
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Theoretical frameworks for multiscale modeling and simulation
Huan-Xiang Zhou

Biomolecular systems have been modeled at a variety of

scales, ranging from explicit treatment of electrons and nuclei

to continuum description of bulk deformation or velocity. Many

challenges of interfacing between scales have been overcome.

Multiple models at different scales have been used to study the

same system or calculate the same property (e.g., channel

conductance). Accurate modeling of biochemical processes

under in vivo conditions and the bridging of molecular and

subcellular scales will likely soon become reality.
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Introduction
The biological functions carried out by proteins and

nucleic acids involve motions that occur on disparate

spatial and temporal scales (Table 1). In enzyme-cata-

lyzed reactions, bond breaking and formation proceed

through the rearrangement of electrons and nuclei. The

activities of the enzymes may be regulated by the binding

of other proteins. The enzymes and regulators may all be

components of higher complexes. These components and

their transitory complexes constitute the crowded,

heterogeneous macromolecular milieus in cellular com-

partments, which could in turn influence the behaviors of

the constituents. In some cases protein molecules may

directly bind to a one-dimensional (e.g., genomic DNA or

actin filament) or two-dimensional (cell membrane in

particular) surface. Here even stronger mutual influence

of the bound protein molecules and the milieu can be

expected. It is apparent that a model based on a single

type of physics and using a uniform spatial scale would

not be capable of describing this multitude of biological

processes and providing fundamental understanding.

Consequently multiscale modeling of biomolecular sys-

tems has flourished in recent years.

The importance of multiscale modeling is fittingly recog-

nized by the award of the 2013 Nobel Prize in Chemistry

to Martin Karplus, Michael Levitt, and Arieh Warshel for

‘Development of Multiscale Models for Complex Chemi-

cal Systems.’ These Nobel Laureates laid some of the

foundations for ongoing research. In particular, the

original concept and implementation of combined quan-

tum mechanics/molecular mechanics (QM/MM) simu-

lations [1,2] still serve as a guide in the study of

enzyme activities [3,4] and as an inspiration for modeling

at other scales. The idea of coarse-graining [5] is at the

core of much current research.

Other foundational developments include the projection-

operator formalism of Zwanzig [6] and Mori [7], the

umbrella sampling method of Torrie and Valleau [8]

for calculating the potential of mean force, and the

particle insertion method of Widom [9] for calculating

the excess chemical potential. Via the projection-operator

formalism, one can project out the ‘irrelevant’ degrees of

freedom and focus on the motion of the ‘relevant’ degrees

of freedom. The umbrella sampling method provides a

practical way to find the potential of mean force governing

these relevant degrees of freedom. The particle insertion

method, originally developed for simple fluids, has been

extended to model the effects of the crowded macromol-

ecular milieus on the thermodynamics and kinetics of

‘test’ proteins [10,11].

Space will not allow for an exhaustive coverage of the

recent progress in multiscale modeling and simulations

of biomolecular systems. The following survey will focus

on the strategies for interfacing different scales and some

illustrative applications. The interested reader is

referred to other recent reviews on related topics

[4,12–25].

Modeling at different scales
The essence of multiscale modeling is captured by a quote

attributed to Einstein: ‘Everything should be made as simple as
possible, but not simpler.’ If one wants to study bond breaking

and formation, one must work with a quantum mechanical

model that governs the rearrangement of the electrons and

nuclei involved (Figure 1a). On the other hand, when

studying the conformational transitions of a protein mol-

ecule, it suffices to use Newton’s equation for the motion of

the atoms (Figure 1b). One may further coarse-grain the

model, representing groups of atoms (e.g., amino-acid

residues) by single beads, enabling simulations of more

extensive conformational changes and over longer time-

scales [12,14–25] (Figure 1c).

Effectively, by coarse-graining one freezes the internal

motions within the groups modeled by the beads. In an
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extreme form of coarse-graining, internal motions of a

whole protein domain, a whole protein molecule, or a

whole protein complex are frozen. Then each such unit is

treated as a rigid body and only the overall translation and

rotation are modeled explicitly (Figure 1d). With the

rigid-body treatment, the rate constant for the site-

specific binding of an enzyme to the whole ribosome

has been calculated [26] and simulations of highly con-

centrated protein mixtures mimicking the bacterial cyto-

plasm have been carried out [27,28�,29].

When a protein is bound to a DNA molecule or a lipid

bilayer, the mutual influence can extend to a long range.

