000. This dramatic rate enhancement is

to be contrasted with the modest result of subsubsection 4.3.1 for the case where the reactant

molecules have isotropic reactivity.

4.3.5 Generalization of Eq. (4.33)

Equation (4.33) presents an enormous simplification for accounting for the effect of interaction

potentials on association rate constant. The individual results summarized above suggest that

it is quite general for stereospecific binding. A general form of Eq. (4.33) was established through

a pair of papers in 1996.

In the first paper, Zhou & Szabo (1996a) considered a general binding model in which the

relative translational and overall rotational degrees of freedom of the reactant pair are collectively

denoted as x. The transition from the transient complex to the native complex was modeled not

by a radiation or absorbing boundary condition. Rather, the transient complex was assumed to

be confined to a ‘ reactive region’ in x space, specified by the function h*(x) with value 1 in the

reactive region and value 0 elsewhere. From the reactive region, the reactant pair forms the native

complex with a rate constant k+. The governing equation for the pair distribution function is

@P(x, t )

@t
=L(x)P(x, t )xk+h* (x)P(x, t ), (4:40)

where L(x) is an operator modeling the diffusional motion of the reactant pair. This model

is similar in spirit to the Agmon–Hopfield model [see Eq. (3.89)] ; it can also be viewed as a

microscopic implementation of reaction scheme (4.1). Because the transition from the transient

complex to the native complex is accounted for by the reaction term in Eq. (4.40), the inner

boundary is reflecting. The rate coefficient is given by

ka(t )=
Z

dx k+h* (x)P(x, t ): (4:41)

When the reactive region spans a patch on the inner boundary and a thickness Dp0 in the

normal direction, then the sink term in Eq. (4.40) is equivalent to a radiation boundary condition

on the reactive patch, with k given by k+D (which uncoincidentally is consistent with the

discussion of subsection 4.1). The constant-flux approximation is derived when the pair distri-

bution is assumed to follow the equilibrium distribution, Peq(x)/ exp[xU(x)/kBT], but with a

time-dependent magnitude. Then it was shown that the rate coefficient can again be written as

Eq. (4.39a), with

ka(0)=k+

Z
dx0 h* (x0)Peq(x0)=k0

a(0)hexU (x)=kBT i* � k0
a(0) e

xhU (x)i*=kBT , (4:42a)

1

sk̂kD(s)
=

RO
0 dt exst

RR
dx dx0 h* (x)rR(x, t jx0) � h* (x0)Peq(x0)R

dx0 h* (x0)Peq(x0)
� �2 , (4:42b)

Rate theories for biologists 267



where n� � �m* denotes an average over the reactive region [the last step of Eq. (4.42a) applies to a
small reactive region], and rR (x, t | x0) is the conditional probability satisfying

@rR (x, t jx0)

@t
=L(x)rR(x, t jx0) (4:43)

subject to a reflecting condition on the inner boundary. Equation (4.42b) reduces to the time-

integral formulas for rate constants presented above in this subsection under different situations,

including Eq. (4.38) for the two-patch model.

In a subsequent paper (Zhou, 1996), it was noted that, when the interaction potential U(x)

is long ranged so that it is almost constant in the reactive region and its vicinity, then rR (x, t | x0)
is almost independent of the potential, i.e., rR (x, t | x0)BrR

0 (x, t | x0), for x and x0 both inside

the reactive region. Consequently,

kD �

R
dx0 h* (x0)P

0
eq(x0)

h i2
hexU (x)=kBT i*RO

0 dt
RR

dx dx0 h* (x)r
0
R(x, t jx0) � h* (x0)P0

eq(x0)

=k0
DhexU (x)=kBT i* � k0

D exhU (x)i*=kBT :

(4:44)

This is finally the general result that provides a powerful method for modeling the effect of

long-range electrostatic attraction on stereospecific protein–ligand binding.

That a small reactive region is necessary for the validity of Eq. (4.44) can be demonstrated

by the Debye result for the centrosymmetric model, in which the native complex has no

requirement on relative orientation. In particular, Eq. (4.22), the Debye result for a Coulombic

potential, shows a very different dependence on the potential than Eq. (4.44). As noted above,

the rate enhancement given by Eq. (4.22) is much more modest than would be predicted by

Eq. (4.44).

To complete the connection with reaction scheme (4.1), we note that the association constant

for the transient complex is

K *
a =

Z
dx0 h* (x0)Peq(x0): (4:45a)

Combined with kD given by Eq. (4.42b), we find that the rate constant for dissociating the

transient complex by diffusion is

1

kxD

=

RO
0 dt

RR
dx0 h* (x)rR(x, t jx0) � h* (x0)Peq(x0)R

dx0 h* (x0)Peq(x0)
: (4:45b)

The last result could also be derived from a time-integral formula, Eq. (3.88), of section 3. The

right-hand side can be recognized as the mean residence time in the reactive region, which

measures how long it takes for ligand molecules to move out of the reactive region via diffusion

(while the pathway to form the native complex is turned off). The above derivation of Eq. (4.44)

is the same as proving that the mean residence time is nearly independent of the long-range

interaction potential. As observed by Zhou et al. (1997), the smaller the reactive region, the faster

the ligand population in it will decay, and hence the shorter the mean residence time. If the mean

residence time is really short, then the ligand molecules that have diffused out will not move very

far away. Now if the interaction potential does not vary significantly in the reactive region and its
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vicinity, then the ligand molecules would have moved in an essentially uniform potential.

Consequently, kxD would be nearly the same as if the potential is absent.3

4.3.6 Atomistic models : transient-complex theory

The derivation of Eq. (4.44) makes it clear that its validity is subject to the condition that the

reactive region is small while the interaction potential is long ranged. This condition is exactly

met (fortuitously) for stereospecific protein–ligand binding under the influence of electrostatic

attraction. The accuracy of Eq. (4.44) for atomistic protein–ligand models has been demon-

strated by comparison against Brownian dynamics simulations (Zhou et al. 1996, 1997, 1998a).

The dependence of the diffusion-controlled rate constant on interaction potential given by

Eq. (4.44) has an Arrhenius appearance. Such a dependence is expected for the activation-

controlled rate constant kA [see, e.g., Eq. (4.42a)], but totally unexpected for kD [see, e.g.,

Eq. (4.22)]. Despite the Arrhenius appearance, kD does not model an activation process.4

The average interaction energy of the transient complex, nUm*, which superficially resembles

the activation energy in Eyring’s and Kramers’ theories, is typically negative (leading to rate

enhancement) instead of being positive. Unlike the processes studied by Eyring and Kramers,

where an energy barrier is what hinders the rate, the diffusion-controlled rate of protein–ligand

binding is hindered by the translational and rotational constraints of the transient complex.

To calculate kD, the transient complex has to be specified. Rather than being guided by any

theoretical considerations, for many years the location of the transient complex (or, its equival-

ence in the form of an absorbing boundary) was proposed in an ad hoc way and often adjusted

for best agreement with experiment (Altobelli & Subramaniam, 2000 ; Elcock et al. 1999 ;

Gabdoulline & Wade, 1997, 2001 ; Gabdoulline et al. 2003 ; Miyashita et al. 2004 ; Northrup &

Erickson, 1992 ; Northrup et al. 1986 ; Spaar et al. 2006 ; Vijayakumar et al. 1998 ; Zhou, 1993 ;

Zhou et al. 1996, 1997, 1998a). In order to predict association rate constants from theory alone,

the transient complex has to be specified without reference to experiment. The problem is

especially challenging for protein–protein association, given the severity of orientational con-

straints on both reactant molecules. A solution was proposed by Alsallaq and Zhou (Alsallaq &

Zhou, 2007a), based on analyzing the interaction energy landscape of associating proteins.

As discussed in subsection 4.1, in a complete theory, the overall association rate constant ka
should not be sensitive to where the transient complex is placed. If it is placed far away from the

native complex, then kD will be large but k+ will be small. Conversely, if it is placed very close

to the native complex, then kD will be reduced but k+ will become very large. Either way,

3 Zhou et al. (1997) also presented a direct rationalization of why kD, the diffusion-controlled rate
constant for reaching the reactive region, is proportional to nexp(xU/kBTm*. When the reac-
tive region is really small, a ligand molecule will have to explore the vicinity around it for a long
time before being captured in it. The slow capture means that kD can be approximated as the
product of the equilibrium constant for being in the vicinity and a first-order rate constant for
transferring into the reactive region. Now the equilibrium constant is proportional to nexp(xU/
kBTm*, whereas the first-order rate constant, just like the mean residence time, is nearly inde-
pendent of the long-range potential. Therefore, kD is proportion to nexp(xU/kBTm*.

