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Substantial advances have been made in modeling protein

association mechanisms and in calculating association rate

constants (ka). We now have a clear understanding of the

physical factors underlying the wide range of experimental ka

values. Half of the association problem, where ka is limited by

diffusion, is perhaps solved, and for the other half, where

conformational changes become rate-limiting, a number of

promising methods are being developed for ka calculations.

Notably, the binding kinetics of disordered proteins are

receiving growing attention, with ‘dock-and-coalesce’

emerging as a general mechanism. Progress too has been

made in the modeling of protein association kinetics under

conditions mimicking the heterogeneous, crowded

environments of cells, an endeavor that should ultimately lead

to a better understanding of cellular functions.
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Introduction
The association of proteins with small molecules and

other macromolecules constitute the key steps of all

cellular functions. In addition to the structures of the

complexes formed and their binding affinities, association

mechanisms and rate constants uniquely contribute to the

characterization of cellular functions. Association pro-

cesses are often under kinetic, rather than thermodyn-

amic, control [1], for example, when several

macromolecules compete for the same binding site [2]

or when a protein is faced with alternative pathways [3].

Understanding the physical principles governing associ-

ation mechanisms and rate constants and furthermore,

realistically modeling them, are thus of paramount

importance.
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In many cases, convincing arguments can be made that

rapid association, not just high affinity, is essential for

biological function. For example, some bacteria produce

enzymes (e.g., barnase in Bacillus amyloliquefaciens and

nuclease colicins in Escherichia coli; Figure 1) that are

exported to rapidly kill off competitor cells by cleaving

their nucleic acids. However, these enzymes can also

potentially cleave the host cell’s own nucleic acids. This

ill fate is prevented by co-producing inhibitors (i.e.,

barstar and immunity proteins), and rapid enzyme–inhibi-

tor association here is obviously crucial to ensure the self-

defense of the host cell.

Various cellular functions rely on altering association (ka)

and dissociation (kd) rate constants. Translation initiation,

putatively the rate-limiting and most highly regulated

phase of bacterial protein synthesis, provides a good

example. Crucial to translation initiation is the binding

of the initiator tRNA (i.e., fMet-tRNAfMet) to the ribosome

30S subunit [2]. This binding, in the absence of initiation

factors (IF1-3), has the same low ka and low kd as the

binding of noncognate, elongator tRNAs [4�]. Pre-binding

of IF1-3 to the 30S subunit results in increases in ka of as

much as 400-fold for the initiator tRNA but by only �10-

fold for noncognate tRNAs, as well as significant, uniform

increases in kd for all the tRNAs. The resulting disparity in

ka is essential for the accuracy of initiator tRNA selection.

Post-translational modifications such as phosphorylation

present a different mechanism for altering ka. A recent

study [5] found that response levels in cellular signaling

correlated with the phosphorylation-dependent binding

affinities of a linker peptide on a kinase for the SH2 domain

of an effector protein. However, as the phosphorylation in

this case affected ka but not kd, a similar correlation can be

argued if ka, instead of the association constant (i.e., Ka = ka/

kd), is used. Even if Ka was the determinant for the cellular

function in this study, it remains important to point out that

the increases in Ka upon phosphorylation were achieved

through increases in ka, as opposed to decreases in kd. The

latter might not be a viable option for signaling proteins, as

the complexes formed with their targets generally have to

be short-lived. It has been proposed that structural disorder

allows signaling proteins to bypass the requirement for

maintaining high ka, without sacrificing specificity [6].