In these cases it can be fruitful to model the underlying

matrix as one or two-dimensional continuum. For

example, DNA has been modeled as an elastic rod

[30,31�], and lipid bilayers have been modeled as an

elastic membrane [32–34] or a structureless fluid sheet

[35�] (Figure 1e). The system is no longer described by

discrete particles, but by continuous ‘fields,’ which can be

the bulk deformation or velocity at an arbitrary position

68 Theory and simulation

Table 1

Motions involved in a few representative biological processes

Biological process Motions involved

Enzyme catalysis Rearrangement of electrons and nuclei in active site; conformational change of protein matrix; diffusion of

substrate and product

Replication, transcription,

and translation

Assembly and disassembly of multi-component machines; binding and unbinding of protein factors;

complementary base-pairing; priming or initiation and polymer chain elongation; local and large-scale

conformational transitions of components; nucleoside triphosphate hydrolysis; translocation along a nucleotide

sequence

Ion conductance Ion diffusion, translocation, binding and unbinding; rearrangement of pore-lining regions in response to an

arriving or leaving permeant ion; stimulus-triggered sensor motion; propagation of motion from sensor to channel

gate; reorganization of annular lipids upon channel gating

Membrane remodeling Membrane attachment and insertion of membrane-shaping proteins; oligomerization of these proteins; bending,

undulation, fission and fusion of surrounding membranes

Figure 1

(a)

(d) (e)

(b) (c)

Current Opinion in Structural Biology

Models at different scales. (a) A quantum mechanical model. (b) A molecular mechanics all-atom model. (c) A coarse-grained model. (d) A rigid-body

model for a concentrated protein mixture. (e) In a continuum model for a lipid bilayer, inward movement of two protein monomers (dashed circles) in

the upper leaflet induces a velocity field (arrows) in the lower leaflet. The last panel is reproduced from Ref. [35�] with permission from The Royal

Society of Chemistry.
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on the matrix. In addition, flexible peptide linkers con-

necting protein domains have been modeled as a con-

tinuous polymer chain [36].

Schemes of interfacing between scales
In a multiscale model, one effectively is dealing with

variables that evolve over (supposedly) different time-

scales. Essential to any multiscale modeling is the sep-

arate treatment of the fast evolving and slowly evolving

variables, perhaps assuming different equations of

motion. A general scheme for the separation of variables

can be illustrated by a system specified by fast variables r
and slow variables R. Let the state of the system be

described by the time-dependent probability density p(r,

R, t), governed by the following equation of evolution:

@ pðr; R; tÞ
@t

¼ Lðr; RÞ pðr; R; tÞ (1)

where Lðr; RÞ is an operator serving to transform p(r, R, t)
in the (r, R) space. In treating r, one makes use of the fact

that R evolves slowly on the timescale of r and solves for

the time-dependent probability density of r at a fixed R:

p1(r, t|R), according to

@ p1ðr; tjRÞ
@t

¼ L1ðrjRÞ p1ðr; tjRÞ (2)

where L1ðrjRÞ is the part of Lðr; RÞ containing only

transformation in the r subspace.

In treating R, one assumes that on its timescale the

evolution of r is fast so that the latter always relaxes to

the equilibrium distribution: p1eq(r|R). That is, one

approximates the full probability density as

pðr; R; tÞ ¼ p1eqðrjRÞ p2ðR; tÞ (3)

which can be formally derived via the projection-operator

formalism [6,7]. The evolution in R is then governed by

@ p2ðR; tÞ
@t

¼ L2ðRÞ p2ðR; tÞ (4)

where

L2ðRÞ ¼
Z

drLðr; RÞ p1eqðrjRÞ (5)

Different flavors of this general scheme for the separation

of variables will be found below.

Because the fast and slow variables are coupled, one must

deal with the interfacing of the models at different scales.

Interfacing strategies can be placed into two broad classes

[12,14,20]. In one, known as sequential (or hierarchical or

message-passing; Figure 2), one first carries out simu-

lations for the full model with explicit treatment for both

the fast and slow variables. Information from these simu-

lations is used to parameterize a reduced model for only

the slow variables (see Eqn 5). The latter then becomes

the subject of study. All-atom molecular mechanics

models, coarse-grained models, and rigid-body models

can all be viewed as reduced versions of fuller models (the

full quantum mechanics model in the first case and all-

atom molecular mechanics models in the second and third

cases; Figure 2a–c), although parameterization is often

supplemented by experimental data and empirical

choices [12,14–25,28�,29]. In principle, the equation of

motion for a coarse-grained model can be derived by the

projection-operator formalism from the Newtonian

dynamics of an all-atom model [37]. Implicit solvent

models can similarly be viewed as reduced versions of

explicit solvent models. The one case where simulations

of a full model can provide all the information for para-

meterization is a reduced model for one or a few reaction

coordinates (Figure 2d). Here, from the simulations of the

full model, one can calculate the potential of mean force

for the reaction coordinate (e.g., an interatomic distance)

via umbrella sampling [8] and parameters for its dynamics

(e.g., the effective friction coefficient) by fitting time-

correlation functions.