4 Because of the Arrhenius appearance, for a time the intermediate that is now called the transient

complex was referred to as the transition state (Alsallaq & Zhou, 2007a, b ; Vijayakumar et al. 1998 ; Zhou,

2001a). That nomenclature was misleading and the transition state is now reserved for the barrier separating

the transient complex and the native complex. Another term, encounter complex, has been used for

intermediates along the pathway of protein–ligand binding. It appears that this term is assigned different

meanings in different contexts, and for that reason we avoid its use here.
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Eq. (4.4) is expected to give nearly the same result for ka. However, given the considerable

difficulty and uncertainty in the calculation of k+, it is highly desirable to use kD as a close

approximation for ka. Then there is an optimal location for placing the transient complex

(Zhou, 2001a). If it is placed too far from the native complex, then the resulting kD would not be

a useful approximation for ka. On the other hand, placing the transient complex too close to

the native complex would mean that short-range interactions and conformational rearrangement

have to be dealt with in calculating kD. The native complex sits in a deep well in the interaction

energy landscape. The optimal placement for the transient-complex ensemble is at the outer

boundary of the native-complex energy well (Alsallaq & Zhou, 2007a ; Zhou, 2001a) (Fig. 4b).

The algorithm for identifying the transient complex was based on the following observation :

inside the native-complex energy well, translation and rotation are restricted, but, once outside,

the proteins gain significant translational and rotational freedom (Zhou, 2001a) (Fig. 5a). Thus,

the outer boundary of the native-complex energy well coincides with the onset of translational

and rotational freedom. To simplify the calculations required for determining the transient

complex, the short-range interaction energy stabilizing the native complex was modeled by the

number of contacts, Nc, formed between the protein partners. Translational and rotational

freedom was measured by sx(Nc), the standard deviation of the rotation angle x in con-

figurations with a given contact level Nc. A sharp increase in sx with decreasing Nc marks the

onset of translational and rotational freedom and hence the location of the transition complex

(Fig. 5b).

Since kD is used as the prediction for ka, Eq. (4.44) can be rewritten as an equation for ka :

ka=k0
ae

xhUeli*=kBT , (4:46)

where ka
0 now denotes the basal rate constant, i.e., the rate constant for reaching the transient

complex by translational and rotational diffusion in the absence of any biasing force, and the

interaction potential is denoted with a subscript ‘el ’ to signify that only electrostatic interactions

Fig. 5. Specification of the transient complex for the barnase–barstar protein pair (Alsallaq & Zhou, 2008).

(a) Scatter plot of allowed (i.e., clash-free) configurations. Each scatter point represents a cluster of allowed

configurations with the indicated contact number (Nc) and angle (x) of relative rotation. The Nc level

defining the transient complex is shown in dark color. (b) Transition of the standard deviation of x, sx, from
the native complex (with high contact numbers) to the unbound state (with low contact numbers). The start

of the sharp increase in sx, as indicated by an arrow, marks the transient complex.
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are to be included. The neglect of short-ranged non-electrostatic effects from the Boltzmann

factor is based on two considerations. First, transient-complex configurations are separated by at

least one layer of solvent (Alsallaq & Zhou, 2007b, 2008) ; therefore, short-ranged forces such as

hydrophobic and van der Waals interactions are relatively weak in the diffusion process, leading

to the transient complex. Second, short-range interactions, even when present within the tran-

sient complex, contribute much less to rate enhancement (i.e., ka/ka
0) compared to long-range

interactions (see next subsubsection). However, short-range interactions are essential for

determining the location and size of the transient-complex ensemble in configurational space,

which in turn affect the magnitude of ka
0. A transient-complex ensemble that is less restricted in

translation and rotation will lead to a higher ka
0.

The algorithm for identifying the transient-complex ensemble presented above along with

Eq. (4.46) constitutes the transient-complex theory. The theory provides an interesting dissection

on the wide spectrum of observed rate constants of protein–protein association (Alsallaq &

Zhou, 2008). Brownian dynamics simulations have found that basal rate constants, set by un-

biased diffusion, are in the range of 104–106 Mx1 sx1 (Alsallaq & Zhou, 2008 ; Qin & Zhou,

2009). This is the range of rate constants observed on antibody–antigen binding (Foote & Eisen,

1995 ; Hoffman et al. 1999 ; Wassaf et al. 2006) ; presumably, antibodies are not specifically opti-

mized for fast binding, and antibody–antigen binding processes are described well as unbiased

diffusion. However, many proteins are observed to associate faster than the basal rate constant

(Baerga-Ortiz et al. 2000 ; Candia et al. 1992 ; Darling et al. 2002 ; Escobar et al. 1993; Gianni et al.

2005 ; Goldstein & Miller, 1993 ; Hemsath et al. 2005; Johnson et al. 2007 ; Korennykh et al. 2006 ;

Miller, 1990 ; Murrell-Lagnado & Aldrich, 1993 ; Park & Raines, 2001 ; Radic et al. 1997 ; Schreiber

& Fersht, 1996 ; Shapiro et al. 2000 ; Shen et al. 1996 ; Stewart & Van Bruggen, 2004 ; Terlau et al.

1996 ; Uter et al. 2005; Walker et al. 2003 ; Wallis et al. 1995 ; Wendt et al. 1997). These association

rate constants must have been enhanced by a biasing force. The electrostatic surfaces of the

reactant partners in these systems indeed show complementarity (Alsallaq & Zhou, 2008 ;

Schreiber et al. 2009), indicating that electrostatic attraction provides the rate enhancement. The

transient-complex theory suggests that the narrow range of 104–106 Mx1 sx1 serves as a demar-

cation : lower rate constants implicate activation control, whereas rate constants in this range and

higher implicate diffusion control, with the higher rate constants further implicating electrostatic

attraction.

As recognized previously (Zhou, 2001a, 2003a), the transient-complex theory provides a nice

explanation for a widely observed phenomenon regarding the effects of ionic strength on protein

association kinetics. For many protein complexes that apparently are under diffusion control,

the association and dissociation rate constants show disparate dependences on ionic strength : ka
decreases significantly with increasing ionic strength, whereas kd is only modestly affected

by ionic strength (Baerga-Ortiz et al. 2000; Candia et al. 1992 ; Darling et al. 2002 ; Escobar et al.

1993 ; Gianni et al. 2005 ; Goldstein & Miller, 1993 ; Hemsath et al. 2005 ; Miller, 1990 ; Murrell-

Lagnado & Aldrich, 1993 ; Radic et al. 1997 ; Schreiber & Fersht, 1993 ; Shen et al. 1996 ; Stewart

& Van Bruggen, 2004 ; Walker et al. 2003 ; Wallis et al. 1995 ; Wendt et al. 1997). Ionic strength

serves to modulate the magnitude of the electrostatic attraction between two proteins ; the

attraction is weakened when ionic strength is increased, leading to significant decrease in ka.

Under diffusion control, kdB(kx/k+)kxD [Eq. (4.2b)] ; neither kxD nor kx/k+ has much

dependence on ionic strength. The former is because kxD does not depend much at all on the

electrostatic attraction (see preceding subsubsection). The latter comes about because of the

close proximity of the transient and the native complexes ; then ionic strength modulates
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electrostatic interactions in them to similar extents and consequently has little effect on their

equilibrium constant kx/k+.

Quantitative test against experimental data on many protein–protein and protein–RNA

complexes (Law et al. 2006 ; Radic et al. 1997 ; Schreiber & Fersht, 1993, 1996 ; Shen et al. 1996 ;

Wallis et al. 1995) has clearly demonstrated the predictive power of the transient-complex theory

(Alsallaq & Zhou, 2007b, 2008 ; Qin & Zhou, 2008). In a recent study, the theory was used to

dissect a record-setting rate constant, at >1010 Mx1 sx1 (Korennykh et al. 2006), of a ribotoxin

binding to a biologically essential RNA loop on the ribosome (Qin & Zhou, 2009). Electrostatic

attraction provides a 5r106-fold rate enhancement. In comparison, the binding rate constant to

the isolated RNA loop is electrostatically enhanced by 5r102-fold, in line with the results found

in other protein–protein and protein–RNA complexes (Alsallaq & Zhou, 2007b, 2008 ; Qin &

Zhou, 2008). There are two contributions to the additional 104-fold rate enhancement. First, the

rest of the ribosome provides extra electrostatic attraction to the ribotoxin. Second, neighboring

ribosomal proteins reshape the binding interface to position the transient complex into a region

in configurational space where the electrostatic attraction between the ribotoxin and the RNA

loop is particularly strong.