The question of whether Ka or ka is the better predictor of

cellular response in signaling was specifically addressed

by Kiel and Serrano [7]. They introduced c-Raf

mutations that were expected to change either only Ka

(by changing kd) or only ka (by compensatory changes in

kd) for association with Ras. The effects of these mutations
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The wide spectrum of experimental values for the rate constants of protein–protein association. The conformational change-limited regime and

diffusion-limited regime are generally separated around ka = 104 M�1 s�1 (indicated by a vertical line). In the diffusion-limited regime, if there is no long-

range force to bias the diffusion, ka usually falls between 104 and 106 M�1 s�1 (shaded region). Proteins that associate with ka > 107 M�1 s�1 invariably

feature strongly complementary electrostatic surfaces (as shown for four complexes; blue and red represent positive and negative electrostatic

potentials, respectively); ka values for the four systems measured at ionic strengths of 150, 50, 15, and 25 mM (from left to right) are indicated by short

lines touching the ka axis.
on MAP kinase signaling correlated better with predicted

ka than with predicted Ka. While signaling networks may

not generally be dictated by single protein–protein associ-

ation steps, this study does highlight the importance of

considering association kinetics, not just equilibrium, in

predicting the outcome of signaling.

The association constant is determined by the end states of

the binding process, namely the unbound state, in which

the two subunits separately reside in the solvent environ-

ment, and the bound state, in which the subunits form

specific, noncovalent interactions. In contrast, to deter-

mine the association rate constant one has to consider the

whole binding process. This process involves both overall

translational and rotational diffusion of the molecules,

which brings the binding sites on the two molecules into

proximity, and internal conformational changes, which

allow the molecules to achieve their native stereospecific

fit. There is a long history of deriving theoretical results for

ka by formulating the diffusional and internal motions of

simple molecular models [1] and in developing algorithms

for computing ka through simulating the motions of realis-

tically represented protein molecules [8–12].

The past few years have seen major progress in modeling

protein association mechanisms and in calculating associ-

ation rate constants. In highlighting this progress below,

we will focus on association between protein molecules,

but will occasionally include examples where the sub-

units are nucleic acids, small molecules, and multi-com-

ponent complexes.
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An overview on the wide spectrum of protein
association rate constants
The observed ka values for protein–protein association

range from �1 to 1010 M�1 s�1 (Figure 1). It is now clear

that this 10 orders of magnitude spectrum involves two

different rate-limiting mechanisms [13,14]. The binding

process between two proteins, A and B, can be modeled

by the reaction scheme [6,13]

A þ B @
kD

kD�
A � B @

kc

kc�
C (1)

where A � B denotes an initial complex in which at least a

portion of the binding site on A forms near-native contact

with the cognate portion of the binding site on B, and C

denotes the final, native complex. The formation of the

initial complex predominantly involves the translational

and rotational diffusion of the molecules, whereas the

subsequent step predominantly involves the confor-

mational changes of the molecules. The overall rate

constants for association and dissociation are

ka ¼
kDkc

kD� þ kc

(2)

kd ¼
kD�kc�

kD� þ kc

(3)

Both the diffusional step and the conformational step can

be rate-limiting for association. The former regime occurs

if kc� kD� (e.g., when structural differences are small

between the bound and unbound states). Then
www.sciencedirect.com
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ka � kD. Recent calculations for over 100 protein–protein

complexes found that, in the absence of any biasing force

in the diffusional step, diffusion would set an upper

bound of 104 to 106 M�1 s�1 for ka [15��]. Electrostatic

attraction can bias the diffusional step and push up kD by

three or more orders of magnitude. Indeed, proteins that

associate with rate constant higher than 107 M�1 s�1

always have highly complementary electrostatic surfaces

(Figure 1).

When large-scale structural differences exist between the

bound and unbound states, the conformational step can

become rate-limiting. In this regime, ka � (kD/kD�)kc. kD/

kD� is the association constant for forming the initial

complex and probably has a lower bound of 102 to

103 M�1, similar to those for low-affinity protein–protein

complexes. kc could be compared to the rate of transition

from a folding intermediate to the native state of a

protein, which can be as low as 10�2 to 10�3 s�1

[16,17]. Therefore, a lower bound of 1 M�1 s�1 is

expected when association is rate-limited by confor-

mational changes.