The second broad class of interfacing strategies is known

as hybrid (or concurrent or mixed-resolution), where

different parts of a system are modeled at different scales

(perhaps following different equations of motion). QM/

MM models are classical examples [1,2] (Figure 3a). More

recent hybrid models include those combining an ato-

mistic representation for a protein molecule (or an ‘active’

region thereof) and a coarse-grained representation for

the solvent (plus membrane) environment (or the rest of

the protein molecule) [38–45] (Figure 3b); those com-

bining a rigid-body model for protein domains and a

continuous-polymer or coarse-grained model for a loop

or linker [36,46�] (Figure 3c); and those combining a rigid-

body model for membrane proteins and a continuum

model for the surrounding membrane [35�] (Figure 3d).

When different regions of the same molecule are mod-

eled at different resolutions, as in QM/MM simulations of

enzyme catalysis [4], the boundary layer, consisting of

covalently bonded atoms, requires great care to ensure

proper coupling between the regions. Electrostatic inter-

actions between regions modeled at different resolutions,

atomistic and coarse-grained in particular [45], still pose

significant challenges.

By coarse-graining one eliminates energy barriers associ-

ated with degrees of freedom internal to the groups of

atoms represented by single beads, therefore the energy

landscape is flattened and becomes easier to traverse.

Raising the temperature has a similar effect, which forms

the basis of temperature replica exchange [47], where

simulations at high temperatures are used to facilitate

conformational sampling at a desired low temperature,

through on-the-fly swap of replicas simulated at a range of

temperatures. Analogous consideration led to the devel-

opment of resolution replica exchange [48–51], where

simulations of coarse-grained models drive the simulation

Multiscale modeling and simulation Zhou 69
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Figure 2

information flow

U(r)

γ

<r(t)  r(0)>

(a)
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(d)

r
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Information passing from high-resolution to low-resolution models. (a) Calculations on a quantum mechanical model can help determine the energy

function of a molecular mechanics all-atom model. (b) A similar passage from an all-atom model to a coarse-grained model. (c) All-atom simulations of

a protein in explicit solvent yield diffusion constants for overall translation and rotation. (d) From all-atom simulations, the potential of mean force U(r)

and effective friction coefficient g for a reaction coordinate r can be obtained (adapted from Schaad et al. [91]).

Current Opinion in Structural Biology 2014, 25:67–76 www.sciencedirect.com



Author's personal copy

of an atomistic model (Figure 4a). This method has so far

been applied only to simple systems such as short pep-

tides and its potential remains to be exploited. The same

premise is behind a serial combination of coarse-grained

and atomistic simulations, where extensive coarse-

grained simulations are used to produce seed confor-

mations to initiate subsequent atomistic simulations.

The serial combination has been used to study much

larger systems including membrane proteins [52–54]. In

effect, the coarse-grained simulations evolve slow vari-

ables (Eqn 4) whereas the atomistic simulations evolve

fast variables (Eqn 2).

An interesting alternative to resolution replica exchange

was recently developed [55]. In this ‘multiscale enhanced

sampling’ scheme, an energy term that couples the

atomistic model and the coarse-grained model was intro-

duced. The Hamiltonian replica exchange method [56]

was then adopted, in which replicas were assigned various

coupling strengths, with zero coupling resulting in the

pure atomistic model. This scheme was applied to study

the folding of a b-hairpin [55] and the disorder-to-order

transition of a loop in a protein [57��], and has been

generalized to path sampling [58].

Instead of fixed partitioning into high-resolution and low-

resolution parts, sometimes switching between alterna-

tive partitions during the course of a simulation can result

in a significant gain in computational speed without

sacrificing accuracy. For example, when simulating the

binding of a ligand to a protein, one can treat the whole

protein as rigid when the ligand is far away, but treat the

Multiscale modeling and simulation Zhou 71

Figure 3

(a) (b)

(c) (d)

Current Opinion in Structural Biology

Hybrid multiscale models that mix (a) quantum mechanical and molecular mechanical; (b) all-atom (for protein) and coarse-grained (for lipid and

water); (c) coarse-grained (for linker) and rigid-body (for protein domains); (d) rigid-body (for protein monomers) and continuum (for lipid bilayer)

representations. The last panel is reproduced from Ref. [35�] with permission from The Royal Society of Chemistry.
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loops around the binding site as flexible when the ligand

is near (Figure 4b upper panels). Interestingly, for calcu-

lating the binding rate constant one can even completely

separate the simulations in the outer and inner regions,

according to a method called BDflex [59�]. Through

simulations in which the ligand is confined to the outer

region while the whole protein is treated as rigid and the

boundary between the outer and inner regions as absorb-

ing, one obtains the rate constant for absorption on the

boundary (Figure 4b lower left panel). Subsequently the

rate constant for ligand binding is obtained from simu-

lations in which the ligand is confined to the inner region

(Figure 4b lower right panel). This time the loops are

treated as flexible and the boundary as partially absorbing,

72 Theory and simulation

Figure 4

(a)

resolution
exchange

(b)

(c)

Current Opinion in Structural Biology

Computational gains from the use of separated simulations (a) at different resolutions, (b) in different regions, or (c) of different components (taken

from Zhou and Qin [11]).

