
Trends
The number of iGluR structures, both
for isolated domains and for C-terminal
domain (CTD)-truncated constructs,
has expanded drastically in the Protein
Data Bank. The extracellular domains
usually display ligand-induced struc-
tural changes, but the transmembrane
layer has yet to be captured in an
open-pore conformation.

Electrophysiological data, interpreted
with the help of available structures,
have defined the contributions of key
gating elements, in particular the M3
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NMDA receptors (NMDARs) are ion channels activated by the excitatory
neurotransmitter glutamate and are essential to all aspects of brain function,
including learning and memory formation. Missense mutations distributed
throughout NMDAR subunits have been associated with an array of neurologi-
cal disorders. Recent structural, functional, and computational studies have
generated many insights into the activation process connecting glutamate
binding to ion-channel opening, which is central to NMDAR physiology and
pathophysiology. The field appears poised for breakthroughs, including the
exciting prospect of resolving the conformations and energetics of elementary
steps in the activation process, and atomic-level modeling of the effects of
missense mutations on receptor function. The most promising strategy going
forward is through strong integration of multiple approaches.
helix and the M3–D2 linker, to channel
activation. Single-channel data can
further determine the energetics
and kinetics, but not conformations, of
substates along the activation pathway.

Computational studies have so far
focused on motions within isolated
domains or over very short timescales,
but atomic-level modeling is becoming
feasible to calculate gating energetics
and kinetics.

The NMDAR field appears poised for
breakthroughs, but urgently needs
strong integration of multiple
approaches.
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One Ion-Channel Protein, Many Conformations
Neurotransmitter-gated ion channels, including Cys-loop, purinergic, and ionotropic glutamate
receptors, mediate fast signaling between cells in the nervous system [1,2]. These ion channels
rapidly open in response to transient release of a neurotransmitter, generating an electrical and/
or biochemical signal that impacts on cellular activity and hence on nervous system function.
The allosteric linkage between the ligand-induced conformational changes and the rapid
opening of the ion channel is central to the signal transduction process. Ionotropic glutamate
receptors (iGluRs) are a key family of neurotransmitter-gated ion channels that mediate
excitation throughout the nervous system. Recent functional, structural, and computational
studies have resolved numerous features of the allosteric linkage in iGluRs [3,4]. Nevertheless,
wide knowledge gaps remain [5]. One of the most challenging and elusive is to define the
elementary steps, in terms of the conformations of the intermediate states involved and the
transitions between them, along the pathway from agonist binding to ion-channel opening.
These elementary steps are a key regulator of synaptic function and are often targets of
allosteric modulators. Because of their transient nature, no single approach alone – functional,
structural, or computational – will be capable of resolving these substates. In this Opinion we
discuss multiple efforts to address this issue in NMDA receptors (NMDARs), a crucial class of
iGluRs, and emphasize the need for strong integration of approaches.

NMDARs make unique contributions to synaptic physiology and dynamics in part because of
their distinctive neurotransmitter transduction profile: they are activated slowly in response to
transient glutamate but show persistent activity and slow deactivation. Further, their activity is
modulated by an array of small ions and molecules (protons, Zn2+[175_TD$DIFF], spermine) [1,6], membrane
lipids [7], and post-translational modifications such as phosphorylation [8]. Missense mutations
distributed throughout NMDAR subunits have recently been associated with devastating
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neurological disorders [9,10]. To define how these diverse agents and mutations mechanisti-
cally impact on receptor operation, it is essential to know the elementary steps in NMDAR
activation. These will allow more-refined targeting of specific properties of NMDAR function,
which has been the bottleneck in the development of clinically useful compounds.

Mechanistic Insights from Structures of Isolated Domains
A hallmark of iGluRs is their structural modularity, being composed of four largely independent
domains: an amino-terminal domain (ATD), a ligand-binding domain (LBD), a transmembrane
domain (TMD) forming the ion channel upon tetrameric assembly, and a disordered intracellular
C-terminal domain (CTD) (Figure 1). All these domains are crucial to the allostery and hence
physiology of iGluRs [1,6,11]. For NMDARs, the ATDs and LBDs form extensive structural
contacts [12,13], and ATD deletion has a strong effect on properties including channel open
[176_TD$DIFF]probability, but the receptors remain functional [14,15]. We focus here on the two core
domains: the LBD and the TMD.

Crystal structures of isolated extracellular domains started in 1998 [16] and continue to grow,
reflecting their value in characterizing intra-domain interactions and motions. These domains
were bound with various ligands, and their structures show response to ligand binding. Within
the LBD, agonists bind at the cleft between two lobes (referred to as D1 and D2; Figure 1A).
Indeed, one of the key mechanistic insights to emerge from the studies of the isolated LBDs
was that ion-channel opening was driven by LBD lobe closure [1,17].