The diffusion-limited regime
In general, ka values higher than 104 M�1 s�1 can be

proposed to be diffusion-limited. Most ka calculations

have been restricted to this regime [11]. Here, the initial

complex can be placed very close to the native complex,

and its precise location can be determined by sampling

near the bound state in the six-dimensional translational

and rotational space [18]. This and other developments

culminated in the transient-complex theory for protein

association [13]. The transient complex specifically refers

to the initial complex in the diffusion-limited regime, in

which the two proteins have near-native separation and

relative orientation but have yet to form most of the

stereospecific native contacts. The association rate con-

stant is predicted as

ka ¼ ka0 exp
�DG�el

kBT

� �
(4)

where ka0 is the ‘basal’ rate constant, that is, the rate

constant at which the two proteins reach the transient

complex by free diffusion, and the Boltzmann factor

captures the rate enhancement by inter-protein electro-

static attraction. Applications to structurally similar

proteins show that different degrees of electrostatic com-

plementarity across the binding interface can produce

orders of magnitude disparities in ka [19]. Differences in

sizes and shapes of the interface can also contribute to

variations in ka by modulating the basal rate constant,

which is dictated by the extent of the orientational

restraints between the subunits in the transient complex

[15��,20��]. The orientational restraints themselves may

result in preferred pathways for reaching the transient

complex [21]. Pre-binding of a third protein near the

interface can modify the placement of the transient
www.sciencedirect.com 
complex, potentially contributing to a dramatic increase

in ka [22].

Another important development is the automated imple-

mentation of the transient-complex theory, resulting in

the TransComp web server (http://pipe.sc.fsu.edu/trans-

comp/) for ka prediction [15��]. To illustrate the level of

accuracy of the server predictions a comparison to exper-

imental results for 49 diverse protein–protein complexes

is shown in Figure 2. In an intriguing application, exten-

sive TransComp calculations suggested that a conserved

cationic surface on the kinesin motor domain enhances

the association rate with, and contributes to, the direc-

tional movement on microtubules [23�].

Recently machine-learning protocols have also been

employed to predict kinetic parameters from atomic

coordinates [24,25]. The benefit of these approaches is

that they too are able to identify, from diverse training

sets, which structural and energetic features are the more

powerful predictors, with solvent mediated hydrogen

bonding and surface complementarity identified as being

particularly important for the prediction of ka [25].

Structural and dynamic differences of proteins result in a

variety of association mechanisms [15��,20��]. The associ-

ation of many proteins that fall in the diffusion-limited

regime can be viewed as rigid docking of the subunits

accompanied by fast local conformational adjustments

(Figure 3a). In other cases the docking of one subunit

may require a larger scale breathing motion of the other

subunit to open the binding site (Figure 3b). As long as

the breathing motion is fast on the timescale of the

diffusion approach between the subunits, the overall

association process is still diffusion-limited [26].

Modeling conformational changes during
association
When conformational changes are slow on the timescale

of the diffusion approach between the subunits, they

become rate-limiting. In this regime, internal motions

have to be explicitly modeled during the association. A

few such simulation studies, on binding of small mol-

ecules to proteins, have been published over the years

[27,28]. Using algorithms originally designed for calculat-

ing the association rate constants of rigid molecules [8,9]

to calculate the association of flexible molecules presents

the formidable challenge of having to simulate internal

motions over the length of time required for achieving

successful association.

Recently a new algorithm was developed [29], based on

breaking the association process into two problems con-

fined to either the outer region, where the molecules can

be modeled as rigid, or the inner region, which covers the

binding site but is small enough such that modeling of

internal motions can be affordable. The algorithm has
Current Opinion in Structural Biology 2013, 23:887–893
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Figure 2
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Level of accuracy of TransComp ka predictions. (a) Comparison of predicted and experimental ka values for 49 protein–protein complexes. (b)

Structures of 10 of the 49 complexes, illustrating the structural diversity.

Adapted from Qin et al. [15��].
been tested on the binding of small molecules to proteins

(Qin et al., to be published). Another interesting approach

is based on long, extensive molecular dynamics simu-

lations, from which a Markov state model of the binding

process was constructed [30�]. Application of either

approach has yet to be made to study protein–protein

association.