Current Opinion in Structural Biology 2014, 25:67–76 www.sciencedirect.com
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with the extent of absorption determined by the rate

constant for absorption from the outer simulations.

The postprocessing approach for modeling the effects

of macromolecular ‘crowders’ on the thermodynamics

and kinetics of a test protein [10,60] is another example

of separating simulations at different scales. While such

effects can in principle be calculated through simu-

lations where the test protein and the crowders are

mixed (Figure 4c left panel), there are distinct advan-

tages (in particular, enabling all-atom representations)

when one first carries out separate simulations of the

test protein and of the crowders and then postprocesses

the simulations (Figure 4c right panel). Postprocessing

entails weighting each conformation in the protein

simulation according to the Boltzmann factor of the

excess chemical potential arising from the interactions

of the test protein with the crowders. The latter

quantity can be calculated according to Widom’s

particle insertion method [9], but such a calculation

is very costly [28�]. A practical method has now been

developed, by expressing the protein–crowder inter-

actions as correlation functions and evaluating them

via fast Fourier transform [61��].

Illustrative applications
In many cases, multiple models are applied to study the

same system at different scales, resulting in a more

comprehensive understanding. One example is the M2

proton channel of Influenza A virus. This tetrameric

protein, with 97 residues in each subunit, is essential

for viral replication and is an established drug target.

Quantum mechanical calculations were used to model

the pH-dependent conformations of the His37-Trp41

tetrameric cluster [62], which embodies the pH sensor,

proton selectivity filter, and primary gate. QM/MM mol-

ecular dynamics simulations were used to explore the

local stability of alternative conformations of the His37-

Trp41 cluster [63�]. Through a number of all-atom mol-

ecular dynamics studies, the motion of the permeant

proton along the channel pore was characterized [64];

the role of Val27 as a secondary gate was proposed [65];

helix bending around Gly34 was revealed and suggested

to be coupled to channel gating [66,67]; and inhibitors

that target drug-resistant M2 mutants were designed [68].

The rate of proton transport was calculated by modeling

the gated binding to and unbinding from the His34 tetrad

as diffusion-limited reactions, leading to quantitative

rationalization of experimentally observed current–vol-

tage and current–pH relations as well as solvent isotope

effect [69�,70].

In addition to the binding/unbinding reaction-based

approach [69�], ion conductance across transmembrane

channels has been calculated from models at a variety of

scales [71]. The most detailed are all-atom molecular

dynamics simulations, from which channel conductance

can be calculated by counting the number of complete

ion-crossing events [72–74]. One step down the resolution

hierarchy are models that treat the conducting ions expli-

citly by Brownian dynamics simulations, but the channel

protein, membrane, and solvent as static dielectric con-

tinuum [75,76]. A further approximation is to replace the

discrete ions of each species by a continuous charge

density and treat ion–ion interactions in a mean-field

way; the resulting Poisson–Nernst–Planck model con-

tinues to find use [77–79]. Lastly one can model ion

permeation as the diffusion of one or a few ions in a

one-dimensional or three-dimensional potential of mean

force [80–83]; this potential of mean force can be obtained

from all-atom molecular dynamics simulations.

Concluding remarks
Clearly, models at different scales can all contribute to the

fundamental understanding of complex biomolecular sys-

tems. Different spatial scales may evolve over different

timescales according to different equations of motion.

From a technical standpoint, artificial coupling to a low-

resolution model can facilitate conformational sampling

of a high-resolution model [55,57��,58]. In other cases,

separation of the simulations in different regions [59�] or

of different components [61��] can be designed for effi-

cient calculation of biophysical properties. While the

partitioning into high-resolution and low-resolution parts

is fixed in most current studies, switchable or adaptive

partitioning is being developed [84–86]. Iterative infor-

mation exchange between high and low-resolution

models has also proven useful [24]. All these activities

produce an equalization of the resolution hierarchy.

The 2013 Nobel Prize in Chemistry recognizes what is

already achieved through multiscale modeling, and much

more can be expected to come. By focusing high-resol-

ution modeling on key components of complex systems,

such as ‘test’ proteins in crowded cellular milieus, results

with increasing accuracy will be attainable, including

those for biochemical processes under in vivo conditions.

On the other hand, with further coarse-graining, it will be

realistic to bridge the molecular and subcellular scales

[87–90].
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