Partial agonists are extremely useful tools, as well as potential clinical therapies, because they
perturb the conformations and relative stabilities of substates. For AMPA receptors (AMPARs),
another major class of iGluRs, the degree of LBD lobe closure is correlated with agonist
efficacy, with agonists inducing tight closure, competitive antagonists producing lobe opening,
and partial agonists corresponding to intermediate closure (Figure 2A) [18,19]. This correlation
implicates the degree of LBD lobe closure as a determinant of AMPAR partial agonism.

Surprisingly, for NMDARs, the degrees of LBD lobe closure are similar for full and partial
agonists, although competitive antagonists still produce lobe opening (Figure 2B) [20–23]. The
lack of structural response to NMDAR partial agonism is a manifestation of the limit to which
structures can serve as reporters of functional properties. In the ideal case, crystal structures
represent a thermally averaged snapshot, which should be close to theminimum position of the
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Figure 1. Modular Architecture of
Ionotropic Glutamate Receptors.
(A) Domains within a GluA2 subunit
(C-terminal domain missing). Subdo-
mains of the amino-terminal domain
(ATD), L1/L2, and ligand-binding domain
(LBD), D1/D2, and transmembrane
helices of the transmembrane domain
(TMD), M1/M3/M4, are indicated; a
bound ligand is shown in space-filling
mode and the M3–D2 linker is in green.
(Inset) Enlarged view of the region around
the linker. (B) Subunit organization within
the homotetramer (Protein Data Bank
3KG2). A/C and B/D subunits are in
blue and magenta, respectively. In NMDA
receptors, the A/C and B/D subunits are
GluN1 and GluN2, respectively.
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Figure 2. Differences in Partial and Full Agonist- and Competitive Antagonist-Bound Structures. (A) GluA2
ligand-binding domains (LBDs) boundwith full agonist glutamate [grey dimer except green for the D2 lobe in onemonomer,
with ligand in space-filling mode; Protein Data Bank (PDB) 1FTJ], partial agonist kainate (one D2 lobe in cyan; PDB 1FTK),
and antagonist 6,7-dinitroquinoxaline-2,3-dione (one D2 lobe in blue; PDB 1FTL). The view is 45� from the dimer symmetry
axis (solid line with arrow); dashed lines indicate cleft opening angles. (B) GluN1/N2A LBDs bound with full agonists glycine
and glutamate (grey dimer, with ligands in space-filling representation; PDB 4NF8), GluN1 partial agonist 1-aminocy-
clobutane-1-carboxylic acid (D2 lobe in cyan; PDB 1Y1Z) and antagonist 6,7-dinitroquinoxaline-2,3-dione (D2 lobe in blue;
PDB 4NF4), and GluN2A partial agonist (2R)-amino(1-hydroxy-4-propyl-1H-pyrazol-5-yl)ethanoic acid (D2 lobe in orange;
PDB 4JWX) and antagonist 1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid (D2 lobe in red; PDB 4NF6). The
views are 45� on either side of the dimer pseudo-symmetry axis. (C) Arrangements of themajor pore-liningM3 helix and the
M3–D2 linker in GluA2 AMPARs, in apo form (grey; PDB 4U2P) and a form, bound with agonist and allosteric modulator,
that putatively represents the active state (color; PDB 4U1Y). Distances are measured between Ca atoms of Glu637
residues in diagonal subunits.
free energy landscape (although deviation from the position determined computationally can
occur due to crystal packing and other factors [24,25]). Hidden from structure determination is
the full free-energy landscape, not only the minimum position, that actually dictates functional
properties. One hypothesis is that NMDAR partial agonism is determined not by the minimum
position but by the curvature of the free-energy basin for LBD lobe closure [26]. This result
demonstrates that the combination of computation and structure can provide novel insights
into iGluR function. Computed LBD free energy landscapes can now be tested by single-
molecule Förster resonance energy transfer (smFRET) measurements [27].