Association of disordered proteins with
structured targets
Intrinsically disordered proteins (IDPs) represent an

extreme form of molecular flexibility [31,32]. Their

coupled folding and binding processes have increasingly

been investigated experimentally and computationally

[33,34��]. When bound to structured targets, they often

form open structures with extended interaction surfaces

[35]. It is unlikely that an IDP would form its extensive

interactions with its target all at once, as the resulting

severe orientational restraints would lead to extremely

low ka [6,15��]. Rather, different segments of the IDP

have to form contacts with their cognate subsites at

different times. A likely scenario, consistent with mol-

ecular simulations [36–39], is the sequential formation of

these contacts [15��,20��]. In such a ‘dock-and coalesce’

mechanism (Figure 3c), one particular segment of the

IDP first docks to its cognate subsite on the target,

thereby allowing the remaining segments to explore

conformational space and coalesce around their cognate

subsites.

In the simplest case, the docking step is rate-limiting for

overall association. Then mutations, either on the dock-

ing segment of the IDP or on its cognate subsite, that

perturb the docking step would significantly affect the
Current Opinion in Structural Biology 2013, 23:887–893 
overall ka, whereas those perturbing the coalescing step or

even deletion of the entire coalescing segment would not.

Such telltale signs have indeed been observed exper-

imentally [40–42,43�]. Molecular simulations have

suggested that the flexibility of IDPs helps reduce the

free energy barrier for the coalescing step [39,44], poten-

tially making the docking step rate-limiting. Importantly,

for IDPs that bind to their targets with a rate-limiting

docking step, the TransComp method can again be used

to predict the association rate constants, by studying just

the binding of the docking segments with their cognate

subsites [15��]. TransComp calculations have now pro-

duced ka values that are in quantitative agreement with

experimental results for a variety of IDPs, suggesting that

dock-and-coalesce may be a general mechanism for IDPs

binding to their structured targets, often with docking as

the rate-limiting step [15��,20��,34��].

Compared to structured proteins, IDPs achieve similar

levels of specificity for their targets, but with the specific

interactions more widely distributed over space. There-

fore during dissociation these interactions do not have to

be broken all at once, leading to an increase in kd. In this

way IDPs can form highly specific and yet short-lived

complexes with their targets, fulfilling the twin require-

ments for signaling proteins [6].

Influence of cellular environments on
association kinetics
Understanding cellular functions ultimately requires the

modeling of protein association processes not in dilute

solutions but in solutions mimicking the crowded, hetero-

geneous cellular environments. It is now recognized that

such environments can significantly affect both
www.sciencedirect.com
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Three different mechanisms of protein association, illustrated by three proteins binding to G-actin (shown as pink surface) [20��]. (a) Profilin reaches the

transient complex (not shown) with G-actin by diffusion and then quickly forms the native contacts all at once to produce the native complex. (b)

Vitamin-D binding protein must undergo breathing motion to transiently widen the opening between its domains 1 and 3 to allow G-actin to enter. (c)

The Wiskott-Aldrich syndrome protein has a disordered actin-regulatory region. The binding of this regulatory region to G-actin follows the dock-and-

coalesce mechanism: the WH2 segment (in blue) docks to the cleft between subdomains 1 and 3 of G-actin, allowing the remaining segment (in green)

to sample conformations and coalesce to its cognate subsite in the cleft between subdomains 2 and 4 of G-actin.
thermodynamic and kinetic properties of protein associ-

ation [45]. A reasonable approach to model association

kinetics in a crowded solution is by accounting for the

effects of the crowder molecules on the interaction ener-

getics and the motional dynamics of the reactant mol-

ecules [46]. This approach has been validated by

simulations of a simple system in which both reactant

and crowder molecules are modeled as hard spheres [47].

For protein association that is rate-limited by the confor-

mational step, the dominant contribution of crowding can

be captured by its effect on the free energy of the

transition state for the conformational step (relative to

the unbound state). If this transition state is structurally

similar to the native complex, then the effect of crowding

on free energy barrier is close to that on the binding free

energy. An efficient method has been developed for

calculating the latter quantity [48].

For protein association in the diffusion-limited regime,

crowding exerts its dominant effect on the diffusional
www.sciencedirect.com 
approach of the subunits toward the transient complex.