4.3.7 Facilitation by non-specific binding

A biological problem of great interest is the search by DNA-binding proteins for specific sites

on genomic DNA. This potentially is a slow process, akin to finding a needle (i.e., a specific

site) in a haystack (i.e., genomic DNA). That it is completed in short times routinely in cells

prompted Adam & Delbruck (1968) to look for an explanation. Their key observation is that,

by non-specifically binding to the DNA surface, a protein searches for a specific site in a one-

dimensional space rather than three-dimensional spaces. The search time, as their calculations

of first mean passage time show, in the lower dimensionality is significantly shorter. This

reduction of dimensionality idea has been further developed (Berg et al. 1981 ; Berg &

Ehrenberg, 1982 ; Halford & Marko, 2004 ; Richter & Eigen, 1974 ; Riggs et al. 1970 ; Schranner

& Richter, 1978). In particular, Berg et al. (1981) phenomenologically described four modes of

non-specific binding-facilitated translocation along the DNA: sliding, hopping, jumping, and

intersegment transfer. Berg & Ehrenberg (1982) empirically incorporated diffusion on the

DNA surface, or surface diffusion, into the Smoluchowski approach to diffusion-influenced

reactions.

Zhou & Szabo (2004) introduced a more fundamental and realistic treatment, in which non-

specific binding is accounted for by a short-range attractive potential around the DNA surface.

The first three modes described by Berg et al. (1981) are all encompassed in this treatment and

there is no need (and rigorously it is impossible) to distinguish them. (The fourth mode, inter-

segment transfer, applies to bivalent proteins and is not dealt with in this work.) Zhou and Szabo

modeled the protein as an isotropically reactive sphere, the DNA as an infinite cylinder (with

contact distance R), and the specific binding site as a reactive strip (with height 2g) ; the short-

range attractive potential, U(r), was assumed to be axially symmetric (r here denotes distance to

the cylinder axis). Applying the constant-flux approximation, the rate coefficient again can be

written in the form of Eq. (4.39a). The diffusion-controlled rate coefficient is

1

sk̂kD(s)
=

ebU (R)

2p2D

Z O

0
dl

sin2 (lg)=(lg)2

xRf k(R; m)=f (R; m)
, (4:47a)
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where m=(l2+s/D)1/2R, and f(r ; m) satisfies

ebU (r )

r

d

dr
rexbU (r ) d f (r , m)

dr
x

m2

R2
f (r , m)=0 (4:47b)

and decays to zero as rpO.

For a square-well potential with width D and depth xU*, solution of Eq. (4.47b) leads to

xRf k(R; m)
f (R; m)

=m � K1(m)xAI1(m)

K0(m)+AI0(m)
, (4:47c)

where

A=
(exU *=kBTx1)K0(m1)K1(m1)

exU *=kBT K0(m+)I1(m1)+K1(m1)I0(m1)
(4:47d)

with m1=m(1+D/R). For a model with R=30 Å and g=3 Å, at U*=x9kBT, Eqs. (4.47)

predict rate enhancements of 18- and 38-fold, respectively, for D=1 and 5 Å. These enhance-

ments are much more modest than if kD scales with exp(xU*/kBT ) [Eq. (4.44)], due to the

short-range nature of such an interaction potential. On the other hand, the non-specifically

bound complex is probably also stabilized by non-electrostatic interactions, so the magnitude of

the contact potential is much greater than the value from electrostatic attraction alone.

The above treatment was extended to account for the fact that the diffusion constant for one-

dimensional diffusion along the DNA is much smaller than that for three-dimensional diffusion

in the bulk solution (Blainey et al. 2006 ; Laurence et al. 2008 ; Wang et al. 2006), and to the case of

finite DNA lengths (Zhou, 2005b). We note that similar modeling has been used to study the role

of non-specific binding in the search for membrane-bound receptors (Adam & Delbruck, 1968 ;

Berg, 1985 ; Richter & Eigen, 1974 ; Zhou & Szabo, 2004).

4.3.8 Comment on misuse of Smoluchowski’s result

The Smoluchowski result, Eq. (4.21), which predicts a basal rate constant in the range of

109–1010 Mx1 sx1, is often cited in the literature as providing an upper bound to protein–ligand

binding rate constants. However, this result was derived for reactant molecules with isotropic

reactivity and is thus totally unrealistic for stereospecific protein–ligand binding. As stated above,

with atomistic models, the basal rate constants are found in the range of 104–106 Mx1 sx1 for

protein–protein and protein–RNA complexes (Alsallaq & Zhou, 2008 ; Qin & Zhou, 2008 ;

Schlosshauer & Baker, 2004). The five orders of magnitude reduction in basal rate constant is

due to severe orientational constraints that two reactant molecules must satisfy before forming

the native complex.

Sometimes, the Smoluchowski result is corrected to account for the orientational constraints,

in the form kD
0 =4pDRK, with the correction factor K estimated from surface fractions (e.g.,

Korennykh et al. 2007). An estimate based on surface fraction overlooks the ability of the reactant

molecules to make repeated attempts to reach the transient complex, afforded by the diffusive

nature of their motions. Another type of correction involves an activation energy, E$, with the

association rate constant given by ka=4pDRKexp(xE$/kBT ) (e.g., Pape et al. 1998). There is

no theoretical basis for such a combination of a diffusion-controlled rate constant (i.e., 4pDRK)
with an activation energy. As we stressed, the diffusion-controlled rate constant is not governed
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by an activation process. However, the diffusion- and the activation-controlled rate constants can

be combined via Eq. (4.4) to yield the overall association rate constant.

4.4 Influence of conformational fluctuations

So far, we have assumed that the reactant molecules are frozen in their native conformations.

How do conformational fluctuations affect the association rate constant? Szabo et al. (1982)

addressed this question by introducing a simple form of conformational fluctuations into the

single-patch model discussed above. They assumed that the ligand molecule can alternate be-

tween two conformations : an ‘active ’ conformation for which binding can proceed just as have

been modeled through a radiation boundary condition on a reactive patch and an ‘ inactive ’

conformation for which the reactive patch is reflecting. The two conformations switch via rate

processes :

Inactive�!
v0+

 �
vox

active: (4:48)

The conformational switch, referred to as gating, is assumed to be uncoupled to the translational

and rotational diffusion of the reactant molecules. Again using the constant-flux approximation,

Szabo et al. were able to express the ‘gated ’ association rate constant, kG, to the Laplace trans-

form of the ‘ungated ’ rate coefficient :

1

kG
=

1

ka
+

v0x

v0+
� 1

v0k̂ka(v0)
, (4:49)

where v0=v0++v0x. This result has been extended to the time-dependent rate coefficient

kG(t) (in Laplace space) and to the case where both reactant molecules are gated (Zhou & Szabo,

1996a).

When the gating is slow (i.e., v0+ and v0xp0), v0k̂a(v0)pka ; Eq. (4.49) becomes

kG �
v0+

v0
� ka � r+eqka: (4:50a)

In this limit, a ligand molecule can contribute to the inward flux on the inner boundary only if it

is initially in the active conformation, which it adopts with the equilibrium probability r+
eq.