A Missing Conformation of iGluR Channel Pores
All ion-channel pores have twomajor conformations: closed and open. The pore-forming TMDs
of iGluRs share structural homology to K+ channels [28,29]. The second transmembrane helix
(M3; Figure 1A) in iGluRs corresponds to TM2 or S6 in K+ channels and was shown functionally
to be a key determinant of ion-channel gating [30,31] and to harbor the activation gate [32].
These findings are supported by structures of CTD-[177_TD$DIFF]truncated iGluRs (Figure 1) [29]. Together,
functional and structural studies lead to the conclusion that pore opening of iGluRs involves the
outward displacement of the M3 helix; displacements of key elements leading to pore opening
have been visualized in molecular dynamics simulations [33].
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The structures of CTD- [177_TD$DIFF]truncated iGluRs provided the context to speculate how intra-domain
motions and inter-domain couplings contribute to channel gating. The correlation between
degree of lobe closure and agonist efficacy observed in isolated LBDs is also seen in CTD- [177_TD$DIFF]
truncated AMPARs [34]. For NMDARs, comparison of two cryo-electron microscopy (EM)
structures, one bound with full agonists and one bound with competitive antagonists,
showed that the latter produce [178_TD$DIFF]LBD lobe opening in the GluN1 subunits but not in the
GluN2B subunits [35]. In putatively active structures, the tips of the D2 lobes are usually
farther separated between diagonal subunits (A/C or B/D) than in structures representing
the resting state (Figure 2C). Histograms of distances between spin-labeled residues
have also been measured by double electron–electron resonance experiments [34,35].
This technique, as well as other spectroscopic techniques like smFRET, may not have
the resolution to decipher [179_TD$DIFF]the subtle conformational changes that are likely to play key roles
in receptor gating.

Unfortunately, the most important structural change, [180_TD$DIFF]that is, words pore opening, is not
captured by any of the putatively active structures. The pores either were closed
(Figure 2C) [34–36] or could not be resolved [37,38]. Possibly the agonists ([181_TD$DIFF]and allosteric
modulators) used were not the best for capturing the open-pore structure; another possibility is
that the solubilizing conditions in sample preparations did not model well the key biophysical
properties of cell membranes which may be essential for maintaining TMD structural integrity
[39]. Regardless, if structural techniques fail to even capture a stable functional state, then it
would only be prudent to explore other strategies to seek conformational information on
[182_TD$DIFF]substates.

Identifying NMDAR Substates with Single-Channel Recordings
Functional approaches, most notably recordings of individual receptors, provide a powerful tool
to extract the energetics of substates [40]. NMDARs composed of the GluN1/GluN2A subunits
are particularly suitable for such studies because their activity is robust and displays a single
conductance level, thus simplifying analysis. Single-channel current traces of GluN1/GluN2A
normally show periods of high opening and closing activity, separated by longer quiescent
periods (Figure 3A), revealing the distributions of five closed components (Figure 3B) and two to
four open components [41–44]. The two longest closed components are thought to represent
desensitized substates. While the desensitized substates in NMDARs remain unresolved, and
may be important to the dynamics of synaptic and extrasynaptic receptors, we focus here on
the briefer closed components which are thought to be on the activation pathway to channel
opening [42,43].

Single-channel current traces can also be analyzed to reveal relative stability and transition rates
between substates by subscribing to a specific kinetic model. [183_TD$DIFF]Many kinetic models have been
developed [42,44–46]. A prevalent model that can capture prominent features of NMDAR
activity assumes that the activation pathway consists of sequential transitions along a set of
substates (Figure 3C) [43,45–47].

We used this model to characterize the impact of glycine insertions in the M3–D2 linkers
(Figure 3D–F) [48]. By integration with computation, we found that the allosteric linkage
between the LBD and the M3 helix involved mechanical tugging. This insight motivated the
development of a theoretical model for iGluR gating [49]. Agonist-induced outward expansion
of the D2 tips leads to increased extensions, and consequently higher tensions, of the M3–D2
linkers. The would-be higher tensions drive the outward splay of the M3 termini and hence
opening of the pore. In the resulting active state, the linker tensions recede and the linker
extensions retract to be shorter than those in the resting state. The theoretical model has also
clarified that a ‘pulling factor’, empirically defined to measure the effects of glycine insertions in
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Figure 3. Identification of NMDA Receptor Substates by Single-Channel Kinetic Analysis. (A) Single-channel current traces of wild-type GluN1/N2A
recorded in the on-cell mode. Openings are downward. (B) Closed time distribution, fit with five exponentials (time constants and relative amplitudes shown). (C) Kinetic
scheme for receptor activation (dashed box), with transition rates (in s�1) shown; C4 and C5 are desensitized components. Values are for a single experiment. (D) Current
traces of wild-type N1/N2A and a mutant with a single glycine inserted in the N2A M3–D2 linker. (E) Kinetic schemes of the constructs, with average equilibrium
constants shown from pooled data. (F) Pulling factor (k), obtained as the slope of linear correlation betweenDDG and insertion length, for each transition. Adapted from
Kazi et al. [48]. See also Figure S1 in the supplemental information online.
the M3–D2 linkers (Figure 3F), is actually the decrease in linker tension when the receptor
makes a transition from one substate to the next along the activation pathway.