The presence of crowder molecules slows down the

relative diffusion of the associating subunits but also

produces an effective interaction energy between them

[47]. The transient-complex theory has been modified to

account for these effects and predict the association rate

constant under crowding as [49�]

kac ¼ gka0exp
�DG�el

kBT

� �
exp

�DDG�c
kBT

� �
(5)

where g is the factor by which the relative diffusion

constant is slowed down by the crowders and DDG�c is

the crowding-induced interaction energy between the

subunits in the transient complex. Hardcore repulsion

from the crowder molecules can lead to apparent attrac-

tion between the subunits (i.e., DDG�c < 0). Then g and

DDG�c would have opposing consequences on the associ-

ation rate, leaving a nearly null net effect. Therefore

despite the presence of crowders the association would

appear unimpeded. This prediction is confirmed by
Current Opinion in Structural Biology 2013, 23:887–893
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recent kinetic experiments under in vitro crowding and in

living cells [50,51�].

Prospects
Over recent years major progress has been made in modeling

protein association mechanisms and in calculating associ-

ation rate constants. For half of the association problem,

where ka is higher than 104 M�1 s�1 and limited by diffusion,

the determinants for ka are now well understood and the

calculations  of ka are quite accurate. For the other half, where

conformational changes become rate-limiting, promising

methods are being developed and it will be interesting to

see how practical and predictive when these are ready for

application to study protein–protein association.

Quantitative modeling of protein association kinetics can

provide answers to open questions concerning essential

cellular functions. For example, how do initiation factors

achieve the substantial rate increase for the binding of the

initiator tRNA to the ribosome 30S subunit? Interference

with this rate increase may potentially be a new mech-

anism of antibiotic action. More broadly, modeling of

association mechanisms may uncover intermediates along

kinetic pathways, which could form a new class of targets

for drug design [52].

An area where the progress in ka calculations reported

here could have immediate impact is the modeling of

signaling networks. One of the more popular approaches

to modeling such networks dynamically is to construct a

set of rate equations to monitor key cellular events over

time [53]; for example, the nucleocytoplasmic shuttling of

proteins associated with the TGF-b pathway [54], and the

modulation of disease-associated pathways due to protein

missense mutations [7,55]. While some of the kinetic

parameters for such equations have been or can be

experimentally determined, others may need to be pre-

dicted. It is here that the accurate prediction of associ-

ation rate constants from bound or even unbound protein

structures can be extremely valuable.

Acknowledgements
This work was supported in part by Grants GM58187 and GM88187 from
the National Institutes of Health (to HXZ) and funding from Cancer
Research UK (to PAB).

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest

�� of outstanding interest

1. Zhou HX: Rate theories for biologists. Q Rev Biophys 2010,
43:219-293.

2. Milon P, Rodnina MV: Kinetic control of translation initiation in
bacteria. Crit Rev Biochem Mol Biol 2012, 47:334-348.

3. Zhao H, Beckett D: Kinetic partitioning between alternative
protein–protein interactions controls a transcriptional switch.
J Mol Biol 2008, 380:223-236.
Current Opinion in Structural Biology 2013, 23:887–893 
4.
�

Antoun A, Pavlov MY, Lovmar M, Ehrenberg M: How initiation
factors maximize the accuracy of tRNA selection in initiation
of bacterial protein synthesis. Mol Cell 2006, 23:183-193.

Experimental study demonstrating that initiation factors accelerate the
binding of the initiation tRNA to the ribosome 30S subunit, and this
acceleration is essential for the accuracy of translation.

5. Chen CH, Martin VA, Gorenstein NM, Geahlen RL, Post CB: Two
closely spaced tyrosines regulate NFAT signaling in B cells via
Syk association with Vav. Mol Cell Biol 2011, 31:2984-2996.

6. Zhou HX: Intrinsic disorder: signaling via highly specific but
short-lived association. Trends Biochem Sci 2012, 37:43-48.

7. Kiel C, Serrano L: Cell type-specific importance of ras-c-raf
complex association rate constants for MAPK signaling. Sci
Signal 2009, 2:ra38.

8. Northrup SH, Allison SA, Mccammon JA: Brownian dynamics
simulation of diffusion-influenced bimolecular reactions. J
Chem Phys 1984, 80:1517-1526.