Hence, the total rate constant is this equilibrium probability times the rate constant for a ligand

molecule that stays in the active form. In the opposite limit (i.e., v0+ and v0xpO),

v0k̂a(v0)pka(0) ; therefore,

1

kG
� 1

kD
+

1

r+eqka(0)
, (4:50b)

where we have expressed ka in terms of kD and ka(0) [see Eq. (4.32a)]. This is the rate constant

for ungated binding with effective reactivity r+eqk ; that effective reactivity is just what is ex-

pected when the conformational switch is fast. If the binding of the active form is diffusion

controlled, i.e., kpO, Eq. (4.50b) reduces to kGBkD. That is, the diffusion-controlled rate

constant is unhindered when the conformational switch is fast. This result is very significant. It

means that diffusion-controlled rate constants calculated under the assumption that the reactant

molecules are frozen in their native conformations, as is the case for the transient-complex

theory, are valid as long as the conformational fluctuations of the reactant molecules are fast.
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The calculation of kG(t), based on a single protein–ligand pair, is the same whether the protein

or ligand is gated. However, the solution to the many-body problem of a protein molecule

surrounded by an excess of ligand molecules does depend on which reactant is gated (Zhou &

Szabo, 1996b). When the ligand molecules are gated, effectively they independently bind with the

protein molecule, and Eq. (4.17b) still holds for the survival probability of the protein, except

that the rate coefficient is now replaced by kG(t) :

S(t )=e
xCL

R t

0
dtkG(t ): (4:51a)

However, when the protein molecule is gated, the dynamics of the ligand molecules around it

become coupled : when the protein undergoes an active to inactive switch, all the surrounding

ligand molecules simultaneously sense a change in the boundary condition from radiation to

reflection. Zhou & Szabo (1996b) proposed the following rate equations :

d

dt

Sa(t )
Si(t )

� �
= xv0xxr x1

+eq kG(t )CL v0+

v0x xv0+

� �
� Sa(t )Si(t )

� �
(4:51b)

for the probabilities, Sc(t), that the protein survives at time t while in conformation c, c=‘ a ’ for

active and ‘ i ’ for inactive, respectively ; S(t)=Sa(t)+Si(t). The solution of these rate equations

is in good agreement with computer simulations. Under fast gating, Eq. (4.51b) reduces to

Eq. (4.51a).

Some enzymes have buried active sites, with narrow tunnels leading to the exterior ; con-

formational fluctuations of bottlenecks, or gates, along the tunnels must occur to allow for

substrate access and product release (Zhou & McCammon, 2010). When a gate along the tunnel

to the active site switched between closed and open states according to scheme (4.48), an

approximate result for the gated binding rate constant similar to Eq. (4.49) was found (Zhou,

1998) :

1

kG
=

1

ka
+

v0x

v0+
� 1

v0 ĴJ (v0)
, (4:52)

where ka again is the ungated rate constant and J(t) is the total flux across the gate at time t

when the substrate was started from an equilibrium distribution confined to the outside of the

gate. Ĵ(s) has the following limiting values :

sĴJ (s)pka as sp0, (4:53a)

sĴJ (s)p
DAg

2
hexU=kBT ig(s=D)1=2 as spO, (4:53b)

where Ag is the area of the gate and n� � �mg denotes an average over the cross-section of the gate.
Using these results, we can find the gated rate constant in the slow gating limit :

kGpr+eqka as w0p0 (4:54a)

and in the fast gating limit :

kGpka as w0pO: (4:54b)

The last result states that, under fast gating, the gated rate constant approaches the ungated rate

constant, even if binding when the gate is open is not limited by diffusion.
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Zhou et al. (1998b) used Eq. (4.52) to study the substrate binding rate constant to acetyl-

cholinesterase, an enzyme with a buried active site but still affording one of the highest kcat/KM

values, at y109 Mx1 sx1 (Nolte et al. 1980 ; Ordentlich et al. 1993 ; Pryor et al. 1992 ; Vellom et al.

1993). Analysis of the gating dynamics obtained from molecular dynamics simulations showed

that, for the intended substrate, acetylcholine, it is close to the fast-gating regime, and the gated

rate constant is lower than the ungated rate constant by just 2-fold, even though r+eq is only 2%.

Combined with the ungated rate constant previously calculated from Brownian dynamics

simulations (Zhou et al. 1996), the gated rate constant is found to be in the range of measured

kcat/KM values. However, for a somewhat larger substrate, modeling butyrylcholine, the gated rate

constant is three orders of magnitude lower (r+eq decreases to 8r10x5), in line with similar

decreases in kcat/KM observed for that substrate (Ordentlich et al. 1993 ; Pryor et al. 1992 ; Vellom

et al. 1993). Conformational gating thus affords the enzyme exquisite substrate selectivity. That

gating is essential in the selectivity is supported by the observation that when bulky side chains

constituting the gate are mutated into smaller ones, presumably bringing the gating dynamics for

butyrylcholine toward the fast-gating regime through an increase in r+eq, kcat/KM for butyryl-

choline is significantly increased (Ordentlich et al. 1993 ; Pryor et al. 1992 ; Vellom et al. 1993).

4.5 Intermolecular versus intramolecular binding

When the protein and ligand are covalently linked, their binding becomes intramolecular. Under

an approximate treatment of the linker, a simple relation between the equilibrium constants of

the inter- and intramolecular binding processes has been derived (Zhou, 2001b ; Zhou & Gilson,

2009). The linker is assumed to be flexible and to have negligible interactions with the protein

and the ligand; the end-to-end distance at which the probability density, rL(r), of the end-to-end

vector r is maximal is assumed to be much greater other relevant lengths, such as the size of the

native-complex energy well, and the range of a long-range potential if present. Then

K L
a =KarL(a): (4:55)

Throughout this subsection we use a superscript L to denote quantities for the intramolecular

process ; a denotes the end-to-end vector in the native complex. What are the corresponding

relations between the rate constants of the inter- and intramolecular binding processes?

When the binding is activation controlled, it is easy to see that

kLa � karL(a), (4:56a)

kLd � kd: (4:56b)

When the binding is diffusion controlled, these relations for the rate constants still hold if

Ka
L=KarL(a)@1 and the linker does not affect the relative diffusion constant of the protein and

ligand. The justification is the same as the one leading to Eq. (4.46), which captures the effect of

long-range electrostatic attraction on ka (Zhou, 2002, 2001c). A check of Eq. (4.56a) is provided

by the rate constant for the diffusion-controlled end-to-end contact formation of a polymer

chain obeying Gaussian statistics, obtained by Szabo et al. (1980) by calculating the mean first

passage time. Let the contact distance be a and the mean square of the end-to-end distance be

nr2m. The probability density for the end-to-end vector is (3/2pnr2m)3/2exp(x3r2/2nr2m). When

a@nr2m1/2, which is equivalent to Ka
L@1, Szabo et al.’s result is

kLa � 4pDa � (3=2phr 2i)3=2:
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The first factor, 4pDa, can be recognized as the diffusion-controlled rate constant for inter-

molecular contact formation ; the second factor, (3/2pnr2m)3/2, can be recognized as the prob-

ability density of the end-to-end vector at r=a [when a@nr2m1/2, exp(x3a2/2nr2m)p1]. Hence,

Szabo et al.’s result conforms to Eq. (4.56a).

Equation (4.55) has been used to derive the association constant for a bivalent ligand, which

features two fragments connected by a linker ; the framents bind to two separate sites (named 1

and 2) on the protein (Zhou, 2001b). After binding the first fragment, the binding of the second

fragment becomes intramolecular. The overall association constant of the bivalent ligand is thus

K B
a =Ka1Ka2rL(a): (4:57)

Here we use a superscript B to denote quantities for the bivalent ligand ; Ka1 and Ka2 are the

association constant for the first fragment when the second is absent and vice versa ; and a again

denotes the end-to-end vector of the linker in the native complex.

The native complex can be formed by first occupying site 1 and then site 2 or by proceeding in

the reverse order :

P + L1       L2 L1PL2

L1P
L2

PL2

L1

ka1

ka2

L
a 2k

L
a1k

kd1

kd2

Making a steady-state approximation for each singly bound species, the overall rate constant for

binding the bivalent ligand is

kBa=
ka1k

L
a2

kd1+kLa2
+

ka2k
L
a1

kd2+kLa1
: (4:58a)

Applying the approximation of Eq. (4.56a) to ka1
L and ka2

L and expressing kd1 and kd2 as ka1/Ka1

and ka2/Ka2, respectively, we find (Zhou, 2003b)

kBa �
ka1ka2Ka1rL(a)

ka1+ka2Ka1rL(a)
+

ka1ka2Ka2rL(a)

ka2+ka1Ka2rL(a)
: (4:58b)

However, validity of Eq. (4.56a) requires that Ka1r(a) and Ka2r(a)@1; hence,

kBa � ka1Ka2rL(a)+ka2Ka1rL(a): (4:58c)

4.6 Reversibility

Up to now we have treated the protein–ligand binding process as though it is irreversible. The

kinetics of reversible diffusion-influenced binding has long attracted the attention of theorists