The linear model has proven useful in characterizing the energetics and kinetics of NMDAR
gating (Figure 3) [47,48,50–53]. Nevertheless, what this model lacks is a clear link to con-
formations, which is desperately needed to be able tomove the field forward. Such a ‘structure-
based kinetic model’ must first of all recapitulate the unequal contributions of the GluN1 and
GluN2A subunits to channel activation (Figure 3F) [42,48,54]. It must also account for the roles
of key gating elements, including the extracellular termini of the three transmembrane helices
(M1, M3, and M4) and the associated linkers that connect them to the D2 lobe [55,56]. Indeed,
the outer elements, M1 and M4, need to be displaced for efficient pore opening to occur [53].
Importantly, these outer elements contain numerous missense mutations (Figure S1 in the
supplemental information online), some of which affect receptor gating [57]. Having a kinetic
model that captures these conformational details would greatly [184_TD$DIFF]help uncovering the mecha-
nisms underlying the aberrant receptor functions.

What Should the Conformations of NMDAR Substates Look like?
Both structural and functional approaches face daunting challenges in producing information
on the conformations of substates along the activation pathway. A promising and timely
strategy for breakthrough is to use current knowledge, whether from electrophysiological,
structural, or computational studies, to inspire hypotheses on functionally important confor-
mations, and then to validate the consequent hypothesis-driven conformational modeling by
targeted functional studies.

In the active state, the ion-channel pore is open while the LBDs have closed lobes. During
stationary gating, with the LBDs saturated with agonists, the pore switches between closed
Trends in Neurosciences, March 2017, Vol. 40, No. 3 133



and open conformations (e.g., Figure 3A). There is little experimental information on the
conformations of the agonist-bound LBDs during the pore closed periods. The aforementioned
theoretical model [49] predicts semiclosed LBD lobes while the pore is closed because keeping
the LBD lobes closed would result in over-stretched M3–D2 linkers and hence excessive
tensions, which are relieved by reducing the degree of LBD lobe closure. Paradoxically, the
hypothesized unstable state with both the LBD lobes and the channel pore closed might be
what was captured by the agonist-bound structures [34–36], and this was perhaps stabilized
partly by not closing the LBD lobes as tightly as in isolated LBD structures as well as partly by
the solubilizing conditions overly favoring the pore closed conformation.

If semiclosed LBD lobes are indeed a characteristic of the pore-closed state during NMDAR
stationary gating, what may distinguish the conformations of the three kinetic components C3,
C2, and C1? A valuable clue is provided by the glycine insertion data (Figure 3D–F). They
suggest that the early transitions (C3!C2 and C2!C1) along the activation pathway mostly
involve motions within GluN2A whereas the late transitions (C1!O1 and O1!O2) involve
concerted motions of both types of subunits. More specifically, as clarified by the theoretical
Key Figure

Conformational Models for NMDA Receptor Substates
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Figure 4. (A) Conjectured ligand-binding domain (LBD) and transmembrane domain (TMD) conformations in four
substates. Black arrows indicate putative LBD and TMD motions relative to C3. (B) Changes in free-energy differences
between two substates, by mutations, and by GluN1 and GluN2A partial agonists 1-aminocyclobutane-1-carboxylic acid
(ACBC) and quinolinic acid (QA), respectively. Bars represent magnitudes of DDG. For the present discussion, the LBD–
TMD dividing line is assumed to be between the A7 and A8 positions at the M3 C-terminus; partial agonists are treated as
LBD perturbations[174_TD$DIFF].
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Outstanding Questions
Capturing iGluR ion-channel pores in
an open conformation is essential for
defining their activation process and a
prime target for structure determina-
tion. Solubilizing the TMD layer in lipid
bilayers, for example [189_TD$DIFF], by using nano-
discs, may help to preserve native
structures. Working with isolated
TMD constructs may provide another
avenue.

Integrated functional and computa-
tional studies have interrogated the
crucial role of the M3–D2 linkers. The
picture is far less clear for the outer
elements, [190_TD$DIFF]namely the M1 and M4
extracellular termini and the associated
linkers, regarding how they participate
in the elementary steps along the
NMDAR activation pathway.

Domains outside the core gating
domains, namely the ATD and the
CTD, have prominent effects on
NMDAR function at synapses. How
do these domains mechanistically
impact on the core gating process
mediated by the LBD and the TMD?
Only after a basic understanding is
achieved from structural and
electrophysiological studies can theo-
retical modeling be contemplated.