9. Zhou HX: Kinetics of diffusion-influenced reactions studied by
Brownian dynamics. J Phys Chem 1990, 94:8794-8800.

10. Northrup SH, Erickson HP: Kinetics of protein–protein
association explained by Brownian dynamics computer
simulation. Proc Natl Acad Sci U S A 1992, 89:3338-3342.

11. Gabdoulline RR, Wade RC: Biomolecular diffusional
association. Curr Opin Struct Biol 2002, 12:204-213.

12. Frembgen-Kesner T, Elcock AH: Absolute protein–protein
association rate constants from flexible, coarse-grained
Brownian dynamics simulations: the role of intermolecular
hydrodynamic interactions in barnase–barstar association.
Biophys J 2010, 99:L75-L77.

13. Alsallaq R, Zhou HX: Electrostatic rate enhancement and
transient complex of protein–protein association. Proteins
2008, 71:320-335.

14. Schreiber G, Haran G, Zhou HX: Fundamental aspects of
protein–protein association kinetics. Chem Rev 2009, 109:839-
860.

15.
��

Qin S, Pang X, Zhou HX: Automated prediction of protein
association rate constants. Structure 2011, 19:1744-1751.

Presenting an automated implementation of the TransComp method for
ka calculations.

16. Goldberg ME, Semisotnov GV, Friguet B, Kuwajima K, Ptitsyn OB,
Sugai S: An early immunoreactive folding intermediate of the
tryptophan synthease beta 2 subunit is a ‘molten globule’.
FEBS Lett 1990, 263:51-56.

17. Finke JM, Jennings PA: Interleukin-1 beta folding between pH 5
and 7: experimental evidence for three-state folding behavior
and robust transition state positions late in folding.
Biochemistry 2002, 41:15056-15067.

18. Alsallaq R, Zhou HX: Energy landscape and transition state of
protein–protein association. Biophys J 2007, 92:1486-1502.

19. Pang X, Qin S, Zhou HX: Rationalizing 5000-fold differences in
receptor-binding rate constants of four cytokines. Biophys J
2011, 101:1175-1183.

20.
��

Pang X, Zhou KH, Qin S, Zhou HX: Prediction and dissection of
widely-varying association rate constants of actin-binding
proteins. PLoS Comput Biol 2012, 8:e1002696.

Illustrating three different mechanisms of protein association.

21. Mirzaei H, Beglov D, Paschalidis IC, Vajda S, Vakili P, Kozakov D:
Rigid body energy minimization on manifolds for molecular
docking. J Chem Theory Comput 2012, 8:4374-4380.

22. Qin SB, Zhou HX: Dissection of the high rate constant for the
binding of a ribotoxin to the ribosome. Proc Natl Acad Sci U S A
2009, 106:6974-6979.

23.
�

Grant BJ, Gheorghe DM, Zheng W, Alonso M, Huber G, Dlugosz M,
McCammon JA, Cross RA: Electrostatically biased binding of
kinesin to microtubules. PLoS Biol 2011, 9:e1001207.

Role of conserved cationic surface on kinesin in directional movement on
microtubules.
www.sciencedirect.com

http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0005
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0005
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0010
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0010
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0015
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0015
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0015
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0020
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0020
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0020
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0025
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0025
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0025
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0030
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0030
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0035
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0035
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0035
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0040
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0040
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0040
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0045
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0045
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0050
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0050
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0050
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0055
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0055
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0060
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0060
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0060
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0060
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0060
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0065
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0065
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0065
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0070
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0070
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0070
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0075
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0075
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0080
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0080
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0080
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0080
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0085
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0085
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0085
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0085
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0090
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0090
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0095
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0095
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0095
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0100
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0100
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0100
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0105
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0105
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0105
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0110
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0110
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0110
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0115
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0115
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0115


Protein association mechanisms and kinetics Zhou and Bates 893
24. Bai H, Yang K, Yu D, Zhang C, Chen F, Lai L: Predicting kinetic
constants of protein–protein interactions based on structural
properties. Proteins 2011, 79:720-734.