(Agmon, 1984; Gopich &Doktorov, 1996 ; Gopich & Szabo, 2002 ; Lee &Karplus, 1987 ; Lukzen

et al. 1986 ; Naumann, 1994 ; Szabo, 1991 ; Yang et al. 1998). For simplicity we only consider the

pseudo-first-order limit, where effectively a single protein molecule is surrounded by excess

ligand molecules. Upon binding with one ligand molecule, the protein surface becomes reflecting

for all the other diffusing ligand molecules. The fact that the binding of a single ligand molecule

instantaneously changes the boundary condition for the diffusion of all the other ligand molecules
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renders the problem many-body in nature. In general the kinetics is quite complicated, but under

two limiting situations it is simplified. The first is when diffusion is infinitely fast (and the binding

is thus activation controlled). Then a newly released ligand molecule will immediately equilibrate

with the other ligand molecules to reach the equilibrium distribution, and consequently the

ordinary rate equation, Eq. (2.15), applies. The relaxation function Y(t)=[CP(t)xCPeq]/

[CP(0)xCPeq] is then given by Eq. (2.16), with the association rate constant ka replaced by the

activation-controlled limit kA. In Laplace space, the relaxation function is

ŶY (s)=
1

s+kA(CL+Kd)
: (4:59)

The second limiting situation is when binding and unbinding are under the influence of diffusion

but occur infrequently. Then a newly released ligand molecule will have sufficient time, before

the next binding event, to equilibrate with the other ligand molecules and reach the steady-state

distribution of irreversible binding. Again, the ordinary rate equation applies for the relaxation of

the protein concentration at times longer than that for reaching the steady-state distribution of

irreversible binding, but now the association rate constant is the ka calculated in the preceding

subsections under the assumption of irreversible binding.

When binding and unbinding are under the influence of diffusion and not infrequent, a newly

released ligand molecule and the other ligand molecules do not have sufficient time to relax to

the steady-state distribution of irreversible binding ; the concentration of ligand molecules

around the protein will thus be somewhat higher than expected from that distribution, and hence

the effective binding rate constant will be higher than the ka for irreversible binding.

Gopich & Szabo (2002) devised a self-consistent relaxation time approximation for the kinetics

of reversible diffusion-influenced binding. In Laplace space, their relaxation function is given by

ŶY (s)=
1

s+sk̂kG(s)(CL+Kd)
, (4:60a)

where

1

rbeq � sk̂kG(s)
=

1

sk̂ka(s)
+

rueq

rbeq

� 1

(s+k0)k̂ka(s+k0)
(4:60b)

has a structure similar to a gated rate coefficient for irreversible binding [see Eq. (4.49)]. The

‘gating ’ rate k0 is determined self-consistently by requiring that the area under the relaxation

function, i.e., Ŷ(0), is the inverse of k0. When diffusion is infinitely fast, sk̂a(s) and sk̂G(s)pkA

and Eq. (4.60a) reduces to Eq. (4.59). The connection to a gated rate coefficient for irreversible

binding comes from the fact that the unbound protein allows the surrounding ligand mole-

cules to bind but the bound protein is reflecting to them. Notice, however, that Eq. (4.60b)

differs from Eq. (4.49) by the appearance of rbeq on the left-hand side. As a result, here sk̂G(s)>
sk̂a(s), an outcome already anticipated in the preceding paragraph. In contrast, gating trans-

ition from an active form to an inactive from always reduces the rate coefficient for irreversible

binding.

5. Macromolecular crowding

In applying rate theories to model cellular functions, one must account for the effects of the

crowded environments inside cells. Macromolecular crowding is expected to significantly affect
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kinetic properties of proteins and nucleic acids (Zhou et al. 2008). In general, macromolecular

crowding can be treated implicitly by accounting for its effects on the energy functions and

dynamics of the reactant molecules (Minton, 1989 ; Zhou, 2004).

In a 1991 paper (Zhou & Szabo, 1991), the implicit treatment of macromolecular crowding

was directly tested against molecular dynamics simulations. [These simulations (Dong et al. 1989 ;

Zhou & Szabo, 1991) are probably the earliest on protein–protein association under crowded

conditions ; interest in such simulations has been revived (Kim & Yethiraj, 2009 ; Wieczorek &

Zielenkiewicz, 2008).] The total simulation system consisted of a box of 500 hard spheres,

occupying a total volume fraction of 41%. The hard spheres underwent ballistic motion and

elastic collision. One of the hard spheres was labeled as protein P, different numbers of other

hard spheres were labeled as protein L, and the remaining hard spheres as crowders. Whenever

an L sphere collided with the P sphere, a complex was considered to be formed instantaneously.

From the simulation trajectories, the survival probability of protein P at different times was

obtained. The survival probability agreed well with the prediction of Eq. (4.17b), when the rate

coefficient was calculated according to the centrosymmetric model of subsubsection 4.3.1 with

a radiation boundary condition. The relative diffusion constant and the effective interaction

potential of the associating proteins implicitly accounted for the effects of the crowders. This

study demonstrates that rate theories can work under crowded conditions after the energetic and

dynamic determinants of the rate constant are corrected for crowding effects. It is now possible

to simulate the Brownian motions of concentrated protein molecules represented at a realistic

level (McGuffee & Elcock, 2006) ; such simulations will provide a new test ground for rate

theories.

Below we present some theoretical results on how macromolecular crowding affects the

dynamics and energetics of reactant molecules.

5.1 Effects on diffusion constants

It seems that not much attention has been paid by theorists to how internal dynamics of

macromolecules is affected by crowding, although the problem has been studied by molecular

dynamics simulations (Cheung et al. 2005 ; Minh et al. 2006 ; Mittal & Best, 2010 ; Qin et al. 2010).

On the other hand, the problem of how the translational diffusion constant of a macromolecule

is affected by crowding is a classical problem. The theory of Tokuyama & Oppenheim (1994,

1995), for a tracer hard sphere crowded by other identical hard spheres, is one of the most

rigorous. Each particle undergoes Brownian motion, with diffusion constant D, were it not for

hydrodynamic interactions and collisions with other particles. The effective diffusion constant of

the tracer particle, as a function of the crowder volume fraction W, is given by

Dc

D
=

1x9W=32

1+Ll(W)+Ln(W=W0)
, (5:1a)

where

Ll(W)=
2b21
1xb1

x
b2

1+2b2
+ x

2b1b2

1xb1+b2
1x

6b1b2

1xb1+b2+4b1b2
+

2b1b2

1xb1+b2+2b1b2

� ��

+
b1b

2
2

(1+b2)(1xb1+b2)
1+

3b1b
2
2

(1+b2)(1xb1+b2)x2b1b22
x

b1b
2
2

(1+b2)(1xb1+b2)xb1b
2
2

� ��
,

(5:1b)
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Ln(W=W0)=
W=W0

(1xW=W0)
2 (5:1c)

with b1=(9W/8)1/2, b2=11W/6, and W0B0�5718. The numerator of the right-hand side of

Eq. (5.1a) accounts for collisions, the Ll(W) term accounts for local hydrodynamic interactions

(arising from a static distribution of neighboring particles), and the Ln(W) term accounts for non-

local hydrodynamic interactions (arising from a relaxed distribution of neighboring particles).

For a mixture of different-sized ‘soft ’ crowders, Tokuyama (2009a, b) suggests fitting exper-

imental data according to the following formula :

Dc

D
=

1

1+Ll(W)+gLn(W=W0)
(5:2)

with g and W0 as adjustable parameters.

At W=0�3, which approximates the level of intracellular crowding (Zimmerman & Trach,

1991), Eq. (5.1a) predicts a 5-fold reduction in diffusion constant. This is generally consistent

with the extent of crowding-induced reduction in translational diffusion constant measured

on proteins in cytoplasm and concentrated solutions (Kuttner et al. 2005 ; Li et al. 2009 ;

Swaminathan et al. 1997). These experiments also show that rotational diffusion constants are

reduced to a lesser extent, as to be expected. Similarly, one expects the effect of crowding on the

effective friction coefficient or diffusion constant for internal dynamics to be relatively modest.

5.2 Effects on free energies of transition states and transient complexes

Crowding also affects the energy functions of macromolecules. A universal and significant

aspect of the crowding effect, known as excluded-volume interactions, arises from the fact that

molecules cannot occupy the same region in space. Excluded-volume interactions increase the

free energy of a macromolecule, but the increase depends on its conformation. Compared to a

more open conformation, a compact conformation is more easily accommodated into a distri-

bution of crowders, and hence the crowding-induced increase in free energy, DGc, is less.