Prominent among the many important
distinctions between NMDARs and
non-NMDARs is the mechanism of
desensitization. In non-NMDARs the
center of action for desensitization
has been located at the D1–D1 inter-
face of the LBD dimer, whereas in
NMDARs it is only starting to be inves-
tigated. Mechanistic understanding of
NMDAR desensitization will again
require the application of electrophysi-
ological, structural, and computational
approaches.

Integration of structural, functional,
and computational approaches may
lead to a formalism for linking single-
channel data on NMDAR gating ener-
getics and kinetics with atomic-level
interactions and motions. Such a for-
malism will push the understanding of
NMDAR physiology to the atomic level
and help to realize the promise of pre-
cision medicine.
model [49], the greatest decreases in M3–D2 linker tension occur in GluN2A during the C3!C2

and C2!C1 transitions. Any change in linker tension likely involves D2 motion. It thus appears
that the early transitions may have lobe closure of the GluN2A LBDs as a prominent feature,
whereas the late transitions may have increased participation of the GluN1 subunits and of
course the opening of the pore. A plausible scenario is that the LBD lobes are semiclosed in all
the four subunits for C3, but become closed in one of the two GluN2A subunits for C2, in both
GluN2A subunits for C1, and in all the four subunits in the open components (Figure 4A, Key
Figure).

This line of conjecture on the conformations of the NMDAR substates is generally consistent
with results from other single-channel studies with mutations in different domains and agonists
spanning a range of efficacies [47,50,52]. The useful quantity for the present purpose is DDG,
the perturbation on the free-energy difference between two substates by a mutation or by a
partial agonist, in reference to the wild-type receptor saturated with full agonists (glycine and
glutamate). Specifically, the relative magnitudes of DDG among the transitions along the
activation pathway may provide a way to map these transitions to conformational changes
in different domains of the receptor. TheDDG data can be summarized as follows (Figure 4B).
First, perturbations in the LBDs mostly affect the early transitions whereas perturbations in the
TMDsmostly affect the late transitions. Second, perturbations in the GluN2 LBDs [185_TD$DIFF]more strongly
affect the early transitions whereas perturbations in the GluN1 LBDs more strongly affect [186_TD$DIFF]the
late transitions. If we accept the assumption that a perturbation in a domain has the greatest
effect on conformational changes within that domain, then theDDG data serve as a solid basis
for the foregoing conjecture on conformations of substates.

Conformational conjectures can be turned into atomic models through computation. In
particular, semiclosed LBD conformations have been explored by molecular dynamics free-
energy simulations [58]. Open conformations of the ion-channel pore can potentially be
obtained from remodeling the closed conformations in crystal and cryoEM structures via de
novo packing of the TMDs [59,60]. The atomic models can then be validated by electrophysi-
ological studies. In particular, the accessibility of individual substituted cysteines and the
formation of disulfide or metal bridges between pairs of substituted cysteines can be tested
experimentally. DDG values can be predicted from free-energy simulations and tested by
single-channel studies.

Concluding Remarks
Resolving the conformations and energetics of the elementary steps along the activation
pathway will constitute a breakthrough in NMDAR physiology. This knowledgewill be invaluable
for defining the operations of NMDARs at synapses and how they might be allosterically
regulated by small molecules and post-translational modifications. In addition, there is a rapidly
growing list of missense mutations in NMDAR subunits that are associated with neurological
disorders [9,10]. [187_TD$DIFF]The mutations could wreak havoc at any juncture in the life cycle of the
receptors, including assembly, trafficking, and localization, as well as interactions with lipids
andwith other proteins [188_TD$DIFF]. Many, however, presumably affect receptor gating, as has been shown
for a dozen cases [9], but have yet to be tested. Ultimately what is needed is a model that can
predict with reasonable accuracy whether a missense mutation affects receptor gating and, if
so, the effect and mechanism thereof, without having to do an extensive functional characteri-
zation, thereby leading to a more rapid development of precision medicine (see Outstanding
Questions).

At present, structural studies have yielded incredible insights into NMDAR function. Neverthe-
less, these structures require validation by functional studies, an issue that is particularly acute
for the TMD and the linkers that connect them to the LBD. On the other hand,
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electrophysiologists have tended to be overly conservative, and must be willing to inject
structures into kinetic models. This will be especially true for the intermediate states. Compu-
tational studies have so far focused on motions within isolated domains or over very short
timescales, but atomic-level modeling is becoming feasible to calculate gating energetics and
kinetics. A strong integration of multiple approaches, as illustrated by the prospective study on
substates, will be necessary for moving the NMDAR field forward.
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