25. Moal IH, Bates PA: Kinetic rate constant prediction supports
the conformational selection mechanism of protein binding.
PLoS Comput Biol 2012, 8:e1002351.

26. Zhou HX, Wlodek ST, McCammon JA: Conformation gating as a
mechanism for enzyme specificity. Proc Natl Acad Sci U S A
1998, 95:9280-9283.

27. Wade RC, Luty BA, Demchuk E, Madura JD, Davis ME, Briggs JM,
McCammon JA: Simulation of enzyme-substrate encounter
with gated active sites. Nat Struct Biol 1994, 1:65-69.

28. Kang M, Roberts C, Cheng YH, Chang CEA: Gating and
intermolecular interactions in ligand–protein association:
coarse-grained modeling of HIV-1 protease. J Chem Theory
Comput 2011, 7:3438-3446.

29. Greives N, Zhou HX: BDflex: a method for efficient treatment of
molecular flexibility in calculating protein–ligand binding rate
constants from Brownian dynamics simulations. J Chem Phys
2012, 137:135105.

30.
�

Buch I, Giorgino T, De Fabritiis G: Complete reconstruction of an
enzyme–inhibitor binding process by molecular dynamics
simulations. Proc Natl Acad Sci U S A 2011, 108:10184-10189.

Method for treating protein flexibility in modeling ligand-binding kinetics.

31. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z:
Intrinsic disorder and protein function. Biochemistry 2002,
41:6573-6582.

32. Janin J, Sternberg MJ: Protein flexibility, not disorder, is
intrinsic to molecular recognition. F1000 Biol Rep 2013, 5:2.

33. Wright PE, Dyson HJ: Linking folding and binding. Curr Opin
Struct Biol 2009, 19:31-38.

34.
��

Zhou HX, Pang XD, Lu C: Rate constants and mechanisms of
intrinsically disordered proteins binding to structured targets.
Phys Chem Chem Phys 2012, 14:10466-10476.

Suggesting dock-and-coalesce as a general mechanism for the binding
of intrinsically disordered proteins.

35. Gunasekaran K, Tsai CJ, Kumar S, Zanuy D, Nussinov R:
Extended disordered proteins: targeting function with less
scaffold. Trends Biochem Sci 2003, 28:81-85.

36. Ahmad M, Gu W, Helms V: Mechanism of fast peptide
recognition by SH3 domains. Angew Chem Int Ed Engl 2008,
47:7626-7630.

37. Turjanski AG, Gutkind JS, Best RB, Hummer G: Binding-induced
folding of a natively unstructured transcription factor. PLoS
Comput Biol 2008, 4:e1000060.

38. Chen J: Intrinsically disordered p53 extreme C-terminus binds
to S100B(betabeta) through ‘‘fly-casting’’. J Am Chem Soc
2009, 131:2088-2089.

39. De Sancho D, Best RB: Modulation of an IDP binding
mechanism and rates by helix propensity and non-native
interactions: association of HIF1alpha with CBP. Mol Biosyst
2012, 8:256-267.

40. Stone SR, Dennis S, Hofsteenge J: Quantitative evaluation of the
contribution of ionic interactions to the formation of the
thrombin–hirudin complex. Biochemistry 1989, 28:6857-6863.
www.sciencedirect.com 
41. Betz A, Hofsteenge J, Stone SR: Interaction of the N-terminal
region of hirudin with the active-site cleft of thrombin.
Biochemistry 1992, 31:4557-4562.

42. Myles T, Le Bonniec BF, Betz A, Stone SR: Electrostatic steering
and ionic tethering in the formation of thrombin-hirudin
complexes: the role of the thrombin anion-binding exosite-I.
Biochemistry 2001, 40:4972-4979.

43.
�

Lacy ER, Filippov I, Lewis WS, Otieno S, Xiao L, Weiss S, Hengst L,
Kriwacki RW: p27 binds cyclin-CDK complexes through a
sequential mechanism involving binding-induced protein
folding. Nat Struct Mol Biol 2004, 11:358-364.

Experimental study demonstrating a sequential binding mechanism for an
intrinsically disordered protein.