Effectively, crowding changes the relative stability between these two conformations in favor

of the latter. According to scaled particle theory (Lebowitz et al. 1965), DGc for a spherical test

particle (with radius Rp) crowded by other spherical crowders (with radius Rc and occupying

a volume fraction W) is

DGc=kBT=x ln (1xW)+
CSc

1xW
Rp+

CRc

1xW
+

(CSc)
2

8p(1xW)2

� �
Sp

+
C

1xW
+

C 2RcSc

(1xW)2
+

(CSc)
3

12p(1xW)3

� �
Vp,

(5:3)

where C is the number density of the crowders, Sc and Sp are the surface areas of the crowders

and the test particle, respectively, and Vp is the volume of the test particle. As to be expected,

DGc increases with increasing Rp. A recent development extends Eq. (5.3) to atomistic proteins,

with the geometric parameters Rp, Sp, and Vp calculated from protein conformations (Qin and

Zhou, 2010).

When a protein undergoes a folding transition, the transition state is more compact than the

unfolded state. Excluded-volume interactions with crowders are thus expected to stabilize the

folding transition state. If it is assumed that the effective diffusion constant along the folding

280 H.-X. Zhou



reaction coordinate is not affected (see preceding subsection), then crowding would increase the

folding rate.

Similarly, crowding is expected to stabilize the transient complex of a protein–protein

pair relative to the unbound state. Crowding thus produces two opposing contributions to the

diffusion-controlled association rate constant : a decrease due to the reduction in translational

(and to a less extent rotational) diffusion constant and an increase due to the stabilization of the

transient complex. The two opposing contributions lead to a rather modest net effect by

crowding. Assuming that the crowding-induced change in free energy, DDGc, with the unbound

state as a reference, is long ranged, one may adapt Eq. (4.46) to obtain the following result for the

association rate constant under crowding (Zhou, 2004) :

kac=kae
xhDDGci*=kBT , (5:4)

where ka is the rate constant in a dilute solution and <DDGc>* is the average of DDGc in

the transient complex. [An additional factor, arising from the disparate effects of crowding on

translational and rotational diffusion constants, may also be introduced; see Eq. (4.36d).]

Calculations suggest that DDGc, like electrostatic attraction between two proteins, is indeed long

ranged (Qin, Lu, and Zhou, to be published).

6. Illustrative applications

We now present several examples to illustrate how rate theories can be used to yield insight at the

microscopic level on proteins and DNA undergoing transitions.

6.1 Unfolding/unzipping under force

The unfolding of proteins, unzipping of nucleic acids, and dissociation of protein–ligand

complexes have been studied in many single-molecule ‘pulling ’ experiments (Cao et al. 2008 ;

Carrion-Vazquez et al. 1999 ; Chen et al. 2007 ; Greenleaf et al. 2008 ; Kellermayer et al. 1997 ;

Liphardt et al. 2001 ; Marshall et al. 2005 ; Mathé et al. 2004 ; Merkel et al. 1999 ; Rief et al. 1997,

1999 ; Schlierf & Rief, 2006 ; Yang et al. 2000). As the pulling force is increased monotonically

with time, at some point the system undergoes an unfolding/unzipping (or dissociation) tran-

sition. The pulling force at that point is referred to as the rupture force. The transition can be

modeled as a rate process, with the rate coefficient ku affected by the time-dependent pulling

force F(t). The survival probability of the intact system is then governed by (Evans & Ritchie,

1997)

_SS (t )=xku(F (t ))S (t ), (6:1a)

which has the solution

S (t )=e
x
Rt
0

dt ku(F (t ))

=e
x
RF
0

dF ku(F )= _FF

: (6:1b)

For a stiff system pulled at a constant speed v by a spring with spring constant ks, one has F=ksvt

and _FF=ksv. The probability density of the rupture force, r(F), is related to the survival prob-

ability via

r(F )dF=x _SS (t )dt : (6:2a)

Rate theories for biologists 281



Hence,

r(F )=x
_SS (t )
_FF

=
ku(F )

_FF
e
x
RF
0

dF ku(F )= _FF

: (6:2b)

If ku(F) is calculated from a theory (see below), Eq. (6.2b) can be used to predict the distribution

of the rupture force.

Experimentalists face the reverse problem: they measure the distribution of the rupture force

and want to extract ku(F) from their data.5 To that end, one rearranges Eq. (6.1a) to express ku(F)

in terms of S(t) and its time derivative and then uses Eq. (6.2a) to express the latter two quantities

in terms of r(F). The result is

ku(F )=
r(F ) _FFRO

F
dFr(F )

: (6:3)

As observed by Dudko et al. (2006, 2008), data collected at different pulling speeds and analyzed

according to Eq. (6.3) should all collapse to the same curve.

Now we consider the calculation of ku(F). The unfolding/unzipping transition can be

modeled as an escape from a potential well along the pulling direction. The pulling force

modifies the potential function from U0(x) to U0(x)xFx, where x is the coordinate along

the pulling direction. Assuming that the motion along x is diffusive, Kramers’ formula

[Eq. (3.44)] predicts the force-dependent rate coefficient as (Evans & Ritchie, 1997 ; Shapiro &

Qian, 1997)

ku(F )

ku0
=

R
barrier

dx eU0(x)=kBT
R
well

dx exU0(x)=kBTR
barrier

dx e(U0(x)xFx)=kBT
R
well

dx ex(U0(x)xFx)=kBT
, (6:4)

where ku0 is the rate coefficient in the absence of force, and well and barrier mean that

the integrations are restricted to these regions. Dudko et al. (2006) evaluated these integrals

approximately for a quadratic-cusp form and a linear-cubic form of U0(x). The results in both

cases can be written as

ku(F )

ku0
= 1x

nFDx$

DU $

� �1=nx1

e[1x(1xnFDx$=DU $)1=v ]DU $=kBT , (6:5)

where n=1/2 and 2/3 for the two forms of potentials, respectively ; DU$ is the activation energy

of U0(x) ; and Dx
$ is the displacement between the bottom of the well and the top of the barrier.

When n=1, Eq. (6.5) reduces to Bell’s formula (Bell, 1978).

Dudko et al. (2008) analyzed data from two single-molecule experiments. One studied the

unfolding of a protein by atomic force microscopy (Schlierf & Rief, 2006) ; the other studied the

voltage-induced unzipping of a DNA pair in a nanopore (Mathé et al. 2004). The data from each

experiment, collected at different pulling or voltage-ramp speeds, when processed according to

Eq. (6.3), collapsed to a single curve, yielding ku(F). They then fitted these ku(F) to Eq. (6.5) to

generate values for the microscopic parameters ku0, DU
$, and Dx$.

5 While technically more challenging, ku(F) can be directly measured by pulling at constant force
rather than at constant speed.
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6.2 Kinetics of fluctuating enzymes

Single-molecule experiments have revealed that a single enzyme can produce a wide range

of turnover rates, presumably due to conformational fluctuations (Antikainen et al. 2005 ;

English et al. 2006; Flomenbom et al. 2005 ; Lu et al. 1998 ; Shi et al. 2006 ; van Oijen et al. 2003 ;

Zhang et al. 2004). In particular, English et al. (2006) followed events of turning over a fluorogenic

substrate by b-galactosidase. The turnover rates at each substrate concentration fluctuate widely,

but the dependence of the average rate, as measured by the inverse of the average waiting time,

ntm, between turnover events, on substrate concentration conforms to the Michaelis–Menten

relation. This apparent Michaelis–Menten behavior initially was explained by invoking the

assumption that conformational exchanges in the enzyme–substrate complex are extremely slow

(i.e., in the quasi-static limit) (Kou et al. 2005). A later reexamination suggested that the

Michaelis–Menten behavior was the result of a very small kcat (i.e., satisfying the quasi-equilibrium

condition) (Min et al. 2006 ; see also Qian, 2008).

The sequence of waiting times contains rich information. Besides the average, the distribution

function w(t) and the correlation function ci=n(tixntm)(t0xntm)m, where ti is the ith waiting

time, are useful. Min & Xie (2006) showed that the correlation function measured on

b-galactosidase (English et al. 2006) is mimicked by the correlation between events of crossing a

tiny (0�1 kBT) energy barrier in a double-well potential, when the dynamics is governed by the

generalized Langevin equation with a power-law memory kernel. That memory kernel itself was

motivated by the observed dynamic behavior of the distance between the electron donor and

acceptor in a protein (Min et al. 2005). The fluctuations of the distance were modeled well as a

particle moving in a harmonic well according to the generalized Langevin equation with a

power-law memory kernel.