44. Huang Y, Liu Z: Kinetic advantage of intrinsically disordered
proteins in coupled folding-binding process: a critical
assessment of the ‘‘fly-casting’’ mechanism. J Mol Biol 2009,
393:1143-1159.

45. Zhou HX, Rivas G, Minton AP: Macromolecular crowding and
confinement: biochemical, biophysical, and potential
physiological consequences. Annu Rev Biophys 2008, 37:
375-397.

46. Zhou HX, Qin S: Simulation and modeling of crowding effects
on the thermodynamic and kinetic properties of proteins with
atomic details. Biophys Rev 2013, 5:207-215.

47. Zhou HX, Szabo A: Comparison between molecular dynamics
simulations and the Smoluchowski theory of reactions in a
hard sphere liquid. J Chem Phys 1991, 95:5948-5952.

48. Qin S, Zhou HX: Atomistic modeling of macromolecular
crowding predicts modest increases in protein folding and
binding stability. Biophys J 2009, 97:12-19.

49.
�

Qin S, Cai L, Zhou HX: A method for computing association rate
constants of atomistically represented proteins under
macromolecular crowding. Phys Biol 2012, 9:066008.

A method for calculating ka in crowded cellular environments.

50. Phillip Y, Harel M, Khait R, Qin S, Zhou HX, Schreiber G:
Contrasting factors on the kinetic path to protein complex
formation diminish the effects of crowding agents. Biophys J
2012, 103:1011-1019.

51.
�

Phillip Y, Kiss V, Schreiber G: Protein-binding dynamics imaged
in a living cell. Proc Natl Acad Sci U S A 2012, 109:1461-1466.

ka measurement in living cells.

52. Tzeng H-S, Kalodimos CG: Allosteric inhibition through
suppression of transient conformational states. Nat Chem Biol
2013, 9:462-465.

53. Tyson JJ, Chen KC, Novak B: Sniffers, buzzers, toggles and
blinkers: dynamics of regulatory and signaling pathways in the
cell. Curr Opin Cell Biol 2003, 15:221-231.

54. Schmierer B, Tournier AL, Bates PA, Hill CS: Mathematical
modeling identifies Smad nucleocytoplasmic shuttling as a
dynamic signal-interpreting system. Proc Natl Acad Sci U S A
2008, 105:6608-6613.

55. Cheng TM, Goehring L, Jeffery L, Lu YE, Hayles J, Novak B,
Bates PA: A structural systems biology approach for
quantifying the systemic consequences of missense
mutations in proteins. PLoS Comput Biol 2012, 8:e1002738.
Current Opinion in Structural Biology 2013, 23:887–893

http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0120
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0120
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0120
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0125
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0125
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0125
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0130
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0130
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0130
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0135
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0135
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0135
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0140
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0140
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0140
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0140
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0145
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0145
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0145
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0145
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0150
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0150
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0150
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0155
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0155
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0155
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0160
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0160
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0165
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0165
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0170
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0170
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0170
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0175
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0175
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0175
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0180
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0180
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0180
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0185
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0185
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0185
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0190
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0190
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0190
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0195
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0195
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0195
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0195
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0200
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0200
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0200
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0205
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0205
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0205
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0210
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0210
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0210
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0210
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0215
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0215
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0215
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0215
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0220
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0220
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0220
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0220
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0225
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0225
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0225
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0225
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0230
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0230
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0230
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0235
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0235
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0235
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0240
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0240
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0240
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0245
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0245
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0245
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0250
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0250
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0250
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0250
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0255
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0255
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0260
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0260
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0260
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0265
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0265
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0265
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0270
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0270
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0270
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0270
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0275
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0275
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0275
http://refhub.elsevier.com/S0959-440X(13)00117-6/sbref0275

	Modeling protein association mechanisms and kinetics
	Introduction
	An overview on the wide spectrum of protein association rate constants
	The diffusion-limited regime
	Modeling conformational changes during association
	Association of disordered proteins with structured targets
	Influence of cellular environments on association kinetics
	Prospects
	Acknowledgements
	References and recommended reading