6.3 Protein folding and association under crowding

Ai et al. (2006) measured the folding and unfolding rate constants of a four-helix bundle protein

under crowding. In the presence of 85 g lx1 of a crowding agent, PEG 20 K, the folding rate

constant is increased by 2-fold but the unfolding rate constant is essentially unchanged.

Qualitatively, these observations are consistent with crowding effects dominated by excluded-

volume interactions. To carry out a quantitative test, the transition-state ensemble of this protein

was generated from molecular dynamics simulations (Tjong & Zhou, 2010). It consists of highly

compact conformations with residual secondary structures. Calculations of crowding effects on

the transition-state ensemble yield changes in folding and unfolding rate constants that are in

agreement with experimental results.

Yuan et al. (2008) studied the effects of crowding on the pulling force required to unfold

ubiquitin. Compared to the result in a dilute solution (unfolding force at 210 pN), the unfolding

force increases by 24 pN when the concentration of a crowding agent, dextran 40 K, is increased

to 300 g lx1. The increase in pulling force was interpreted as the reflection of a decrease in the

unfolding rate constant. The latter in turn was attributed to the destabilization of the transition

state, relative to the more compact folded state, by dextran crowding. By representing the tran-

sition state as a sphere somewhat enlarged from the folded state and using Eq. (5.3) to calculate

the change in activation energy by crowding, the experimental results could be explained.

Kuttner et al. (2005) studied how PEG 8 K affects the association rate constant of two

proteins. To dissect the contributions of crowding, they also measured the effects of the
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crowding agent on translational and rotational diffusion constants of proteins. As already noted

in subsection 5.1, crowding affects the two types of diffusion constants to different extents. After

correcting for the reductions in diffusion constants, Kuttner et al. found that the association

constant is higher than expected, implicating a crowding-induced stabilization of the tran-

sient complex ; the stabilization is y0�8 kBT, in line with calculations (Qin, Lu, and Zhou, to be

published).

7. Conclusion and outlook

We have summarized some of the rate theories that are most useful for modeling biological

processes. Highlighted are strengths and limitations of different theories and their interconnec-

tions, in particular between those for unimolecular reactions and those for bimolecular reactions.

Examples are presented to demonstrate that rate theories can help generate insight at the

microscopic level into biomolecular behaviors.

In general, rate constants depend on both the energetics and the dynamics of reaction

coordinates. In developing rate theories, a minimum requirement is that the ratio of the forward

and reverse rate constants is the same as the equilibrium constant, which only depends on

energetics. If a theory, such as the transition-state theory, is based on classical statistical mech-

anics, then the final result for the rate constant should not include Planck’s constant, which is a

signature of quantum effects.

The Smoluchowski model of diffusion-controlled non-specific binding between spherical

particles is inappropriate for stereospecific protein–ligand binding. Rather, because of the

orientational constraints arising from the stereospecificity, the limit of the rate constant set by

random diffusion is several orders of magnitude lower than the Smoluchowski result. Two

mechanisms have been proven to provide rate enhancement : long-range attraction provided by

protein–ligand electrostatic interactions and reduction of dimensionality provided by non-

specific binding.

Active developments can be anticipated in several areas :

1. Implementation of rate theories through computer simulations. While in principle it is

possible to simulate the motions of reactant molecules as a whole and observe rare transitions

between states, it is far more practical and perhaps more insightful to focus on a small number

of coordinates that are intimately related to these transitions. The problem then becomes one

of calculating potentials of mean force and effective friction coefficients or diffusion constants

for these coordinates. The prospect of combining these modeling efforts with experimental

probes is particularly exciting.

2. Application of rate theories to complex biological processes involving multiple steps.

Examples of such processes include chaperonin-assisted protein folding and translation of

mRNA into protein (Martin et al. 1993; Rodnina et al. 2005). Mechanistic models of such

processes often assume an ordered sequence of steps. In reality, side reactions (such as

binding of non-cognate aminoacyl-tRNAs to the decoding center) occur alongside on-

pathway reactions. In the same way that reaction coordinates capture the essence of inter-

state transitions, it can be anticipated that dominant pathways emerge in the midst of all

possible side reactions, thus providing a theoretical basis for an ordered-sequence description.

3. Application of rate-theory techniques to the modeling of other biological problems. In par-

ticular, the transport of ions across transmembrane protein channels (Berezhkovskii &
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Bezrukov, 2004 ; Berneche & Roux, 2003 ; Goychuk & Hanggi, 2002 ; Lear, 2003 ; Lauger et al.

1980 ; Levitt, 1986 ; Roux et al. 2004 ; Yi et al. 2009) and the generation of directed movement

or rotation by motor proteins (Astumian, 1997 ; Bier, 2003 ; Bustamante et al. 2001 ; Gao et al.

2005 ; Junge, 1999 ; Kinosita et al. 2004 ; Kolomeisky & Fisher, 2007 ; Okada & Hirokawa,

2000 ; Qian, 1997, 2000 ; Wu et al. 2007; Xing et al. 2004 ; Yildiz et al. 2004 ; Zhou & Chen,

1996) are amenable to mathematical models similar to those for chemical reactions (Zhou,

2005a). Cross-fertilization among different areas will accelerate theoretical development in

each area and perhaps lead to a unifying theoretical framework.

4. More realistic modeling of crowding effects in calculations of rate constants. An atomistic

model of crowders and inclusion of interactions in addition to the excluded-volume type will

greatly increase the realism in representing intracellular environments. With such increased

realism, theories will be able to produce rate constants that can be used in systems biology

studies.
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MUñOZ, V., HENRY, E. R., HOFRICHTER, J. & EATON, W. A.

(1998). A statistical mechanical model for b-hairpin

kinetics. Proceedings of the National Academy of Sciences of the

United States of America 95, 5872–5879.

MURRELL-LAGNADO, R. D. & ALDRICH, R. W. (1993).

Energetics of Shaker K channel’s block by inactivation

peptides. Journal of General Physiology 102, 977–1003.

NAUMANN, W. (1994). Competitive reversible binding: a

theoretical study of density effects on the long-time

relaxation. Journal of Chemical Physics 101, 10953–10960.

NITZAN, A. (1987). Non-Markovian theory of activated

rate processes. VI. Unimolecular reactions in condensed

phases. Journal of Chemical Physics 86, 2734–2749.

NOE, F. & FISCHER, S. (2008). Transition networks for

modeling the kinetics of conformational change in

macromolecules. Current Opinion in Structural Biology 18,

154–162.

NOLTE, H. J., ROSENBERRY, T. L. & NEUMANN, E. (1980).

Effective charge on acetylcholinesterase active sites

determined from the ionic strength dependence of

association rate constants with cationic ligands. Bio-

chemistry 19, 3705–3711.

NORTHRUP, S. H. & ERICKSON, H. P. (1992). Kinetics of

protein–protein association explained by Brownian dy-

namics computer simulation. Proceedings of the National

Academy of Sciences of the United States of America 89,

3338–3342.

NORTHRUP, S. H. & HYNES, J. T. (1980). The stable states

picture of chemical reactions. I. Formulation for rate

constants and initial condition effects. Journal of Chemical

Physics 73, 2700–2714.

NORTHRUP, S. H., REYNOLDS, J. C. L., MILLER, C. M.,

FORREST, K. J. & BOLES, J. O. (1986). Diffusion-

controlled association rate of cytochrome c and cyto-

chrome c peroxidase in a simple electrostatic model.

Journal of the American Chemical Society 108, 8162–8170.

OKADA, Y. & HIROKAWA, N. (2000). Mechanism of the

single-headed processivity : diffusional anchoring be-

tween the K-loop of kinesin and the C terminus of tu-

bulin. Proceedings of the National Academy of Sciences of the

United States of America 97, 640–645.

ONSAGER, L. (1931). Reciprocal relations in irreversible

processes. II. Physical Review 38, 2265–2279.

ORDENTLICH, A., BARAK, D., KRONMAN, C., FLASHNER, Y.,

LEITNER, M., SEGALL, Y., ARIEL, N., COHEN, S., VELAN,

B. & SHAFFERMAN, A. (1993). Dissection of the human

acetylcholinesterase active-center determinants of sub-

strate-specificity – Identification of residues constitut-

ing the anionic site, the hydrophobic site, and the acyl

pocket. Journal of Biological Chemistry 268, 17083–17095.

Rate theories for biologists 289



PAPE, T., WINTERMEYER, W. & RODNINA, M. (1998).

Complete kinetic mechanism of elongation factor Tu-

dependent binding of aminoacyl-tRNA to the A site of

the E. coli ribosome. The EMBO Journal 17, 7490–7497.

PARK, C. & RAINES, R. T. (2001). Quantitative analysis of

the effect of salt concentration on enzymatic catalysis.

Journal of the American Chemical Society 123, 11472–11479.

POLLAK, E. (1986). Theory of activated rate processes : a

new derivation of Kramers’ expression. Journal of

Chemical Physics 85, 865–867.

POLLAK, E., GRABERT, H. & HANGGI, P. (1989). Theory of

activated rate processes for arbitrary frequency depen-

dent friction: solution of the turnover problem. Journal

of Chemical Physics 91, 4073–4087.

PONTRYAGIN, L., ANDRONOV, A. & VITT, A. (1933). On the

statistical treatment of dynamical systems. Journal of

Experimental and Theoretical Physics 3, 165–180.

PRYOR, A. N., SELWOOD, T., LEU, L. S., ANDRACKI, M. A.,

LEE, B. H., RAO, M., ROSENBERRY, T., DOCTOR, B. P.,

SILMAN, I. & QUINN, D. M. (1992). Simple general acid-

base catalysis of physiological acetylcholinesterase

reactions. Journal of the American Chemical Society 114,

3896–3900.

QIAN, H. (1997). A simple theory of motor protein kinetics

and energetics. Biophysical Chemistry 67, 263–267.

QIAN, H. (2000). A simple theory of motor protein kinetics

and energetics. II. Biophysical Chemistry 83, 35–43.

QIAN, H. (2008). Cooperativity and specificity in enzyme

kinetics : a single-molecule time-based perspective.

Biophysical Journal 95, 10–17.

QIN, S., MINH, D. D., MCCAMMON, J. A. & ZHOU, H.-X.

(2010). Method to predict crowding effects by post-

processing molecular dynamics trajectories : application

to the flap dynamics of HIV-1 protease. Journal of

Physical Chemistry Letters 1, 107–110.

QIN, S. & ZHOU, H. X. (2008). Prediction of salt and mu-

tational effects on the association rate of U1A protein

and U1 small nuclear RNA stem/loop II. Journal of

Physical Chemistry B 112, 5955–5960.

QIN, S. & ZHOU, H.-X. (2009). Dissection of the high rate

constant for the binding of a ribotoxin to the ribosome.

Proceedings of the National Academy of Sciences of the United

States of America 106, 6974–6979.

QIN, S. & ZHOU, H.-X. (2010). Generalized fundamental

measure theory for atomistic modeling of macromole-

cular crowding. Physical Review E 81, 031919.

RADIC, Z., KIRCHHOFF, P. D., QUINN, D. M., MCCAMMON,

J. A. & TAYLOR, P. (1997). Electrostatic influence on the

kinetics of ligand binding to acetylcholinesterase. Journal

of Biological Chemistry 272, 23265–23277.

RICHTER, P. H. & EIGEN, M. (1974). Diffusion controlled

reaction rates in spheroidal geometry. Application to

repressor–operator association and membrane bound

enzymes. Biophysical Chemistry 2, 255–263.

RIEF, M., CLAUSEN-SCHAUMANN, H. & GAUB, H. E. (1999).

Sequence-dependent mechanics of single DNA mole-

cules. Nature Structural Biology 6, 346–349.

RIEF, M., GAUTEL, M., OESTERHELT, F., FERNANDEZ, J. M.

& GAUB, H. E. (1997). Reversible unfolding of

individual titin immunoglobulin domains by AFM.

Science 276, 1109–1112.

RIGGS, A. D., BOURGEOIS, S. & COHN, M. (1970). The lac

repressor–operator interaction. III. Kinetic studies.

Journal of Molecular Biology 53, 401–417.

RISKEN, H. (1989). The Fokker–Planck Equation, 2nd edn.

Berlin : Springer-Verlag.

RODNINA, M. V., GROMADSKI, K. B., KOTHE, U. &WIEDEN,

H. J. (2005). Recognition and selection of tRNA in

translation. FEBS Letters 579, 938–942.

ROUX, B., ALLEN, T., BERNECHE, S. & IM, W. (2004).

Theoretical and computational models of biological ion

channels. Quarterly Reviews of Biophysics 37, 15–103.

SCHAAD, O., ZHOU, H. X., SZABO, A., EATON, W. A. &

HENRY, E. R. (1993). Simulation of the kinetics of ligand

binding to a protein by molecular dynamics : geminate

rebinding of nitric oxide to myoglobin. Proceedings of the

National Academy of Sciences of the United States of America

90, 9547–9551.

SCHLIERF, M. & RIEF, M. (2006). Single-molecule unfolding

force distributions reveal a funnel-shaped energy land-

scape. Biophysical Journal 90, L33–L35.

SCHLOSSHAUER, M. & BAKER, D. (2002). A general ex-

pression for bimolecular association rates with orienta-

tional constraints. Journal of Physical Chemistry B 106,

12079–12083.

SCHLOSSHAUER, M. & BAKER, D. (2004). Realistic pro-

tein–protein association rates from a simple diffusional

model neglecting long-range interactions, free energy

barriers, and landscape ruggedness. Protein Science 13,

1660–1669.

SCHONBRUN, J. & DILL, K. A. (2003). Fast protein folding

kinetics. Proceedings of the National Academy of Sciences of the

United States of America 100, 12678–12682.

SCHRANNER, R. & RICHTER, P. H. (1978). Rate enhance-

ment by guided diffusion. Chain length dependence of

repressor-operator association rates. Biophysical Chemistry

8, 135–150.

SCHREIBER, G. & FERSHT, A. R. (1993). Interaction of bar-

nase with its polypeptide inhibitor barstar studied by

protein engineering. Biochemistry 32, 5145–5150.

SCHREIBER, G. & FERSHT, A. R. (1996). Rapid, electro-

statically assisted association of proteins. Nature Struc-

tural Biology 3, 427–431.

SCHREIBER, G., HARAN, G. & ZHOU, H.-X. (2009).

Fundamental aspects of protein-protein association

kinetics. Chemical Reviews 109, 839–860.

SCHURR, J. M. (1979). One-dimensional diffusion coef-

ficient of proteins absorbed on DNA. Hydrodynamic

considerations. Biophysical Chemistry 9, 413–414.

290 H.-X. Zhou



SHAPIRO, B. E. & QIAN, H. (1997). A quantitative analysis

of single protein–ligand complex separation with the

atomic force microscope. Biophysical Chemistry 67,

211–219.

SHAPIRO, R., RUIZ-GUTIERREZ, M. & CHEN, C.-Z. (2000).

Analysis of the interactions of human ribonuclease

inhibitor with angiogenin and ribonuclease A by muta-

genesis : importance of inhibitor residues inside versus

outside the C-terminal ‘hot spot ’. Journal of Molecular

Biology 302, 497–519.

SHEN, B. J., HAGE, T. & SEBALD, W. (1996). Global and

local determinants for the kinetics of interleukin-4/

interleukin-4 receptor alpha chain interaction. A bio-

sensor study employing recombinant interleukin-4-

binding protein. European Journal of Biochemistry 240,

252–261.

SHI, J., DERTOUZOS, J., GAFNI, A., STEEL, D. & PALFEY,

B. A. (2006). Single-molecule kinetics reveals signatures

of half-sites reactivity in dihydroorotate dehydrogenase

A catalysis. Proceedings of the National Academy of Sciences of

the United States of America 103, 5775–5780.

SHOUP, D., LIPARI, G. & SZABO, A. (1981). Diffusion-con-

trolled bimolecular reaction rates. The effect of rota-

tional diffusion and orientation constraints. Biophysical

Journal 36, 697–714.

SHOUP, D. & SZABO, A. (1982). Role of diffusion in ligand

binding to macromolecules and cell-bound receptors.

Biophysical Journal 40, 33–39.

SKINNER, J. L. & WOLYNES, P. G. (1978). Relaxation pro-

cesses and chemical kinetics. Journal of Chemical Physics

69, 2143–2150.

SMOLUCHOWSKI, M. V. (1917). Versuch einer mathema-

tischen Theorie der Koagulationskinetik kolloider
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